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EFFECT OF THE EXTENT OF CURE ON THE MODULUS,

GLASS TRANSITION, WATER ABSORPTION, AND

DENSITY OF AN AMINE-CURED EPOXY

*

John B. Enns and John K. Gillham

Polymer Materials Program
Department of Chemical Engineering

Princeton University

Princeton, New Jersey 08544

Synopsis

The modulus, density, glass transition (Tg), and water absorption

characteristics of an amine-cured resin [diglycidyl ether of bisphenol A

(Epon 828)/diaminodiphenyl sulfone (DDS)] were studied as a function of

extent of cure. The glass transition is a function of the extent of cure

and reaches a maximum temperature, Tg, when it is completely cured;

specimens with different extents of cure were formed by isothermal cure

below Tg. for different times. After slowly cooling, the density at each

extent of cure was obtained at room temperature. Moisture absorption was

monitored gravimetrically at 25*C for two months at several humidity levels.

The room temperature density and modulus decreased with increasing extent of

conversion whereas the glass transition temperature and equilibrium water

absorption increased. The equilibrium water absorption increased linearly

with relative humidity, and the absorptivity increased linearly with specific

volume. An interpretation of these anomalous results is made in terms of the

nonequilibrium nature of the glassy state. The glass transition temperature

increases as the extent of cure increases resulting in a material that is

further from equilibrium at room temperature and therefore having more free

volume and a greater propensity to absorb water.

*Present address: Bell Laboratories, Whippany, NJ 07981.
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INTRODUCTION

The curing phenomena of a thermosetting epoxy resin can be understood

in terms of a time-temperature-transformation (TTT) cure diagram (1) in which

the times to gelation and vitrification are plotted versus the isothermal cure

temperature. As can be seen in Figure 1, the "S"-shaped vitrification curve

and the gelation curve divide the time-temperature plot into four distinct

states of matter: liquid, gelled rubber, ungelled glass, and gelled glass.

Tg is the glass transition temperature of the unreacted resin mixture, Tg.
0

is the glass transition of the fully cured resin, and gelTg is the glass

transition of the resin at its gel point.

The times to gelation and vitrification can be determined from the loss

peaks of an isothermal dynamic mechanical spectrum obtained using the torsional

braid analysis (TBA) technique (2). At cure temperatures sufficiently below Tg.

the reaction will not go to completion because, as the viscosity increases (a result

of the increasing molecular weight), the reaction becomes diffusion controlled and

eventually is quenched as the material vitrifies (3). The extent of conversion

attained when the reaction is quenched increases as the cure temperature is

raised, as evidenced by a corresponding increase in the glass transition tem-

perature.

In addition to the increase in glass transition temperature, other

parameters can be monitored as a function of the extent of cure in an attempt

to understand the changes that occur during cure. These include the shear

modulus (of a film which can be measured with a torsion pendulum), the room

temperature density, and the room temperature equilibrium water absorption.

I
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In this paper, the above mentioned techniques, as well as gel fraction

experiments to identify the gel time in the dynamic mechanical spectra (4), have

been used to monitor the changes in physical properties that occur during cure.

A preliminary report from this laboratory has been published (5).

EXPERIMENTAL

Materials

A stoichiometric mixture of the diglycidyl ether of bisphenol A (Epon 828:

Shell) and 4,4'-diaminodiphenyl sulfone (DDS: Aldrich) was prepared for the

investigation (see Figure 2). For the TBA experiments each of the components

was dissolved in methylethylketone (MEK) before mixing. For the other experi-

ments the amine was added after the epoxy had been heated to 130°C; the mixture

was stirred until the amine dissolved in the epoxy (< 5 min). Equal amounts

(by weight) of the neat resin were poured into aluminum foil-lined aluminum

molds (2" x 1/2" x 1/16"), degassed in a vacuum oven (, I Torr) at 800C for

20 min (until the bubbles disappeared), and placed in a heated oven (purged

with nitrogen) at 175°C to cure. After curing for specified times (50, 100,

180, and 600 mn) the specimens were allowed to cool slowly to room temperature

in the oven and then were placed in a dessicator. The cured specimens were

clear, indicating that the mixture had not phase-separated during the process.

Torsional Braid Analysis (TBA)

Supported TBA specimens were made by dipping a multifilamented glass

braid into a resin/MEK solution (20Z resin). They were then mounted in the

specimen chamber in a helium atmosphere at the temperature of cure, and their

modulus and logarithmic decrement were monitored by an automated apparatus (2)

, .,, . ,,.,, .. _-.. , - . ,,,. +. - --- - .,= ... . ,... .... . ..... mo m
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until the reaction was either complete or quenched, as indicated by a leveling

off of the modulus. Typically, two peaks in logarithmic decrement were observed

during cure, identified as a liquid-to-rubber transformation (gelation) and a

rubber-to-glass transformation (vitrification), respectively. Representative

spectra are shown in Figure 3, and the times to these events are tabulated in

Table I. Thermomechanical spectra were then obtained on cooling to -190°C

(at 1.5°C/min) and heating to 250C (at the same rate). By heating the par-

tially cured resin to 250°C (i.e., above Tg. = 210'C) it can be cured fully.

A subsequent scan from 250 to -190C provides the spectrum of the fully cured

resin. However, the variation of Tg. with thermal prehistory indicates that

thermal degradation had occurred on heating to 2500. Two major relaxations

are observed in these spectra: the glass transition (Tg) and a secondary

subglass transition (T sec) related to the motion of the -CH2-CH(OH)-CH 2-0-

group in the epoxy (6). The values of Tsec, Tsec, Tg and Tg. obtained from

these scans are tabulated in Table I and plotted in Figure 4. Tsec and Tg

increase with increasing extent of cure to approach T sec and Tg., respectively.

It is noted that the glass transition temperature after prolonged isothermal

cure is higher than the temperature of cure (4, 7).

In order to monitor the increase in the glass transition during isothermal

cure at 1750C, the cure was interrupted at selected times (using separate

samples), and a temperature scan made to determine the glass transition tem-

perature. The spectra of the partially cured specimens and subsequently

fully cured specimens are shown in Figure 5; the glass transition tempera-

tures versus time of cure are shown in Figure 6. Note that the cure time

was insufficient to fully cure the resin.
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Torsion Pendulum

A film of Epon 828/DDS, prepared as described above by partially curing

at 175°% for 100 min., was machined to dimensions of 4.70 x 0.60 x 0.063 cm

and mounted in a calibrated torsion pendulum (2). Thermomechanical spectra

displaying quantitative values of the elastic shear modulus (G') and log-

arithmic decrement (A) of the partially cured specimen were obtained on

cooling to -190
0
C (not shown in Figure 7) and subsequent heating (Figure 7)

to 250°C. The spectrum of the fully cured film was then obtained on cooling

to -190*C (Figure 7).

Gel Fraction

Two independent experiments were conducted to estimate the gel times of

the resin at various temperatures; in one the reaction was conducted in an

air atmosphere, whereas in the other a helium atmosphere was used. In the

former case, open test tubes containing approximately 5 ml of resin were

placed in a heated oil bath held at a series of fixed temperatures. The

test tubes wre removed at selected intervals, cooled, and the soluble portion

extracted with MEK for 48 hours. The insoluble portion (gel) was then dried,

weighed and compared with the initial weight (before extraction) to give a

gel fraction. This procedure was carried out with 11 or more samples at

each of 10 cure temperatures ranging from 102 to 202C; the data are shown

in Figures 8a and 8b.

In the second experim,.Lt, 1 to 2 ml of resin were placed in ampules,

degassed for 20 minutes (until the bubbles disappeared) at 1 torr, sealed

in a helium atmosphere, and placed in a heated oil bath held at a fixed

temperature. The ampules were removed at selected intervals, quenched in
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liquid nitrogen, broken, and the soluble portion extracted with MEK for 3

hours using a Soxhlet extraction column with coarse thimbles. The insoluble

portion (gel) was then dried, weighed and compared with the initial weight

(before extraction) to give a gel fraction. This procedure was carried

out at each of seven cure temperatures ranging from 132 to 184C;

the data are shown in Figure 8c. The gel points for both experiments, defined

as the onset of insolubility, and calculated using the zero intercept of

the extrapolated gel fraction curves, are tabulated in Table II.

Water Absorption

Films of Epon 828/DDS were prepared as described above for different

times of cure at 175°C; i.e. 50, 100, 180, and 600 minutes. The specimens were

prepared in order of diminishing cure time; the 600 min. cured specimens

were prepared first, and the 50 min. cured specimens were cured last, so that

changes due to aging would minimize rather than enhance differences in density

between the specimens (5). After the specimens had been stored in a vacuum

oven at 50°% for 2 days, three specimens of each degree of cure were exposed

to each of 4 different relative humidity atmospheres, 31, 51, 79.3 and 93%,

generated by saturated solutions of calcium chloride hexahydrate, calcium

nitrate, ammonium chloride and ammonium dihydrogen phosphate, respectively,

at 25 ± 0.5
0
C. Each film was suspended by a hook over a saturated salt solu-

tion in a sealed test tube. The moisture uptake was measured by intermittently

removing the films from the test tubes and weighing them on a microbalance.

The average percent weight gain of three specimens is plotted vs. (time)

in Figures 9 to 12 for each of the relative humidities to which they were
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exposed. [A more rigorous approach would have involved plotting percent weight

gain vs. (time)h/thickness.]

After 2000 hours of exposure the samples were dried in a vacuum oven at

50C for two weeks; their weight came to within 0.028% t 0.060 of the initial

weight.

Density

Densities of the cured epoxy specimens were measured in a density gradient

column (ASTM D1505) at 25°C, prepared from mixtures of o-dichlorobenzene and

toluene, which had been calibrated with calibration floats with densities

1.2320, 1.2344 and 1.2379 g/ml. Densities of specimens were determined by

interpolating the calibration curve at the levels at which they came to rest

(Figure 13). Measurements were made one hour after lowering the specimens

into the column since their positions drifted over the course of several days

due to swelling.

RESULTS AND DISCUSSION

A TTT diagram for Epon 828/DDS was constructed (Figure 14) using the

information obtained from the TBA and gel fraction experiments. A comparison

of tVe gel fraction data with the TBA liquid-to-rubber transformation in a

in (time) versus I/T plot (Figure 15) indicates that there is a direct corre-

lation between gelation and the liquid-to-rubber transformation. This rela-

tionship was also observed in the Epon 825/DDS and Epon 834/DDS systems (3,8),

whereas the correlation is not as good for the Epon 828/PACH-20 system (3).

Only the top portion (above 80*C) of the TTT diagram for Epon 828/DDS (Figure 14)

was obtained, since the presence of the solvent might have affected the TBA I

4 -- - -
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spectrum (bp MEK = 79
0
C). Using the TTT diagram and the Tg versus

T plot (Figure 4), a cure temperature could be chosen (175°C) at which thecure

glass transition of the cured resin should eventually approach Tg. (Figure 6).

A reason for using one temperature to study the effect of the extent of cure

on the physical properties is to eliminate the effect of other factors. For

example, the reaction mechanism might be temperature dependent, or the frac-

tional free volume locked into the crosslinked network may be a function of

the cure temperature (9).

Although the equilibrium modulus might be expected to increase with

increasing crosslink density, the modulus between T and Tg (Figure 7) of
sec

the fully-cured film is lower than that of the partially cured film. This

apparently anomalous result will be discussed later in the light of the other

results.

The absorption of water by an epoxy film has been considered to occur

by simple Fickian diffusion. The moisture concentration in a thin film at

constant temperature can be described by Fick's second law for one-dimensional

diffusion:

@C Dx 2c
X2

~(1)

where c is the moisture concentration at time t, D is the diffusivity of
x

the material in the direction normal to the surface, and x is the distance

into the film from the surface. On solving equation I and integrating over

the film thickness (10), the percent moisture content M (% weight gain) of

the material as a function of time is

M =G (Mo -M o) +M (2)

. , '. 0 0. . . , . , , . . . .. . :



-9-

where M is the initial moisture contentM is the equilibrium moisture

content, and G is a time dependent parameter

8 [-(2i+l) 2T2 D t/h2]
G 1 exp 2 (3)

i=0 (2i+1)2

which can be approximated (11) by

G = 1 - exp[-7.3 (Dxt/h 2 )0.75 (4)

where h is the film thickness.

The diffusivity D is obtained from the initial slope of the M versus

curve

h 2 2 - M1  2 (5)

and, if the moisture entering the specimen through the edges is considered,

D - D (6)
x (1 h h

+. w )

where k is the length and w is the width of the specimen (11).

The equilibrium moisture content is a function of the relative humidity,

*, of the air to which it is exposed (12):

M - a b (7)

The constants a (absorptivity) and b are selected to provide the best fit to

the data.
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The equilibrium moisture level N and diffusivity D of the films at each

of the extents of cure and relative humidity can be obtained directly from

Figures 9 to 12 and are tabulated in Table III. Although there was consider-

able scatter in the equilibrium moisture content of specimens that had the

same cure history and relative humidity exposure, the trends were the same

for each of the levels of relative humidity, with one exception [the film

cured for 180 minutes had a higher equilibrium moisture content than the

film cured for 600 minutes after exposure to 31% relative humidity (Figure 9)).

In general, the films that were cured to a greater extent showed a higher

equilibrium moisture content.

The diffusivity data show even greater scatter, and thereby perhaps provide

a clue to some of the problems inherent in the experiment. Although the

diffusivity is expected to remain constant with respect to relative humidity,

it varies as much with relative humidity as it does with extent of cure.

Unusually high values were observed for 512 relative humidity, which is an

indication that something unanticipated occurred with that set of specimens.
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The equilibrium moisture content of the films cured to different extents

is plotted versus relative humidity in Figure 16. Since b (in equation 7)

is equal to one, the slopes provide the absorptivities (a) which are seen to

increase with increasing extent of cure. Both the higher equilibrium moisture

content and higher absorptivity with increasing cure suggest increasing free

volume, and hence an increasing specific volume with increasing cure. This

is borne out by the density measurements, which indicate that the room

temperature density decreases with increasing cure. Although this is in

agreement with the work of Shimazaki (13), it runs contrary to conven-

tional wisdom (14, 15). A linear plot of absorptivity vs. specific volume

(Figure 17) suggests that a linear relationship exists between absorptivity

and free volume:

a - KV

where K = 4.05 g/ml.

The key to understanding this apparently anomalous behavior is to note

that the temperature at which the density and water absorption were measured

(250C) was below the glass transition temperature. Schematic plots of

specific volume versus temperature for a partially cured and fully cured

material are shown in Figure 18. In the rubbery state above the glass

transition temperature, the density of the more highly crosslinked material

is higher; but its Tg is also higher, and as a result the specific volume

versus temperature curves can cross (13), resulting in a lower density at

room temperature for the more highly crosslinked material. The lower room

temperature modulus (6, 16) for a more highly crosslinked material can now

be understood as well, since it is directly proportional to density.
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This dependence of specific volume at room temperature on the glass

transition has also been observed in amorphous linear polymers. Ueberreiter

and Kanig (17) demonstrated that the room temperature density of polystyrene

decreased as its molecular weight (and Tg) increased.

CONCLUSIONS

These experiments on epoxy resin have shown that the lower modulus and

higher equilibrium moisture content of the more highly cured resins at room

temperature are a consequence of the lower density which in turn is a result

of the increase in Tg as a function of cure. At room temperature the more

highly cured material is further from equilibrium, and therefore has more

free volume than a material cured to a lesser extent.

Acknowledgment. Partial financial support was provided by the

Chemistry Branch of the office of Naval Research.
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I

TABLE 11. Gel Times from Gel Fraction Experiments.

Gel Time (min)

Temperature (*C) Air Helium

202 9

185 15 15

180 18

173 30

171 38

168 32

165 48

156 49

152 73

151 62

147 77

140 110

139 120

132 135

120 315

102 920

, -.
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FIGURE CAPTIONS

I. Time-Temperature-Transformation (TTT) Cure Diagram (Schematic).

2. Chemical Structures of Reactants and Crosslinking Site.

3. Isothermal TBA Spectra

a) Relative Rigidity

b) Logarithmic Decrement.

4. T and Tg Versus Cure Temperature; *as cured, + post-cured.sec

5. TBA Spectra after Curing at 175C for various times:

175 to -190 to 250 to -190°C at 1.5*C/min.

a) Relative Rigidity

b) Logarithmic Decrement.

6. Tg Versus Cure Time at 175*C.

7. Torsion Pendulum Spectra of Film: -190 to 250=C (after partial cure

at 175
0
C); 250 to -190*C (after full cure).

8. Gel Fraction Versus Cure Time at Various Temperatures

a & b) in air, c) in helium.

9. Water Absorption Versus Time at 31% Relative Humidity. Cure time at 175°C:

0 50 min.,A 100 mmn.,
0 

180 min.,0 600 min.

10. Water Absorption Versus Time at 51% Relative Humidity (See caption for

Figure 9).

11. Water Absorption Versus Time 1at 79.3% Relative Humidity (See caption for

Figure 9).

12. Water Absorption Versus Time at 93% Relative Humidity (See caption for

Figure 9).

• .............
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13. Density Gradient Column Data.

* Calibrated Floats.

Specimens cured at 175*C: 0 50 min.,& 100 min.,0 180 min.,O 600 min.

14. TTT Cure Diagram. The maximum temperature (Tgw) above which

vitrification will not occur on isothermal cure is shown as a

horizontal dashed line. The temperature of 175*C was selected for

preparation of specimens with different extents of cure.

15. Arrhenius Plot of Gel Points and TBA Data.

gel fraction (in air),

v gel fraction (in helium),

+ liquid-to-rubber transformation (TBA),

o vitrification (TBA).

16. Equilibrium Moisture Content Versus Relative Humidity.

Specimens cured at 175*C for:

0 50 min,

A 100 min,

O 180 min,

o 600 min.

17. Absorptivity Versus Specific Volume.

18. Volume-Temperature Plots of a Thermoset with Two Levels of Crosslink

Density (Schematic).



00

LAJJ

CL 0I 0 -0

< IL

8 0-

U) /> -

0 w3J±~dA3 coIA

Fi.

c -----



-20-

ON

0..

a- .

eij

LUn

(n 9cm

Wc

.C In

0I

L MLU

NX

oj0

C

CLI

Fi g. 2



-21-

EPON 828/DDS
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EPON 828/DDS
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EPON 828/00^ at 175 C
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EPON 828/DDS at 175 C
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FILM OF EPON 828/DOS
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