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Bacterial symbionts associated with insects are often involved in host development

and ecological fitness. In aphids, the role of these symbionts is variable and not fully

understood across different host species. Here, we investigated the symbiont diversity of

the grain aphid, Sitobion miscanthi (Takahashi), from 17 different geographical areas. Of

these, two strains with the same symbiont profile, except for the presence ofHamiltonella

defensa, were selected using PCR. The Hamiltonella-infected strain, YX, was collected

from a Yuxi wheat field in Yunnan Province, China. The Hamiltonella-free strain, DZ, was

collected from a Dezhou wheat field in Shandong Province, China. Using artificial infection

with H. defensa and antibiotic treatment, a Hamiltonella-re-infected strain (DZ-H) and

Hamiltonella-significantly decreased strain (DZ-HT) were established and compared to

the Hamiltonella-free DZ strain in terms of ecological fitness. Infection with the DZ-H

strain increased the fitness of S. miscanthi, which led to increases in adult weight, percent

of wingless individuals, and number of offspring. Meanwhile, decreased abundance of

H. defensa (DZ-HT strain) resulted in a lower adult weight and wingless aphid rate

compared to the DZ-H strain. However, the indices of longevity in both the DZ-H and

DZ-HT strains decreased slightly, but were not significantly different, compared to the

DZ strain. Furthermore, quantitative PCR showed that the relative abundance of the

primary symbiont Buchnera aphidicola in the DZ-H strain was significantly higher than

in the DZ strain in all but the first developmental stage. These results indicate that H.

defensa may indirectly improve the fitness of S. miscanthi by stimulating the proliferation

of B. aphidicola.
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INTRODUCTION

Many insects harbor various types of maternally inherited
microbial symbionts (Baumann, 2005). A classic model for
heritable symbiosis is the association of aphid and its primary (P-)
symbiont Buchnera aphidicola, many aphid species first colonized
an aphid ancestor 150 million years ago and which persists in
almost all of the 5,000-aphid species (Baumann et al., 1995;
Clark et al., 2000). B. aphidicola plays a prominent role in insect
nutritional ecology by providing essential nutrients that are not
obtained in sufficient amounts from a restricted diet of plant
phloem (Baumann et al., 1995). Previous studies have shown that
in addition to B. aphidicola, a wide range of heritable secondary
(S-) symbionts are found in aphids (Buchner, 1965; Oliver
et al., 2006; Vorburger and Gouskov, 2011). In contrast to B.
aphidicola, which is strictly housed in bacteriocytes, S-symbionts
are scattered in sheath cells and aphid hemolymph. They are not
thought to be essential to host survival (Douglas, 1989). However,
recent studies have revealed the important role of S-symbionts.
These symbionts may confer conditional adaptive advantages to
their host, such as protecting the insect host against pathogens
and natural enemies (Piel, 2002; Oliver et al., 2003, 2005; Guay
et al., 2009), ameliorating the detrimental effects of heat (Douglas,
1989, 1998; Ohtaka and Ishikawa, 1991; Montllor et al., 2002),
enhancing insecticide resistance, aiding in adaptation to the plant
(Leonardo and Muiru, 2003; Tsuchida et al., 2004; Guidolin
and Cônsoli, 2017), and mediating insect host metabolism
and biosynthesis (Akman and Douglas, 2009; Benoit et al.,
2017). With the continuous development of molecular biology
and omics technologies, greater knowledge of the evolutionary
relationships between symbionts and host insects has been
revealed (Degnan et al., 2009, 2010; Manzanomarín and Latorre,
2014; Cassone et al., 2015).

There are many S-symbionts that have been identified in
aphids, including Serratia symbiotica, Hamiltonella defensa,
Regiella insecticola, Rickettsia, Wolbachia, Spiroplasma,
Arsenophonus (Tsuchida et al., 2002; Oliver et al., 2010),
and SMLS (Sitobion miscanthi L type symbiont) (Li et al.,
2016). H. defensa is a well-studied S-symbiont of insects and
a gammaproteobacterium informally known as the pea aphid
Bemisia-like symbiont or T-type (Darby et al., 2001), which is
widely, but not universally, distributed in natural populations
of aphid, especially in the grain aphid, Sitobion miscanthi
Takahashi.

Sitobion miscanthi, a dominant grain aphid species in China,

is a major wheat pest that frequently harbors S-symbionts.

H. defensa has been comprehensively studied in Acyrthosiphon

pisum (Nyabuga et al., 2010; Łukasik et al., 2013; Mclean
and Godfray, 2015), but most of these studies focused on
the role of H. defensa in helping the insect during pathogen
or parasite invasion via the presence of a lysogenic lambdoid
bacteriophage designated APSE (Moran et al., 2005a; Degnan
and Moran, 2008). Hamiltonella-induced tolerance to high
temperature has also been reported (Russell and Moran, 2006).
Sporadic reports have noted the positive effect of H. defensa on
aphid fecundity (Łukasik et al., 2013), but there is still relatively
little information available on the ecological adaptation of H.

defensa to the aphid host, especially in the wheat aphid S.
miscanthi.

In general, artificial infection and antibiotic elimination
studies offer a powerful opportunity to study the influence
of symbionts on the host. Thus, in the case of presented
study system, H. defensa was transferred by microinjection and
selectively reduced by antibiotic treatment to provide a host line
for the experimental assays. Different geographical populations
of aphids naturally harbor various symbionts and provide a
source of symbiont diversity for aphid-symbiont interaction
research (Tsuchida et al., 2002; Zhao et al., 2016). Aphids with
a single strain of S-symbiont are scarce in nature and hence
the collection and identification of secondary symbionts in
different geographical isofemale strains of S. miscanthi were the
foundation for the target symbiont screening.

This study was conducted to assess the diversity of S-
symbionts in 17 different geographical populations of S.
miscanthi in China, from which the Hamiltonella-infected and
Hamiltonella-free strains were obtained. A new Hamiltonella-
re-infected strain and a Hamiltonella-significantly decreased
strain with the identical genetic backgrounds was generated to
evaluate the impact of Hamiltonella on host ecological fitness.
Furthermore, the relative abundance of the B. aphidicola in
each development stage was measured in Hamiltonella-free and
Hamiltonella-re-infected strains. Our study clearly identifies the
diversity of S-symbionts in S. miscanthi and reveals the effect of
H. defensa on host aphid ecology adaptation and the correlation
with B. aphidicola.

MATERIALS AND METHODS

Aphid Rearing
The strains of S. miscanthi used in this study are shown in
Figure 1 and Table 1. These samples were collected from 17
locations covering a wide range of the main wheat-producing
areas in mainland China. All of these isofemale strains were
established from different collections, feeding separately on
aphid-susceptible wheat seedlings (Triticum aestivum L) in the
culture room at 20 ± 1◦C with a 75% relative humidity and a
light: dark photoperiod of 16:8 h. After 10 generations, the aphids
were used for the following experiments.

Aphid DNA Extraction, Sequencing, and
Secondary Symbiont Identification
Total aphid DNA was extracted from a single adult aphid with
the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA) following
the manufacturer’s protocol. DNA was extracted from a total
of 20 replicates for each geographical strain. DNA quality was
evaluated using a NanoDrop-1000 spectrophotometer (Nano-
Drop Technologies, Wilmington, DE). These samples were then
screened for the seven known S-symbionts of pea aphids, S.
symbiotica, H. defensa, R. insecticola, Rickettsia, Wolbachia,
Spiroplasma, and Arsenophonus (Tsuchida et al., 2002; Oliver
et al., 2010) with PCR using the specific symbiont primers listed
in Table 2. Cycling conditions were 94◦C for 4min, followed by
35 cycles at 94◦C for 30 s, 60◦C for 45 s, 72◦C for 1min, and 4◦C
for the final elongation. The reaction products were analyzedwith
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FIGURE 1 | Sampling sites for 17 geographical populations collection to investigate the diversity of secondary symbionts in different geographical S. miscanthi strains

in China Numbers on the map correspond to locality numbers in Table 1.

a model 3500 ABI PRISM DNA sequencer (Perkin-Elmer, New
York, NY). The nucleotide sequence of the H. defensa 16S rRNA
partial gene from S. miscanthi described in this paper has been
deposited in GenBank under accession number MG721025.

Artificial Infection of H. defensa by
Hemolymph Injection
The injection of H. defensa followed a previously described
method (Koga et al., 2003). Briefly, 0.5 µl of hemolymph was
extracted from the YX strain and diluted with 0.5 µl of 0.01M
PBS. A 1 µl dilution was injected into the body of third-instar
nymphs of the DZ strains.We detected the infection ofH. defensa
in the newborn nymphs from the offspring of the treated aphids
2 weeks after injection. Presence of H. defensa was confirmed
again after three generations and before the start of the fitness
experiment.

H. defensa Elimination by Antibiotic
Treatment
To verify the fitness effect of H. defensa on S. miscanthi, a
Hamiltonella-significantly decreased strain was established via
antibiotic treatment. With a litter modified by the previous
treatment, a mixture of the antibiotics ampicillin and gentamycin
(Dykstra et al., 2014), each at 100µg/ml, was added to a 20%
sucrose solution as the artificial diet, with the control treatment
containing antibiotic-free sucrose solution, for two days. The
aphids that fed on the antibiotic artificial solution are referred

to as Hamiltonella-significantly decreased aphids. Following
antibiotic treatment, all of the adult aphids were placed on
wheat seedlings to produce new nymphs. After rearing for 10
generations, the offspring of aphids were screened for abundance
of B. aphidicola and S-symbionts by quantitative PCR. The
feeding apparatus was prepared according to Chen et al. (2000)
with 250 µl of solution diet sandwiched between two layers
of parafilm membrane and stretched to a glass tube of 21-mm
diameter under sterile conditions.

Fitness Measurement
The nymphs of DZ (collected from Dezhou wheat filed), DZ-
H (a new strain created by DZ strain with H. defensa artificial
infection) and DZ-HT (a new strain created by DZ-H strain
with antibiotic treatment) were collected over 24 h from adult
aphids. Thirty nymphs from strains were selected at random and
individually placed in petri dishes containing wheat seedlings
whose roots were inserted into water in 1.5ml tubes and kept
at 20◦C under a long-day (16 h) light cycle. These nymphs
were allowed to develop to adults in the petri dishes, and the
fitness indices wingless aphid rate, total number of offspring and
longevity were checked daily until all nymphs completed their
whole lifecycle. We measured the weight of 30 newly emerged
adults collected from each strain and performed 6 replications.
To eliminate any adverse effects of the injection or antibiotics
on aphids, the DZ-H and DZ-HT strains were reared for 10
generations before performing the fitness experiment.
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TABLE 1 | Locality information and diversity of secondary symbionts infection in the different geographic isofemale strains of S. miscanthi.

No. Locality ID Locality Collected time S. symbiotica H. defensa R. insecticola Rickettsia Wolbachia Arsenophonus Spiroplasma

1 WH Hubei, Wuhan 2016/3/15 + + +

2 LS Tibet, Lasa 2015/9/1 + + + +

3 HHT Inner Mongolia, Hohhot 2015/9/1 + +

4 TY Shanxi, Taiyuan 2015/5/14 + +

5 LF Shanxi, Linfen 2015/6/24 + +

6 LFang Hebei, Langfang 2016/3/4 + + +

7 WN Shangxi, Weinan 2016/4/25 + + +

8 JN Shandong, Jinan 2016/4/23 + +

9 TA Shandong, Taian 2016/4/22 + +

10 DZ Shandong, Dezhou 2016/5/7 + +

11 XX Henan, Xinxiang 2016/3/10 + + +

12 CD Sichuan, Chengdu 2015/6/24 + + +

13 KM Yunan, Kunming 2016/4/15 + + +

14 YX Yunan, Yuxi 2016/3/29 + + +

15 HH Yunan, Honghe 2016/3/29 + + +

16 DL Yunan, Dali 2016/4/15 + + +

17 CC Jilin, Changchun 2015/9/30 + +

TABLE 2 | Secondary symbiont specific primers used in this study.

Application Target symbiont Primer name Sequence (5′-3′) Product (kb) References

PCR S. symbiotica 16SA1

PASScmp

AGAGTTTGATCMTGGCTCAG 0.48 Fukatsu et al., 2000

GCAATGTCTTATTAACACAT

R. insecticola U99F

16SB4

ATCGGGGAGTAGCTTGCTAC 0.2 Tsuchida et al., 2002

CTAGAGATCGTCGCCTAGGTA

H. defensa HamiF

16SB1

AGCACAGTTTACTGAGTTCA 1.66 Darby et al., 2001

TACGGYTACCTTGTTACGACTT

Rickettsia 16SA1

Risk16SR

AGAGTTTGATCMTGGCTCAG

CATCCATCAGCGATAAATCTTTC

0.2 Fukatsu and Nikoh, 1998

Spiroplasma 16SA1

TKSSspR

AGAGTTTGATCMTGGCTCAG 0.51 Fukatsu et al., 2000

TAGCCGTGGCTTTCTGGTAA

qPCR B. aphidicola Buch-q-F

Buch-q-R

GGGAACTCAGAGGAGACTGC 0.18 In this study

TGAGGTTTGCTTGTCTTTGC

H. defensa Hami-q-F

Hami-q-R

TGAACAATGTCCCAACTGCT 0.16 In this study

CGCCTCATCTTTCCTGGTAT

R. insecticola Reg-q-F

Reg-q-R

GGTAATACGGAGGGTGCGAG 0.20 In this study

ACTCTAGCCAGCCAGTCTCA

Spiroplasma Spir-q-F

Spir-q-R

TGGGATAACTCCGGGGAAACC 0.18 In this study

TGGTAAACCGGTACCCTTCC

ß-actin ß-actin F

ß-actin R

CGTTACCAACTGGGACGATATG 0.16 In this study

GCGTTCAATGGAGCTTCTGTTA

Quantitative PCR
DNAwas extracted from different developmental stages of aphids
of the DZ-H and DZ-HT strains within 24 h. To examine
whether H. defensa infection in aphids influences the relative
abundance of the primary symbiont B. aphidicola, symbiont
relative abundance was quantified by the SYBR Green ROX
mix (Takara, Dalian, China) and ABI Prism 7,500 Sequence
Detection System (Thermo Fisher Scientific, Waltham, MA,

USA). B. aphidicola, H. defensa, R. insecticola, and Spiroplasma
were quantified in terms of 16S rRNA gene using the primers
in the Table 2. The S. miscanthi actin gene with primers ß-actin
was used as an internal standard for data normalization. Three
replicates were performed. The amplification efficiency amplified
with primers were 103.4, 99.1, 95.5, 97.2, and 101.9% for B.
aphidicola, H. defensa, R. insecticola, and Spiroplasma and actin,
respectively.
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Quantitative PCR (QPCR) was carried out in 20-µl volumes
containing 10 µl of SYBR Green PCR Mix (Takara Bio, Shiga,
Japan), 0.4 µl of 50x ROX Dye II, 1 µl of each primer, and
1 µl of DNA. Cycling conditions were 95◦C for 15min, then 40
cycles of 15 s at 95◦C, 30 s at the annealing temperature at 60◦C,
and 30 s at 72◦C. The relative abundance of aphid B. aphidicola
was normalized to the aphid housekeeping gene ß-actin and
calculated using the comparative Ct method 2−11ctmethod
(Vandesompele et al., 2002).

Statistical Analyses
The treatment effects were analyzed by nonparametric tests.
Kruskal-Wallis was used for multiple comparisons and Mann-
Whitney was used for two sample comparisons at α = 0.05. All
of the data analyses were performed using the IBM SPSS statistics
Version 21 (ver. 21, SPSS Inc., Chicago, IL, USA) software.

RESULTS

Diversity of Secondary Symbiont Infection
in Different Geographical Isofemale Strains
of S. miscanthi
The diversity of S-symbiont infections of S. miscanthi was
investigated from 17 isofemale strains by specific PCR detection.
S. symbiotica, H. defensa, R. insecticola, Rickettsia, Arsenophonus,
and Spiroplasma exhibited partial infections in different
geographical strains. However,Wolbachia was not detected from
any of the Chinese strains of S. miscanthi (Table 1). When an
S-symbiont was detected in a population, infection rate was close
to 100%. In these isofemale strains, no single S-symbiont infected
strain was detected.

H. defensa Artificial Reinfection and
Antibiotic Elimination
Because no H. defensa single infected strains were found in
different isofemale strains and given the negative impact of
using multiple antibiotics to remove different symbionts, we
performed the following experiments using the two strains with
the same symbionts background, except H. defensa. Twenty
third-instar nymphs of the Hamiltonella-free DZ strain of S.
miscanthi were injected with hemolymph obtained from the YX
strain of S. miscanthi, and the Hamiltonella-re-infected strain
DZ-H with the identical background of DZ strain was stably
established. To evaluate whether H. defensa had been transferred
into the aphids, DNA samples obtained from sets of 10 first-
instar nymphs were subjected to PCR detection based on the H.
defensa 16S rRNA gene with two replications (data not shown).
The sequence of H. defensa in our study, 1380-bp in length,
exhibited 99.8% similarity to the sequence of H. defensa from
A. pisum. After antibiotic treatment, DZ-HT strains were reared
for 10 generations and, then, we estimated the relative abundance
of symbionts in DZ-HT strains to ensure that the antibiotic did
not affect the other symbionts, except H. defensa. Compared
to the DZ-H strain, the abundance of H. defensa diminished
by approximately 4.15-fold (P < 0.05; Figure 2A), while B.
aphidicola, R. insecticola, and Spiroplasma showed almost no

change (Figures 2B–D). These results showed that a moderate
concentration of mixed antibiotics could specifically decrease
targeted symbionts without affecting the other symbionts.

Role of H. defensa on Host Aphid Fitness
Aphid demographic parameters, including adult aphid weight,
percentage of wingless aphids, total number of offspring, and
longevity were compared among the DZ-H (Hamiltonella-
re-infected), DZ (Hamiltonella-free), and DZ-HT strains
(Hamiltonella-decreased). The DZ-H strain had a significant
positive effect on partial fitness indices compared to the DZ and
DZ-HT strains (Figure 3). The total number of offspring per
five adults of the DZ-H strain was 112.3, which was significantly
higher than the DZ strain (89.3) (t = 3.326, P < 0.05), but it was
not significantly different from the DZ-HT strain (Figure 3A).
For the DZ-H strain, the adult aphid weight was 1.93 g, which
was significantly higher than the DZ (1.68 g) (t= 5.677, P < 0.05)
and DZ-HT strains (1.808 g) (t = 2.814, P < 0.05) (Figure 3B).
The wingless aphid rate in the DZ-H strain was 67%, which was
significantly higher than in the DZ (42%) (t = 3.727, P < 0.05)
and DZ-HT strains (46%) (t = 3.316, P < 0.05) (Figure 3C).
However, the longevity of the DZ-H strain was 22.9 days, which
was not significantly different from the DZ (26.4 days) (t =

1.705, P = 0.09) and DZ-HT strains (22.4 d) (t = 0.278, P =

0.79) (Figure 3D).

Relative Abundance Difference in B.

aphidicola Between DZ-H and DZ Strains
The relative abundance of B. aphidicola was measured by
quantitative PCR. The abundance of B. aphidicola in the DZ-
H strains was significantly higher than in the DZ strain during
the entire development stage, except for the first instar nymphs.
The comparison of the abundance ratios of B. aphidicola between
DZ-H and DZ in different developmental stages of S. miscanthi
are listed as follows: 1.139-fold (t = 0.519, P = 0.631), 3.415-
fold (t =10.645, P < 0.05), 4.712-fold (t = 31.191, P < 0.05),
6.381-fold (t= 50.261, P< 0.05) for the first-fourth instar nymph
stage, respectively (Figure 4A), and 3.281-fold (t = 19.345, P
< 0.05) and 9.671-fold (t = 21.363, P < 0.05) in winged and
wingless adult aphids, respectively (Figure 4B). These results
further confirmed that the relative abundance of B. aphidicola
was affected by H. defensa infection.

DISCUSSION

Research on the role of S-symbionts in the aphid S. miscanthi,
one of the most important pests of gramineous crops in China,
is still incomplete. In order to obtain target S-symbionts and
understand their functions, stable geographical populations with
different symbiotic infections are needed. We screened the
diversity of S-symbiont infections from established laboratory
populations of 17 geographical clones. A remarkably variable
composition of S-symbiont infection was evident in S. miscanthi.
Interestingly, the infection of S-symbionts among the different
wheat-producing provinces differed somewhat, but samples from
different places in the same province showed a high degree
of consistency. It is noteworthy that H. defensa has only
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FIGURE 2 | Relative symbiont abundance change with antibiotic treatment designed to specifically eliminate H. defensa QPCR analysis of DNA extracted from

antibiotic-treated aphids and controls. (A) The abundance of H. defensa significantly declined in DZ-HT strains treated with antibiotics compared to the control DZ-H

strains (P < 0.05). Antibiotic treatment had no effect on the abundance of B. aphidicola, R. insecticola, and Spiroplasma (B–D). The asterisk indicates significant

differences based on the Mann-Whitney U-test for two sample comparison at P < 0.05 and ns indicates no significant difference.

been detected in Yunnan province with an average elevation
of 2,000m, and S. symbiotic has only been detected in the
Tibet autonomous region with an average elevation of 4,000m.
Interestingly, both areas belong to the plateau region of southwest
China that features complex geological and topographical
conditions. Our geographic sampling data suggest elevation
and topography may contribute to the symbiotic diversity. As
the mechanism of symbiont distribution in S. miscanthi are
unknown, however, biotic and/or abiotic factors could produce
the regional differentiation, as proposed by Oliver et al. (2014)
and Tsuchida et al. (2002). Indeed, other factors that are not
mediated by natural selection such as genetic drift, founder effects
(Russell et al., 2013) and host plant (Guidolin and Cônsoli, 2017)
can also affect the diversity of S-symbionts between geographical
populations of S. miscanthi in different locations in China.
Although we did not investigate the infection rate of symbionts
in natural populations, our results, combined with information
reported in the literature (Sepúlveda et al., 2016; Zytynska
and Weisser, 2016), show that multiple S-symbionts coexist
within local populations of S. miscanthi in different geographical
strains.

Hamiltonella defensa is a well-known S-symbiont that confers
protection to the aphid against parasitoid wasps (Oliver et al.,
2005; Degnan and Moran, 2008; Łukasik et al., 2013; Vorburger
and Rouchet, 2016), with a high infection rate of 31.3%
(5/16) in US strains (Sandström et al., 2001) and 39.5%
(15/38) in UK strains of A. pisum (Darby et al., 2001).
However, it was not detected (0/119) in Japanese strains of
A. pisum (Tsuchida et al., 2002; Rothacher et al., 2016). In
our study, H. defensa was also not widely distributed in S.
miscanthi from the screened area. It was only present in
four clones collected in Yunnan Province. Even though we
did not obtain a single Hamiltonella-infected S. miscanthi
strain, two interesting strains (YX and DZ) were collected
from Yuxi and Dezhou wheat fields in China. Both strains
had the same S-symbiont infection profiles, except for the
presence of H. defensa (YX: Hamiltonella-infected and DZ:
Hamiltonella-free). By artificial infection, Hamiltonella-free
strain (DZ) and Hamiltonella-re-infected strain (DZ-H) with
the same genetic background were generated. After antibiotic
treatment, a Hamiltonella-decreased strain (DZ-HT) was also
obtained.
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FIGURE 3 | Fitness indices of Hamiltonella-infected, Hamiltonella-free, and Hamiltonella-decreased S. miscanthi strains. (A) Total number of offspring. (B) Weight of

adult aphids. (C) Percentage of wingless aphids. (D) Longevity. Bar represents standard errors of means and different letters above the bars indicate significant

differences based on Kruskal-Wallis for multiple comparisons at P < 0.05, while ns indicates no significant difference.

FIGURE 4 | Relative abundance of B. aphidicola in the DZ-H and DZ strains. (A) Relative abundance of B. aphidicola in different instar nymphs. (B) Relative

abundance of B. aphidicola in winged and wingless adult aphids. The asterisk indicates significant differences based on the Mann-Whitney U-test for two sample

comparison at P < 0.05 and ns indicates no significant difference.

Fitness measurements revealed that the Hamiltonella-re-
infected treatment increased the fitness of S. miscanthi, as
evidenced by greater numbers of offspring, increased weight,
and higher wingless aphid rate. Meanwhile, decreasing the
abundance of H. defensa with antibiotics resulted in lowered
adult aphid weight and percentage of wingless aphids. Similar
results have been reported for the whitefly (Su et al., 2013),
while Oliver et al. (2008) reported that H. defensa shortened the

mean generation time of A. pisum. However, in S. miscanthi,
research on the influence of H. defensa in improving aphid
fecundity is sporadic (Łukasik et al., 2013) and other S-symbiont
infections were not identified. In our research, we used four
fitness indices (number of offspring, weight of adult aphids,
percentage of wingless aphids, and longevity) to evaluate the
effect of H. defensa on the ecological fitness of S. miscanthi
strains. Surprisingly, the difference in longevity found between
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DZ and DZ-H strains were not significant, but was only slightly
decreased. A close relationship with symbionts can be costly
for the host (Polin et al., 2014), with these direct costs caused
by a trade-off between allocating resources to symbiosis and
other adaptive functions. A previous study found that aphids
exhibited many behavioral defenses against enemies and these
behaviors had some associated costs, leading to a reduction in
aphid reproduction (Dion et al., 2011). We hypothesize that the
benefit of H. defensa infection in terms of number of offspring,
weight, and wingless aphid rate represents a trade-off against
the cost of longevity, with an overall benefit of H. defensa
infection.

Buchnera aphidicola, a primary symbiont in almost all aphids,
appears to benefit their hosts primarily through the provision of
nutrients that are limiting for growth and reproduction (Clark
et al., 2000; Oliver et al., 2010). In this study, the relative
abundance of B. aphidicola in the DZ-H strain was significantly
higher than the DZ strain in all but the first developmental
stage. This phenomenon implies a linkage of B. aphidicola
with H. defensa, and the difference abundance of B. aphidicola
in aphid offspring might not be caused by microinjection.
The increased in B. aphidicola could result from increased
nutritional requirements of the whole system. B. aphidicola
may be “feeding” H. defensa since the latter does not seem to
be able to manufacture many essential amino acids (Degnan
et al., 2009). Therefore, we speculate that infection with H.
defensa may indirectly improve the fitness of S. miscanthi by
stimulating the abundance of B. aphidicola. In addition, based on
the results of the current study and combined with the viewpoint
that H. defensa inhabits secondary bacteriocytes intercalated
between primary bacteriocytes that harbor B. aphidicola (Moran
et al., 2005b), it can be hypothesized that B. aphidicola and
H. defensa may perform complementary functions in the aphid
host and facilitate biological interactions between them. More
interestingly, several reports using high-throughput sequencing
methods have suggested that S. symbiotica and Wolbachia,
which are facultative symbionts in many aphid species, have
evolved to form a deep and co-obligate association with B.
aphidicola in different aphids (Manzanomarín and Latorre, 2014;
De et al., 2015). Although H. defensa is not necessary for S.
miscanthi, it affects the host aphid ecological adaptation to some

extent. Further studies employing metagenomics and proteomics

techniques will be needed to reveal the underlying mechanism
of how H. defensa improves the fitness of S. miscanthi,
as well as to examine the interactions between H. defensa
and B. aphidicola and the interactions among the symbionts
themselves.

In summary, we established a feasible method to obtain aphid
strains with and without a target symbiont under the same
other S-symbiont infection profiles and genetic background by
screening different geographical populations and microinjection.
In addition, infection with H. defensa increased the fitness
of S. miscanthi and enhanced the relative abundance of B.
aphidicola. Our results establish a basis for functional studies
by revealing the effect of H. defensa on host aphid ecology
adaptation and the correlation with B. aphidicola. A better
understanding of the insect and endosymbionts interaction
will supply information on the potential value of manipulating
microbiota to control insect pests. The diversity and ecological
function of symbionts may provide important guidance to field
arrangements of wheat varieties in different wheat production
areas.
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