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Abstract: From the perspective of combining macroscopic and microscopic properties, this paper
simulates the freeze–thaw cycle process at different freezing low temperatures based on the climate
simulation equipment and by setting the curing conditions with different temperatures and relative
humidity to produce different moisture conditions in concrete. The frost resistance properties and
microscopic air void performance of concrete with different internal water content under different
freezing low temperatures in freeze–thaw cycles were systematically studied. The results show that
the higher the internal water content of concrete, the more obvious the mass loss rate and dynamic
elastic modulus loss of concrete in the freeze–thaw process, and the more serious the deterioration of
the air void parameter performance of the air-entraining agent introduced into concrete, which is
manifested as the average bubble diameter and bubble spacing factor become larger and the bubble
specific surface area decreases. In addition, in the case of the same internal moisture content of
concrete, the freezing temperature used in the freeze–thaw cycle also has an important impact on
the frost resistance of concrete and air void parameters; the lower the freezing temperature used, the
more significant the decline in the frost resistance of concrete, the more obvious the deterioration of
air void parameters.

Keywords: concrete; internal humidity; freeze temperature; frost resistance; air void structure

1. Introduction

In order of importance, the factors causing the damage to concrete structures are
reinforcement corrosion, freeze–thaw and seawater erosion. Freeze–thaw is one of the
most representative factors affecting the durability of concrete [1]. According to the first
Chinese water census bulletin in 2013 [2], more than 98,000 various types of reservoirs have
been built in China, with a total capacity of about 932,312 million m3. These reservoirs
are distributed in different climatic regions of China, and the number of freeze–thaw
cycles and freeze–thaw temperature conditions they undergo each year are different. The
summary report of the survey on the durability of concrete by the former Ministry of
Water and Power of China in 1985 stated: freeze–thaw damage of hydraulic concrete was
present in almost 100% of the projects in the three northern regions (i.e., northeast, north
and northwest China). For cold regions, freeze–thaw action is the main factor leading
to structural performance damage of hydraulic concrete, and cold regions of hydraulic
buildings suffer from low-temperature frost damage environment is much lower than the
current standard test method for concrete frost resistance −17 ◦C conditions used. Freeze–
thaw action has become one of the most representative factors affecting the deterioration of
concrete durability of hydraulic buildings in the cold regions of China.
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Existing research [3] shows that there is a limited water saturation for freeze–thaw
damage of almost all porous materials, and concrete as a porous material also has the
problem of limited water saturation. The freeze–thaw critical water value method proposed
by Fagerlund [4] argues that the degree of freeze–thaw damage of concrete is closely
related to the internal water content of concrete, and there is a critical value for the free
water content of concrete, and the degree of saturation is not reached, even in the cold
environment, concrete will not receive freeze damage, and when the water content reaches
the critical value, concrete will be rapidly damaged. According to the hydrostatic pressure
theory of T.C. Powers [5], the volume expansion of capillary pore water causes freezing
damage at low temperatures, while the freezing temperature of pore water depends on
the pore size, and the smaller the pore size, the lower the freezing temperature [6]. Since
T.C. Powers [7] established the theory of concrete pore structure and frost resistance,
researchers have conducted a large number of studies on the relationship between bubble
characteristic parameters and concrete frost durability based on this theory [8–13], but
these studies are still inconclusive and the research conclusions are very different. There
is no conclusion on the reasonable bubble spacing for improving the frost resistance of
concrete, etc. [14], and among the available research results [15], the measured bubble
spacing in hardened concrete varies widely, ranging from 200 µm to 800 µm. In addition,
in experimental freeze–thaw studies of concrete materials, researchers have more often
considered freeze–thaw damage of concrete under fixed temperature cycles, temperature
drop rates and temperature drop amplitudes [16], and the frost resistance has focused
mainly on macroscopic properties, and few studies have focused on the frost resistance of
concrete under different temperature drop amplitudes and temperature drop rates [17–19].

Therefore, in this study, three low-temperature conditions of −17 ◦C, −30 ◦C and
−40 ◦C were simulated using climate simulation equipment for concrete freeze–thaw tests,
so that the central temperature of the concrete specimens reached −17 ◦C, −30 ◦C and
−40 ◦C during the freeze-cooling process and 8 ◦C during the warming process of concrete
thawing. The influence of the internal water content of concrete on the mass loss and
dynamic elastic modulus change during the freeze–thaw process of concrete was carried
out under these freeze–thaw conditions. At the same time, the changes of microscopic
bubble structure parameters, including the average diameter of bubbles, bubble spacing
coefficient and bubble specific surface area, were investigated in concrete with different
internal moisture conditions during freeze–thawing under different low temperature freeze–
thaw conditions.

2. Materials and Methods
2.1. Raw Materials

The raw materials used in this study include P·O 42.5 Portland cement conforming
to the requirements of Chinese standard Common Portland cement GB 175-2007, Class F
fly ash conforming to the requirements of Chinese standard Fly ash used for cement and
concrete GB/T 1596-2017, a naphthalene water reducing agent and Air-202 air-entraining
agent (solids content of 2%) conforming to the requirements of Chinese standard Concrete
admixtures GB 8076-2008. Aggregate includes natural sand, small stones with particle size
of 5–20 mm and medium stones with particle size of 20–40 mm. The natural sand had a
fineness modulus of 2.71 and surface dry water absorption of 1.26%. The surface dry water
absorption of small and medium stones was 1.0% and 0.8%, respectively.

2.2. Concrete Mix Proportion

The concrete mix is shown in Table 1. Concrete specimens were formed and maintained
according to the Chinese water resources industry standard Test code for hydraulic concrete
SL/T 352-2020. The slump of the concrete mix was controlled by 70 ± 20 mm, the air content
was controlled by 5.5 ± 0.5%, and the 28 d strength grade of the concrete specimens was
C30, and the frost resistance design grade was F300.
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Table 1. Concrete mix proportion.

Water Binder
Ratio

Ordinary
Portland Cement

Grade I
Fly Ash

Natural
Sand

Limestone Coarse
Aggregate

Water-Reducing
Agent (1/100)

Air-Entraining
Agent (1/10,000)

0.38 1 0.25 2.45 4.55 0.9 5.0

2.3. Methods

The size of concrete specimens used in the test was 100 mm × 100 mm × 400 mm.
Firstly, 63 concrete specimens were standard cured at 20 ◦C temperature and 90% relative
humidity for 28 days. Secondly, at the end of standard curing, the 63 concrete specimens
were equally divided into three Groups A, B and C. The specimens in Groups A, B and
C were further cured according to the temperature, relative humidity and curing time in
Table 2 to produce different internal water content conditions in the concrete specimens.

Table 2. Conditions for further curing of concrete specimens.

Further Curing Condition
Sample GroupTemperature Relative Humidity Curing Time

20 ◦C 90% 24 h Group A
20 ◦C 60% 24 h Group B
60 ◦C 60% 24 h Group C

Three specimens were taken out from the three Groups of concrete A, B and C, weighed
out the initial weight and calculated the average value m0. Then these concrete specimens
weighed with the initial weight were baked to constant weight in the oven at 100 ◦C, cooled
to room temperature, weighed again and the average value was calculated as m1. The
moisture content of the concrete specimens from the three Groups A, B and C could be
calculated quantitatively as (m0 − m1)/m0.

The other eighteen concrete specimens in the three Groups of A, B and C were subjected
to freeze–thaw cycle test with reference to the rapid freeze–thaw method in the Chinese
water industry standard SL/T 352-2020. The freeze–thaw test was carried out using the
developed extreme climate simulation equipment. It can provide temperatures from
−70 ◦C to 150 ◦C with a temperature control accuracy of 0.1 ◦C. It can also provide a relative
humidity environment from 10% to 98%, with a relative humidity control accuracy of 1%.
The freezing and thawing tests were conducted using concrete freezing low temperatures
of −17 ◦C, −30 ◦C and −40 ◦C. The temperature rise and temperature drop curves of the
freezing and thawing tests are shown in Figure 1.

The mass and dynamic elastic modulus of the concrete was tested after every fifty
freeze–thaw cycles. The mass of concrete was tested using an electronic scale with a
maximum weighing of 10 kg and induction of 5 g. Dynamic modulus of elasticity tests
were performed using dynamic modulus of elasticity testing equipment with frequencies
ranging from 100 Hz to 10,000 Hz. The mass and dynamic elastic modulus of concrete
specimens was tested in accordance with the Chinese water resources industry standard
SL/T 352-2020. The dynamic elastic modulus characterizes the propagation properties of
elastic waves in concrete and can be used to evaluate the internal damage of concrete
caused by freeze–thaw. The dynamic elastic modulus can be calculated according to the
following equation:

Pn =
f 2
n

f 2
0
× 100 (1)

where Pn is the relative dynamic elastic modulus after n freeze–thaw cycles, %. f 2
0 is the

natural vibration frequency of concrete specimen before freeze–thaw test, Hz. f 2
n is the

natural frequency of concrete specimen after n freeze–thaw cycles, Hz.
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Figure 1. Temperature curve of a freeze–thaw cycle under different low temperature.

At the end of every 100 freeze–thaw cycles, concrete specimens were sectioned for
micro air void parameter test. The slice sample for air void parameters test was made
according to the relevant requirements of the ASTM standard C457. The size of air void
parameter test slice is 100 mm × 100 mm × 20 mm. In order to enhance the contrast of slices
and improve the test accuracy, a contrast enhancement step to make air voids appear white
and aggregates and paste appear black was conducted. Firstly, paint the sliced surface
black with a black marker pen, in the process of coloring, be careful not the fill voids with
ink. Then sprinkle about one t-spoon of white fine-grained BaSO4 on the black surface.
Take a small, very hard rubber stopper and tap the white powder into the air voids. Tap for
about 2 min until all voids appear filled. In the final step voids or cavities in aggregate as
well as obvious cracks are colored black under the stereomicroscope using a marker pen. If
very large voids are found in the aggregate they may be covered by a piece of black tape.
The testing of microscopic air void parameters was performed by Rapidair 3000 system.
The test results are automatically given by the software of Rapidair 3000 after computer
processing. The air void parameters were tested according to ASTM C457/C457M-16
Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete.

3. Results and Discussion
3.1. Concrete Properties and Internal Moisture Content

The 28 days compressive strength of the concrete prepared according to the propor-
tions in Table 1 was 36.2 MPa, with a frost resistance grade of F300. The water content of the
concrete specimens in Groups A, B, and C before the freeze–thaw cycle test was 15%, 8%,
and 4% on average, respectively. Therefore, further curing of the concrete with different
temperature and relative humidity environmental conditions after completing the 28 d
standard curing can change the water content conditions inside the concrete for the purpose
of the test. The water content of the concrete specimens in Groups A, B and C decreased
with the increase in the curing temperature and the decrease in the relative humidity.

3.2. Mass Loss and Dynamic Elastic Modulus Change

Three concrete specimens were taken from each Group for testing of mass loss and
dynamic elastic modulus loss. The initial mass and the initial dynamic elastic modulus
of the concrete specimens were tested before the freeze–thaw cycle experiment. The mass
and dynamic elastic modulus of each concrete specimen was tested again after every
50 freeze–thaw cycles. The results of the mass loss rate and dynamic elastic modulus loss
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of concrete in three Groups A, B and C during different low temperature freeze–thaw cycles
are shown in Figures 2–4.

Figure 2. Frost resistance of concrete with different internal humidity (−17 ◦C freezing temperature).

Figure 3. Frost resistance of concrete with different internal humidity (−30 ◦C freezing temperature).

The results of freeze–thaw cycle experiments showed that the mass loss of concrete
decreased with the increase in water content. After three hundred freeze–thaw cycles at a
freezing temperature of −17 ◦C, the mass loss rates of concrete in Groups A, B and C were
4.7%, 3.3% and 2.5%, respectively. According to Powers’ hydrostatic pressure theory, the
concrete with high internal water content can contain more capillary water freezing under
the same freezing low temperature condition, forming a larger hydrostatic pressure in the
pore, which leads to more serious freeze–thaw damage in the concrete with high internal
water content. The test also found that the freezing low temperature had an important
effect on the mass loss of concrete in the freeze–thaw cycle, when the freezing temperature
decreased from −17 ◦C to −30 ◦C, the mass loss rate of concrete in Groups A, B and C
increased by 140%, 130% and 96%, respectively, on the basis of the freezing mass loss rate
at −17 ◦C. When the freezing temperature was further reduced from −30 ◦C to −40 ◦C,
the mass loss rate of concrete in Groups A, B, and C increased by 39%, 28%, and 13% on
the basis of the freezing mass loss rate at −30 ◦C. As the freezing temperature decreases,
the cooling rate gradually accelerates, the water pressure inside the concrete pore will
increase, when the water pressure exceeds the tensile strength of concrete, the concrete
internal pore wall rupture occurs, therefore, the lower the freezing temperature, the more
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serious freeze–thaw damage occurs in concrete. The relationship between the internal
water content of concrete and the mass loss rate after 300 freeze–thaw cycles at different
low temperatures is shown in Figure 5.

Figure 4. Frost resistance of concrete with different internal humidity (−40 ◦C freezing temperature).

Figure 5. Relationship between internal moisture content and mass loss rate of concrete for freeze–
thaw cycle test.

The relative dynamic elasticity modulus retention value of concrete decreases with
the increase in water content inside the concrete. At the freezing temperature of −17 ◦C,
the relative dynamic elasticity modulus retention values of concrete in Groups A, B, and C
were 40%, 57%, and 61% after three hundred freeze–thaw cycles, respectively. Similarly, the
relative dynamic elasticity modulus retention values of concrete also decreased with the
decrease in freezing temperature. When the freezing temperature decreased from −17 ◦C to
−40 ◦C, the relative dynamic elasticity modulus retention values of concrete in Groups A, B
and C after three hundred freeze–thaw cycles decreased by 40%, 20% and 24%, respectively,
on the basis of the relative dynamic elasticity modulus retention values at −17 ◦C freezing
temperature. The dynamic elastic modulus mainly characterizes the propagation of elastic
waves inside the concrete, and this propagation is directly related to the damage inside
the concrete. From the analysis of the mass loss and the internal water content of the
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concrete as well as the freezing low temperature, it is clear that the greater the internal
water content and the lower freezing temperature, the more serious the freezing damage of
the concrete is, and thus the lower the relative dynamic elasticity modulus retention value
of the concrete. The relationship between the internal water content of concrete and the
relative dynamic elasticity modulus retention value after 300 freeze–thaw cycles at different
low temperatures is shown in Figure 6.

Figure 6. Relationship between internal moisture content and relative dynamic elasticity modulus
retention value of concrete for freeze–thaw cycle test.

3.3. Air Void Parameters

Air-entraining agents can introduce a large number of tiny bubbles in concrete to
improve the frost resistance of concrete [20,21]. The characteristics of the introduced bubbles
can be described by air void parameters, which mainly include the average bubble diameter,
bubble specific surface area, and bubble spacing coefficient. The air void parameters have
an important influence on the frost resistance of concrete [22–25]. After every hundred
freeze–thaw cycles, the air void parameters of three Groups A, B and C of concrete were
tested. The concrete cut plane samples used for air void parameters testing are shown in
Figure 7.

The initial values of the air void parameters of the concrete in Groups A, B and C were
tested before the freeze–thaw test, and the air void parameters of the concrete in Groups A,
B and C were tested again at the end of every 100, 200 and 300 freeze–thaw cycles during
the different low temperatures freeze–thaw tests. The changes of the air void parameters of
the concrete in Groups A, B and C are shown in Table 3.

According to the test data in Table 3, before the freeze–thaw test, there was no sig-
nificant difference in the air void parameters of concrete with different internal moisture
contents in Groups A, B and C. The average diameter of bubbles ranged from 153 µm
to 156 µm, the spacing factor of bubbles ranged from 175 µm to 178 µm, and the specific
surface area of bubbles was around 40 mm2/mm3.
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Table 3. Air void parameters test results.

Samples
Moisture
Content

(%)

Freeze
Temperature

(◦C)

Average Diameter
(µm)

Spacing Factor
(µm)

Specific Surface Area
(mm2/mm3)

0 100 200 300 0 100 200 300 0 100 200 300

Group
A 15

−17
155

169 173 186
178

186 196 214
40.4

36.4 30.3 25.4
−30 178 189 196 193 205 228 34.8 26.7 23.3
−40 183 197 211 200 213 237 30.7 23.4 19.8

Group
B 8

−17
156

162 168 175
175

180 186 204
40.2

38.5 35.4 30.2
−30 171 179 186 184 190 211 36.7 33.5 27.5
−40 178 185 199 189 196 217 33.8 31.2 24.8

Group
C 4

−17
153

157 161 169
176

179 182 195
40.8

39.8 37.7 33.6
−30 166 170 178 182 187 206 38.2 35.4 31.7
−40 171 176 183 186 193 212 35.7 33.2 29.4

The variation pattern of air void parameters with the number of freeze–thaw cycles
for three Groups of concrete with different moisture contents in A, B and C under the
freeze–thaw cycle test at −17 ◦C freezing low temperature and 8 ◦C melting temperature is
shown in Figure 8. In the test, it was found that the internal water content of concrete had
some influence on the internal bubble parameters of concrete during freeze–thaw cycles.
Comparing the freeze–thaw tests of concrete in Groups A, B and C frozen at −17 ◦C and
thawed at 8 ◦C, it can be seen that the general trend of bubble parameter changes was that
the average diameter of bubbles increased, the spacing factor between bubbles increased
and the specific surface area of bubbles decreased as the number of freeze–thaw cycles
increased. With the increase in the internal water content of concrete, the average diameter
of bubbles increased from 169 µm in Group C to 175 µm in Group B and then to 186 µm in
Group A after 300 freeze–thaw cycles. The bubble spacing factor increased from 195 µm in
Group C to 204 µm in Group B and then to 214 µm in Group A. The specific surface area of
the bubbles decreased from 33.6 mm2/mm3 in Group C (4% water content of concrete) to
30.2 mm2/mm3 in Group B (8% water content of concrete) and then to 25.4 mm2/mm3 in
Group A (15% water content of concrete).

Figure 7. Cont.
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Figure 7. The prepared concrete cut plane samples for air void parameters test. (a) 15% moisture
content concrete cut plane sample (Group A); (b) 8% moisture content concrete cut plane sample
(Group B); (c) 4% moisture content concrete cut plane sample (Group C).
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Figure 8. Variation of air void parameters for concrete with different internal water content (−17 ◦C
freezing temperature).

The variation pattern of air void parameters with the number of freeze–thaw cycles
for three Groups of concrete with different moisture contents in A, B and C under the
freeze–thaw cycle test at −30 ◦C freezing low temperature and 8 ◦C melting temperature is
shown in Figure 9.

In the freeze–thaw test with −30 ◦C freezing and 8 ◦C thawing, the changes of the
average diameter of bubbles, spacing factor and bubble specific surface area in concrete with
the number of freeze–thaw cycles were consistent with the overall trend in the freeze–thaw
test with −17 ◦C freezing and 8 ◦C thawing, also the average diameter of bubbles increased,
the bubble spacing factor increased and the bubble specific surface area decreased with the
increase in the number of freeze–thaw cycles.

After 300 freeze–thaw cycles, the average diameter of bubbles in Group C concrete
with 4% moisture content was 178 microns, the average diameter of bubbles in Group
B concrete with 8% moisture content increased by 4.5% from Group C, and the average
diameter of bubbles in Group A concrete with 15% moisture content increased by another
5.4% from Group B. The bubble spacing factor of Group C concrete was 206 µm, that of
Group B concrete increased by 2.4% on the basis of Group C, and that of Group A concrete
increased by 8.1% on the basis of Group B.
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Figure 9. Variation of air void parameters for concrete with different internal water content (−30 ◦C
freezing temperature).

The variation pattern of air void parameters with the number of freeze–thaw cycles
for three Groups of concrete with different moisture contents in A, B and C under the
freeze–thaw cycle test at −30 ◦C freezing low temperature and 8 ◦C melting temperature is
shown in Figure 10.

Combining the results of the air void parameters tests in Figures 8–10, it can be found
that in addition to the internal humidity conditions of the concrete, the freezing temperature
in the freeze–thaw cycle also has a large effect on the concrete air void parameters. At the
same internal moisture content, the air void parameters in concrete will change with the
decrease in freezing temperature. Taking Group A with 15% internal moisture content as
an example, the average diameter of bubbles in concrete was 186 µm, 196 µm and 211 µm
after 300 freeze–thaw cycles at three freezing low temperatures, including −17 ◦C, −30 ◦C
and −40 ◦C, respectively. The lower the freezing temperature used in the freeze–thawing
process, the larger the average diameter of the bubbles after freeze–thawing, and the effect
of freezing temperature on the bubble spacing factor is similar to the average bubble
diameter. The lower the freezing temperature, the smaller the specific surface area of the
bubbles in the concrete after 300 freeze–thaw cycles.



Materials 2022, 15, 5225 12 of 14

Figure 10. Variation of air void parameters for concrete with different internal water content (−40 ◦C
freezing temperature).

Jie Yuan et al. [26] used more advanced tomographic CT combined with image pro-
cessing to study the effect of freeze–thaw cycles on the air void parameters in hardened
concrete under −17 ◦C freezing temperature and 8 ◦C thawing. Their results showed that
the freeze–thaw action increased the diameter and spacing coefficient of air bubbles in con-
crete, and this phenomenon existed in both air-entrained and non-air-entrained concrete,
and the variation rate of non-air-entrained concrete is several times that of air-entrained
concrete. Their results are in general agreement with the findings of this paper at a freezing
temperature of −17 ◦C, but they do not further explore the effect of reducing the freezing
temperature during freeze–thaw cycles on the bubble parameters of hardened concrete.
The principle that the introduction of air bubbles into concrete by air-entraining agents can
improve the frost resistance of concrete has been well explained in the literature [27–29].
When an air-entraining agent is incorporated into concrete, a large number of uniformly
distributed tiny bubbles are introduced, which generally have a relatively fixed average
diameter, bubble spacing coefficient and specific surface area, due to the compressibility
of the bubbles, the bubbles can relieve the expansion pressure generated by icing. At the
same time, the bubbles can also accommodate the migration of free water when the pores
in the concrete freeze, alleviating the infiltration pressure, these qualities of the bubbles
play a key role in improving the frost resistance of concrete. When concrete with different
internal water content is subjected to freeze–thaw cycles, concrete with high internal water
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content is more likely to form larger expansion pressures in concrete pores than concrete
with low water content, and larger expansion pressures can cause rupture of tiny bubbles,
which in turn can form bubbles with larger diameters. Along with the rupture of tiny
bubbles to form larger diameter bubbles, the spacing factor of bubbles in concrete will also
increase and the specific surface area of bubbles will decrease. Similarly, when concrete
with the same internal water content is subjected to freeze–thaw cycles at different freezing
temperatures, the lower freezing temperatures will also cause greater expansion pressure to
form in the concrete pores, which in turn will increase the average diameter of the bubbles
in the concrete, increase the bubble spacing factor, and decrease the specific surface area of
the bubbles.

4. Conclusions

The frost resistance and air void parameters of concrete with different internal water
content were studied under different freezing low temperature conditions during freeze–
thaw cycles, and the main conclusions are as follows.

Before the freeze–thaw test, the average diameter of bubbles, bubble spacing factor
and bubble specific surface area of concrete with different internal water content did not
differ significantly. However, with the increase in the number of freeze–thaw cycles, the
performance of concrete frost resistance and air void parameters gradually deteriorated, as
shown by the increase in mass loss rate and the decrease in relative dynamic elastic modulus
retention value, as well as the gradual increase in average bubble diameter and bubble
spacing factor and the gradual decrease in bubble specific surface area. The deterioration
of concrete air void parameters in the freeze–thaw process is mainly caused by the gradual
decrease in tiny bubbles and the gradual increase in large bubbles. The test results show
that the higher the internal water content of concrete, the more serious the performance
deterioration of concrete air void parameters during freezing and thawing.

When the internal water content of concrete is the same, in the freeze–thaw cycle test,
the freezing temperature decreases and the frost resistance of concrete becomes worse,
and as the average diameter of bubbles and bubble spacing factor in concrete gradually
increases, the specific surface area of bubbles gradually decreases. The lower the freezing
temperature used in the freeze–thaw test process, the greater the expansion force in the
concrete pores, which in turn leads to a gradual reduction in tiny bubbles and a gradual
increase in large bubbles inside the concrete.
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