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1. INTRODUCTION

In previous papers we have analyzed the internal stresses in spherical(1,2)

particle composites  for the cases where the partic le is softer than the matrix (1),  as

in rubber particle filled polymers, or for the case where the particle is harder than

the matrix as in ceramic filled glassese).  Also, the analysis has been applied to

porous composites such as foams in which case spherical voids simply replace the

particles(2). A finite element analysis has been used for the calculation of internal

stresses and for the prediction of elastic constants and strength of the composite with

a suitable model geometry and proper boundary conditions.    The  resu Its  have  been

presented as a function of the volume fraction of particles or inter-particle spacing.

In this paper, results are presented for spherical particle composites in which

the  interfacial  zone has elastic properties different from  that of the particle or matrix.

The influence of changing the interface properties on the internal stress distribution

in the composite  and  on the predicted elastic constants wi I I be discussed.    Also

discussed  is the interface  in an aligned discontinuous fiber composite and its effect

on composite properties such as elastic constants, strength and toughness.

11. SPHERICAL PARTICLE COMPOSITES

1)    Approximations and Boundary Conditions.

The present investigations were carried out using an analysis of axisymmetric

solids.    In the finite element approximation of axisymmetric solids, the continuous

structure or medium is replaced by a system of axisymmetric elements interconnected

at nodal circles.  It was assumed that a spherical particle composite (assumed to

possess symmetry) could be approximated  by a unit cel I  (Fig. 1) which when rotated

360' around axis AD produces a hemisphere embedded within a cylinder. The inter-

particle spacing is equal to 2(rl -

r2); r 1 and r2
are shown in Fig. 1. The volume

percent of fi Iler particles or cavities (radius =r2)  can
be altered and calculated from
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the ratio r2/rl (note AB = BC =CD = AD in Fig. 1). This axisymmetric representation

of the composite only approximates its real packing and structure. These axisymmetric

cel Is  are  not an actual repetitive unit  but are related in their dimensions  to  the

interparticle spacing.

The unit cell shown in Fig. 1 is subdivided into small elements as shown in

Fig.2 o r  Fig.3. The finite element method permits calculation of the stresses  in

all the elements and the displacements at the nodal circles for any loading and

boundary conditions.    It is assumed  that the composite is strained  in the z-direction

and  that no tractions are applied  in the r-direction. By symmetry,  on the boundary

ABCD  (Fig.  1) the shear stresses are:

T -T -0
rz zr

The sides AB and BC remain parallel to their original positions after they are displaced

due to strain in the z direction, whereas the normal displacements of AD and DC are

zero.  Thus, AB and BC will undergo normal displacements, and the traction in the

r direction must be zero so that:

  a. dz= 0
BC   '

where the integral is replaced by a summation in the finite element method.

The following assumptions were made concerning the material:

1) Filler particles are spherical and of uniform size; packing of particles can

be represented by an axisymmetric element  (Fig.  1).

2) Both filler, matrix and interface materials obey elastic stress-strain

relationships.

3) Perfect bonding exists at the interfaces (continuity of displacements at

each interface).

The calculations were made on a large digital computer* by using a computer

*     Univac 1108, Univac Div., Sperry Rand Corp., Philadelphia, Pa.
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program  for the analysis of axisymmetric solids written by  E. L. Wilson(3).   The

boundary conditions were prescribed  in the mixed  mode  i.e., the displacements were

prescribed on some of the boundaries whereas tractions were prescribed on the others.

The prescribed boundary displacements were selected to obtain the desired composite

strains. The average composite stress was calculated from a knowledge of the stresses

in the elements at the boundary of the unit  cell. The composite stresses and strains

are used to calculate the composite modulus of elasticity and Poisson's ratio.  The

detai Is  of the procedure to satisfy the boundary conditions  and to calcu late composite

stress, strain, modulus of elasticity and Poisson's ratio have been given in previous

papers
(1,2)

2)     Effect  of  a  Weak  I nterface on Composite Properties.

In an actual composite material, the properties of the material at the

interface  may be different from those of the fi Iler and matrix. Continuous displacements

at the interface imply perfect bonding between the filler particles and the matrix.

When perfect bonding does not exist between  the fil ler and the matrix the behavior of

the interface should be simulated by assigning different property values to the material

at the interface.    This  is  very  easi ly accomplished using the axisymmetric finite element

method. The shaded elements  in Figs.  2 and 3  have been assumed to represent the

finite thicknesses of the interface for filler
contents of 3.04 (r2/r 1 - 0.357) and

24.30 (r2 rl =0.714) percents respectively. The shaded elements account for 0.48

percent of the total volume  in the former case and 3.02 percent  in the latter case.

The modulus of elasticity assigned to the elements at the interface was 1000 psi which

is  very smal I  compared to  that of the assumed glass matrix  (E -1 1.8 x  106 psi) or  the

ceramic filler  (E  =  60.4 x  106 psi). This represents  the  case  of a  very weak interface.

The weak interface as described above completely changes the stress distribution

around the interface. The stresses  in the elements  (ih the matrix) adiacent  to  the
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interface have been plotted in Figs. 4 and 5.  A zero value of radial stress

around the interface indicates a free boundary. The curves for tangential stresses

with the finite interface are  very simi lar  to  the ones previously obtained for stresses

around a cavity(2).    Due to very low modulus, the interface  is not able to transfer

much stress  from the matrix  to  the  hard inc lusions and therefore this represents  a case  of

fi Iler particles completely debonded  from the matrix.   The hard inclusions with the

soft interface carry very low stresses and hence do not contribute to the enhancement

of the modulus of the composite.   This is similar to what Stett and Fulrath(4)  have

described as pseudoporosity which results  in a weakening of the composite.   The

modu lus of elasticity of the composite decreases with higher fi Iler contents as indicated

in Table 1.

Table 1

Effect of Interface on Modulus of Elasticity of Composite

Volume Fraction Composite Modulus  (psi)
Filler Without Interface With Soft Interface

3.04 12.3 x 106 11.05  x   106

24.30 1 6.7  x 1 0 6 6.97  x   106

43.83 2 2.4  x 1 0 6 3.84 x 106

It  is not unexpected  that  the  modu lus  of the composite  wi 11 decrease since less stress

is  transferred  to  the hard particles.    Thus,  as the v6Iume percent  of fi Iler increases

the difference in modulus increases as can be seen in Table 1.

111. ELASTIC ANALYSIS OF THREE PHASE FIBROUS COMPOSITES

a) Introduction

In the case of continuous fiber reinforcement, the effect of fiber ends, where

the  load is transferred  by the matrix, is generally considered insignificant. The fiber
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stress is assuined  to be constant over the whole length of the fibers. The principal

purpose  of the matrix  is  to  bind the fibers together. The strength  of the composite  is

then dependent upon the strength of the fibers. However, in studying the details of

fracture of continuous fiber composites it has been found that individual fibers fail

we I I  before the entire composite fractures.    Thus,   in  this  case,  the load transferred

to the broken fibers by the matrix and the interfacial conditions may thus influence

composite fracture particu larly  as the number of broken fibers increases.

In a discontinuous fiber-reinforced composite the properties of the composite are

a  function of fiber length and the attainment of high strength  in the composite wi 11

depend upon efficient load transfer  fr6m the matrix  to the fibers. Therefore,  it  is of

considerable interest to understand how stress builds up  in each individual fiber.    A

study of the length required for effective reinforcement and the factors influencing

this  length such  as the properties  of the material  at the interface  and the fiber end

condition, should thus be helpful in guiding the development of composites of this

type.

It is well known that in discontinuous fiber reinforced systems with all fiber

axes para||e| to the direction of loading, the mechanism of load transfer from matrix

to the fiber  is an interfacial shear stress. A number of analytical studies concerning

this shear stress transfer  have been carried out using simplified models. Fiber-matrix

(5)       (6)            (7)
interaction has been studied for elastic matrices by Cox   , Dow   , and Rosen

They give expressions for axial fiber stress and for the shear stress at the fiber matrix

interface  as a function of position along  the  fi ber length. These expressions are quite

similar to each other, although different assumptions were  made in deriving them.

Tyson and Davies(8), and Schuster and Scala(9) measured interfacial shear stress

between a metal fiber and epoxy resin by using photoelastic techniques. Studies of

Fuliwara(10) for resin-fiber load transfer in a single fiber-resin composite indicate that
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the stress distribution depends upon glass fiber finishes, especially under wet conditions.

Carrara  and Mc Garry studied the effect of fiber end geometry on the stresses(11)

near the end of an elastic fiber embedded in an elastic matrix. They found that the

stresses depend strongly on the geometry of the fiber tip. More recently, MacLaughlin

and Barker(12) investigated the effect of modulus ratio on stress near a discontinuous

fiber. They analyzed a two-dimensional plane stress composite configuration using

Moire strain analysis and finite element analysis.    In the study presented  here the

properties of the interface between fiber and matrix have been varied in order to

determine the influence of the interface on certain properties of the composite.

2) Representative Model.

Unidirectional discontinuous fibers were assumed to be packed in a

regular array as shown  in  Fig. 6. Although this does not represent an actual packing

of the fibers in the composite, this idealization is necessary for an axisymmetric

analysis.

I t was assumed  that the fibrous composite  cou Id be approximated  by  a  cel I

(Fig.  7) which when rotated 3600 around axis AD produces a cylinder embedded

within a cylinder. The interfiber spacing is equal to 2 (rl - r2) in both directions

asshown in Fig. 7. The finite elements used for the case r2 = 0.67, are shown

rl

in Fig. 8(A). Based on a cylinder within a cylinder, this corresponds to a fiber

volume fraction equal  to 42.4 percent. The fiber aspect ratio used (ratio of fiber

length to fiber diameter, 1/d) is 10.375. The elements adiacent to the fiber (shaded

elements in Fig.  8 B)  have been assumed to represent the finite thickness of the

interface. The property values (the modulus of elasticity and Poisson's ratio) assigned

to these elements are changed to simulate a change  in the interface conditions.    A

high modulus of elasticity of the interface represents a strong interface capable of

transferring  more load whereas  a low modulus represents  a weak interface.    The
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shaded elements account  for 7.76 percent of the tota| vo|ume.    In some cases  the

thickness  of the interface was reduced  by a  half to study the effect  of this change.

The elements adjacent to the fiber end may be assigned property values different

from those for the interface. This enables one to study the effect of fiber end

condition on the stress distribution. For example,  a very low modulus of elasticity

for these elements  may be assumed to represent a debonded end because  a  neg I igible

load wi 11 be transferred through the fiber  end.

3) Boundary Conditions and Component Properties.

Stresses in three dimensions were calculated in all the elements shown in

Fig.  8 for various interface conditions.    As  in  the  case of the particulate composites,

the stress-strain relations of the matrix and the fibers were assumed elastic.   The

stress-strain relations for the materials at the interface and the fiber end were also

assumed elastic.   It was also assumed that the composite is loaded by a force in the z

direction  and  that no tractions are applied  in  the r direction. These assumptions  lead

to boundary conditions identical to those for the particulate composite described

previously. Therefore, the procedure to satisfy these boundary c6nditions  and  the

subsequent calculation of the composite modulus and Poisson's ratio are also identical.

The following component properties, typical of a glass reinforced plastic,

were assumed:

Matrix E -0.4 x 106 ps;

v = 0.35

Fibers E =11.8 x 106 psi

v  =  0.197

Properties of the interface were varied over  a wide range.
Investigations were                                I

carried out using eleven different combinations of property values as shown in Table 2.



8.

Table 2. Properties of the Interface

Case Number E  (psi)                      v Vol. Percent E at the fiber end (psi)

6                                             6
1         8  x 10 0.2 7.76 8  x 10

6                                               6
2        8  x 10 0.35 7.76 8  x 10

6                                               6
3        8  x 10 0.45 7.76 8  x 10

6
4         8  x 10 0.2 3.79 100

6
5         8  x 10 0.2 7.76 100

6                                                                        6
6               0.8 x 10 0.2 7.76 0.8 x 10

6                                             6
7               0.4 x 10 0.2 3.79 0.4 x 10

6                                             6
8         0.1 x 10 0.2 3.79 0.1 x 10

9 10,000 0.2 3.79 10,000

10 1,000 0.2 7.76 1,000

11 100 0.2 7.76 100

Modulus of elasticity of the interface has been varied from a very high value

of 8 x 106 psi which is close to that of the fibdrs to a very low value of only 100 psi

which may be considered t6 represent debonding of the fibers from the matrix.   The

first three cases have been selected to study the effect of varying Poisson's ratio of

the interface.   Also,  note that the modulus of elasticity of the elements adiacent to

the fiber end is the same as that of the interface for all cases except for 4 and 5.

For these two cases it has a very low value (100 psi) compared to that of the inter-

face. This represents a case of strong interface with debonded fiber end.   The only

difference in the case 4 and the case 5 is the thickness of the interface which would

change the volume percent of the interface.

4)      Effect  of  I nterface on Internal Stresses.

The stress distributions for three phase composites were obtained for al I
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cases indicated in Table 2.  In the first three cases, the Poisson's ratio of the inter-

face was assigned three different values of 0.2,0.35 and 0.45 while keeping all

other properties unchanged. The stresses obtained  in the three cases were almost

identical  to each other and hence  they are not plotted separately. These stresses

have been shown along with the other stress distributions for different interface elastic

modu I i.

Distributions of fiber axial stress along the length are shown in Fig.  9 for

interface moduli varying from 8 x 106 psi to 100 psi.  When the interface modulus

is near the matrix modulus or higher, the fiber axial stress attains a maximum value

within two fiber diameters from the fiber end. The stress distributions for the three

cases of interface moduli (E = 0.1 x 106, 0.8 x 106 and 8 x 106) are very similar to

each other.  As the interface modulus decreases to 10,000 psi, the fiber axial stress

attains its maximum value in about four fiberdiameter from the fiber end.  But as the

interface  modu lus further decreases to  1,000 psi  or 100 psi, the fiber axial stress does

not reach a constant value with the present fiber length of ten fiber diameters.    Due

to  the low interface  modu lus, the interface  does not transfer  load from matrix  to  the

fiber efficiently.  In fact the modulus of 100 psi is so low that it represents the case

of complete debonding of the fiber from the matrix as will be shown later.

Interfacial shear stress distributions for all the above cases, except for an inter-

face modulus of 0.8 x 106 psi, have been shown in Fig. 10. The stress distribution

for the interface modulus of 0.8 x  106 psi  is very close to the one for the interface

6
modulus of 0.1 x 10  psi. The stress distributions in Fig. 9 are related to those in

Fig. 10 because fiber stress build up is related to the shear stress at the interface as

fol lovvs:

af=co +2   1-dZ             (1)
where r is the fiber

radius, aQ is
the stress at the

fiber end, a f is
the stress in the
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fiber  at any distance  Z  from the fiber end,  and the exact  form  of  ·r  will  depend  upon

relative properties of the fiber, interface and the matrix. The shear stresses at the

fiber end for interface moduli of 0.1 x 106 and 8 x 106 psi are high and they drop

down to zero in about two fiber diameters.   Due to the high interfacial shear stre;s,

the fiber axial stress increases rapidly and reaches a constant value as the shear stress

drops  to  zero.    For the interface modulus of 10,000 psi the shear stress does  not drop

to zero as quickly as in the previous cases and thus leads to a higher maximum stress

in the fiber. Normalized shear stress at the fiber end for an interface modulus of

1000  psi  is  less  than  half of those  in the previous cases. However,  this  does  not

decrease very fast away from the fiber end and hence the axial stress in the fiber

bui Ids up to about twice the stress  on the composite.    It  may be expected  that  in  this

case the fiber stress  cou Id reach a constant value  if the fiber was long enough.

Interfacial shear stress  in  the  case  of an interface modulus of  100  psi  is  very smal I

and therefore very little load transfer is possible from the matrix to the fiber.

Fiber axial stress at the end has been plotted as a function of log of interface

modulus in Fig.  11. This stress gives an idea of the load transfer through the fiber

end.   At very low interface modulus the stress at the fiber end  is very smal I  indicating

that no significant load transfer takes place through the fiber end. The stress at the

fiber end increases with the increase of interface modulus.  When the interface

modulus is close to or h.igher than the matrix modu lus, the fiber end stress is quite

high indicating substantial load transfer through the end.   As the interface modulus

varies from  105 psi  to 8 x  106 psi there  is not much change  in the fiber end stress.

Distribution of matrix axial stresses along the fiber length are shown  in Fig.  12

for the interface moduli of 100, 1,000, 10,000 and 105 psi. Inall the cases the

stresses increase sharply near the fiber end.   They also show discontinuities  in the

stresses upon passing the fiber end because of the physical discontinuity at this
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point.In the cases of interface  moduli  of  104  and  1 0 5  psi, the stresses  away  from

the fiber end drop to a very low value indicating that most of the load has been

transferred to the fibers. However,a low modulus of the interface (100 or 1,000 psi)

does not help in the transfer of load from matrix to the fibers and therefore the axial

stresses in the matrix away from the fiber end are considerably higher than the

applied composite stress in these cases.

Radial stresses in the matrix have been plotted along the fiber length in Fig.  13

for interface moduli of 100, 1,000 and 10,000 psi. The stresses increase sharply near

the fiber end. The stresses away from the fiber end are compressive when the interface

moduli equal 1,000 and 10,000 psi.  For the interface modulus of 100 psi, the radial

stresses in the matrix are zero.  It has also been shown that the axial stresses in the

matrix adiacent to the fiber end are nearly zero for the interface modulus of 100 psi.

The  smal I  magnitude  of the stresses may be attributed  to the  size of the finite elements.

Thus the normal stresses in the matrix adjacent to the fiber are zero indicating a free

boundary. Therefore this represents a case of complete debonding of fibers from  the

matrix. This effect  is  the same as obtained  in  the  case of particulate composites.

Composite modu lus  has been plotted  as a function of log interface modulus  in

Fig. 14.  At very low interface modulus the fibers do not contribute to the stiffness of

the  composite. As explained earlier,  this  is due to the fact that the soft interface

does not permit any load transfer from the matrix to the fiber. Therefore, the composite

behaves as if these were voids of the size of the fiber and the interface.   As the interface

modu lus increases,  the load transfer takes place  from the matrix  to the fiber and

consequently the composite modulus increases as shown in Fig.  14. The Halpin and

Tsai equation(13  may also be used to calculate the modulus of the two phase composite

with discontinuous fiber reinforcement.  For the modulus in the longitudinal direction,

the equation can be written as:
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E            1  + -2--    Vf   '   'IL1                                                    (2)
Em  1-VfllL

where

(Ef/Em) - 1

1 L =  (EqEm)+ 2 1/d                                                       (3)

and E  , E. and E  are
the matrix, fiber and the composite moduli respectively.  For

m t

the preserlt case Ef = 11.8 , E =10.375, Vf =0.424 and E  =0.4 x 106 psi
- -

E    0.4    d
m

thus EL =3.1 5 x  106 psi

This value of the composite modulus compares favorably with the value of.3.58 x  106

psi  obtained for the two phase composite  by the finite element method.

The  onset of fai lure  may be predicted  from the knowledge  of the stress

distributions  in the composite.   To this end, distortion energy given as follows:

U =1/2[(al- 02)2.+ (a2- 03)2 + (c3- al)2]                      (4)

(where 0 1'  02 and c3 are principal stresses) was calculated for all the elements

(Fig.  8) for different interface moduli (normalized stresses were used for this calculation).

The maximum value of distortion energy in any element of the matrix has been plotted

as a function of interface modulus in Fig.  15. The maximum distortion energy always

occurs in an element near the fiber end. The strength of the composite based  on  a

von Mises failure criterion (i.e., the initiation of composite failure occurs assoon

as the distortion energy  in any element of the matrix reaches a  I imiting value)  is

shown qualitatively in Fig.  16. The actual strength values will depend upon the matrix

strength.    For  very low interface modulus the strength of the composite  is  low due

to high stress concentrations at the discontinuity. Strength of the composite increases

as the interface modulus increases.    But as the interface modulus changes from  104 psi

to 8 x 106 psi, the composite strength remains almost constant. However,  Fig.  14



13.

shows a significant change in the composite modulus over this range of interface

modulus.  Thus, the ultimate elongation of the composite can be controlled without

affecting the failure stress by suitably controlling the interface modulus (using a

surface treatment on the fibers during manufacturing).   This also shows that a good

combination of tensile strength and toughness (or the impact strength) may be obtained

by suitably selecting the interface properties.

IV. CONCLUSIONS

The influence of the interface on the internal stresses, composite modulus of

elasticity and strength  has been investigated. The interface  has been altered  by

changing the modulus of a layer between the matrix and spherical particle or fibers.

In the case of spherical particle composites it has been shown how a soft interface can

reduce the composite stiffness as wei I as alter the internal stresses  in the composite.

The effect of altering the interface stiffness in an aligned short fiber composite can

greatly effect the stress concentrations near a fiber end as wei I  as the maximum stress

transferred  into the fiber.    It  has also been shown  that the composite strength reaches

a maximum and does not further increase when the interface modulus reaches a value

of 104 psi. However, the composite modulus continues to increase so that the composite

elongation wit I  begin to decrease (since al I  phases  have been assumed to be elastic)

when the interface  modu lus exceeds  104  psi.    Thus the strain energy absorbed  by  the

composite  can be maximized by controlling the interface modulus.
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Fig. 3 Shaded Elements Represent Finite Thickness of the Interface for

r /41 = 0.714.
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Fig. 8 (a) Finite Element Grid for r.,/r   =0.67,  and (b) Finite Thickness
of the Interface Represented  By dhaded Elements.

Fig. 9 Normalized Fiber Axial Stresses Along Fiber Axis in a Three-Phase

Composite.

Fig. 10 Normalized Interfacial Shear Stresses Along Fiber Axis in a Three-

Phase Composite.

Fig. 11 Normalized Axial Stress at the Fiber End as a Function of Interface
Modulus.

Fig. 12 Normalized Axial Stresses Along Fiber Axis in a Three-Phase Composite

F ig. 13 Normalized Matrix Radial Stress Along Fiber Axis in a Three-Phase   ,,
Composite.

Fig. 14 Composite Modulus as a Function of Interface Modulus.

Fig. 15 Maximum Distortion Energy as a Function of Interface Modulus.

Fig. 16 Composite Strength as a Function of Interface Modulus

(Qualitative Representation).
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Represented by Shaded Elements
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