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Abstract: The wetting properties of the brazing filler on the substrates play an important role in
achieving a reliable joint. In this work, the wetting behaviour of the Mn-based brazing alloy on
the surface of 1Cr18Ni9Ti stainless steel is investigated. First, surface treatment was adopted to
prepare four different surface states on the stainless steel, including polished, acid treatment, nickel
coating, and sandblasting. The surface morphology with nickel coating shows micro-and nano-scale
protrusions, forming a uniform 3D Ni layer. The surface roughness of substrates increases after
sandblasting treatment. It is found that the wetting angle of brazing alloy on the Ni coated substrates
decreases noticeably. After sandblasting, the high roughness speeds up the wetting spread of the
brazing alloy at the initial stage. The effect of heating temperature and holding time is also studied
systematically. With the increase in holding time, the height of the melting brazing alloy decreases
slightly on the sample surfaces. Based on the characterization of the joint section, the Ni layer
dissolves into the melting brazing alloy. The diffusion and dissolving are indicated between the
brazing alloy and substrates, forming a reliable bond.

Keywords: 1Cr18Ni9Ti; surface state; wetting; Mn-based brazing alloy

1. Introduction

Stainless steel is widely applied in various applications due to its excellent corrosion
resistance [1–3]. Welding and joining are always carried out to fabricate complex stainless
steel structures [4,5]. Compared with other joining methods, brazing introduces less effect
on the base material since the heating temperature is lower than the melting point of
substrates [6,7]. The alloy must have good wetting behaviour on the sample surfaces when
brazing [8,9]. Therefore, it is essential to carry out systematic research on the wetting
behaviour between brazing alloys and base substrates. To improve the wetting properties,
surface treatment, such as modification layer and microstructure fabrication on the surfaces
of the substrates, has attracted a lot of attention [10–12].

Stainless steel is mainly composed of the elements Fe, Cr, Ni, etc., [13–15]. The suitable
alloy for brazing stainless steel includes Ag-based [16], Ni-based [17], Mn-based [18], and
Cu-based brazing alloy [19]. Mn-based alloy is commonly used as the brazing alloy for
stainless steel because of its good mechanical properties and excellent high-temperature
performance [20]. The good wetting ability, oxidation resistance, and high strength joint
of Mn-based alloy make it widely used in real industrial applications [21]. Li et al. [22]
studied the brazing of copper and stainless steel by using Mn-related filler, achieving an
enhanced tensile strength of the joint.

Based on Young’s equation, the contact angle of melting brazing alloy on the sample
surfaces could be calculated by the interface energy of solid-liquid, liquid-gas, and solid-
gas [23]. The modification layer on the substrates, such as Ni [24], Au [25], Cu coatings [26],
etc., can improve the wetting properties of the brazing alloy via change of the solid-related
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interface energy. Considering the cost and the compatibility between Fe and Ni elements,
the Ni coating is always prepared as the modification layer on the stainless steel [27–29].
Furthermore, Ni has good solid solubility with many other elements, such as Ag [30],
Mn [31], Cu [32], etc., indicating that the Ni layer could form a strong bond with a variety of
brazing alloys. Venkateswaran [33] revealed that Ni coating could obviously decrease the
contact angle of brazing alloys on the base metal, further improving the shear strength of
the brazing joint.

Wenzel and Cassie’s theory provides another strategy to decrease the contact angle of
melting brazing alloy [34,35]. If the liquid contact angle on the flat surface is lower than 90◦,
improving the roughness is beneficial for decreasing the contact angle. Numerous methods,
such as chemical etching [36–38], laser manufacturing [39,40], electrodeposition [41,42], and
machining [43], have all been investigated as ways to fabricate well-arranged or randomly
distributed microstructures on the metal surface. Tan et al. [44] analyzed the effect of
chemical-etched textures on the wetting behaviour of melting brazing alloy. The improved
surface roughness promotes spreading speed and bond strength. Yu et al. [45] fabricated
different surface textures on stainless steel substrates by laser, including micro-grooves,
micro-pits, and micro/nano-ripples. During the wetting process, the micro-textures have
been proven to increase the contact angle and the reaction layer thickness. It can be
seen that the surface treatment has been explored in the field of brazing stainless steel.
However, there is limited research on the comprehensive effect of both surface roughness
and modification on wettability.

In this paper, 1Cr18Ni9Ti stainless steel with four surface states was first prepared,
including acid treated, Ni coated with different thickness, and sandblasted. The phase
and surface morphology of substrates were characterized by SEM, XRD, and confocal laser
scanning microscopy. The contact angle of the brazing alloy was measured using both in
situ and ex situ approaches. The effect of brazing parameters on the wetting behaviour of
the Mn-based brazing alloy was studied systematically. The phase and microstructure of the
interface between brazing alloy and substrates were analysed carefully by SEM and EDS.

2. Experimental Section
2.1. Wetting Experiment

The chemical composition of 1Cr18Ni9Ti substrates and Mn-based brazing alloy is
shown in Table 1. The 1Cr18Ni9Ti plate was cut into small pieces (45 mm × 45 mm × 2 mm)
and divided into four groups. The first group of samples were treated with acid. The
second group contains acid treatment and 4 µm-Ni coatings. The third and fourth groups
are acid treatment + 10 µm-Ni and sandblasting + 4µm-Ni, respectively. As shown in
Figure S1, the Mn-based brazing alloy was placed on the sample surface and heated in a
chamber with a vacuum better than 5 × 10−3 Pa to test the wetting properties. Both the
heating and cooling rates are 15 ◦C/min. In our preliminary work, the Mn-based brazing
alloy could exhibit good flowing and wetting performance when the heating temperature
exceeds 1100 ◦C. When the holding time is too short, the joint is not uniform. The ultra-long
holding time can lead to an overreaction between the base substrates and brazing alloys.
Thus, the heating temperature is set at 1150 ◦C, 1170 ◦C, and 1190 ◦C, with a holding time
of 15 min, 25 min, and 35 min.

Table 1. Chemical composition of the base substrate and brazing alloy (wt.%).

Element Fe Ni Cr Mn Si Ti C

1Cr18Ni9Ti Bal. 8~11 17~19 ≤2.0 ≤1.0 0.8 ≤0.12
Mn70NiCr - 24.0~26.0 4.5~5.5 Bal. - - -
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2.2. Characterization

After surface treatment, the phases of the samples were analysed by X-ray diffraction
(XRD, D8 Advanced, Bruker, Karlsruhe, Germany). A field-emission scanning electronic
microscope (FE-SEM, SU5000, Hitachi, Tokyo, Japan) was used to observe the morphology
and microstructure of sample surfaces and interfaces. The roughness of the surface was
measured by a laser scanning confocal microscope (OLYMPUS, OLS3000, Tokyo, Japan).
The element analysis was carried out by an energy dispersive X-ray spectrometer (EDS). The
contact angle of the brazing alloy on the sample was measured by an optical contact angle
measurement device (OCA20, Dataphysics, Stuttgart, Germany) at ambient temperature.
The contact angle at the high-temperature stage was observed in situ by a CCD camera
through a transparent window in the furnace.

3. Result and Discussion
3.1. The Characterization of Substrates

Before surface treatment, the base substrates of 1Cr18Ni9Ti stainless steel were char-
acterized and shown in Figure S2. The AFM images in Figure S2a,b indicate that only
some scratches can be observed on the surface due to the sandpaper polishing. Figure S2c
displays the EDS results of the base substrates, which mainly contain 20.17% Cr, 69.66% Fe,
and 9.34% Ni. The phase was analysed by XRD, as shown in Figure S2d. The Fe-Cr and
Fe-Ni peaks agree well with the phase of stainless steel. Figure 1a–c illustrates the mor-
phology of substrates after acid treatment. A large number of grains and small gaps can
be observed on the sample surface. Figure 1d–f presents the surface topography of the
substrates after acid treatment and deposition of a 4 µm thick Ni layer. It can be seen that a
series of micro- and nano-scale protrusions are presented on the sample surface. Figure 1g–i
shows the SEM images of the substrates after acid treatment and 10µm Ni layer deposition.
The morphology is similar to that in Figure 1d–f. However the size of protrusions increases.
Figure 1j–l shows the sample surface after sandblasting and Ni deposition. Two-level
hierarchical structures can be observed on the sample surfaces. The first-level structure
consists of the micro-pits and micro-bulges resulting from the sandblasting treatment. The
second-level structure of small protrusions, which grow on the surface of micro-bulges, can
be assigned to the Ni deposition. The EDS results of the samples after Ni deposition only
show Ni peaks.

The roughness value of the four samples is measured by a confocal microscope, as
shown in Figure 2. Figure 2a–d corresponds to the results of the samples after acid treatment,
acid treatment + 4 µm Ni, acid treatment + 10 µm Ni, and sandblasting + 4 µm Ni. The
surface roughness Ra values of the four samples are 0.1842, 0.1415, 0.1661, and 8.1604,
respectively. It can be seen that Ni deposition has little effect on the surface roughness,
while sandblasting can significantly increase the roughness value. Figure S3 presents the
AFM images of the samples after acid treatment and acid treatment + 4 µm Ni. The surface
profile is below 1 µm, further indicating that Ni deposition introduces less effect on the
surface roughness value.

The phase composition of the substrates after acid treatment is shown in Figure 3a.
Compared with the XRD result in Figure S2d, the intensity ratio between Fe-Cr and Fe-Ni
peaks has changed due to the acid etching. For the sample after acid treatment and 4 µm
Ni deposition, there is an obvious Ni peak in the XRD result, as shown in Figure 3b. As
the thickness of the Ni layer increases, the intensity ratio of the Ni peak also increases, as
shown in Figure 3c. Figure 3d displays the XRD result of the sample after sandblasting and
4 µm Ni deposition, in which Ni peaks are more obvious than the Fe-Cr peaks, because the
high surface roughness can influence the intensity of XRD.
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Figure 3. XRD results of stainless steel after surface treatment (a) Acid treatment, (b) acid treat-
ment + 4 µm Ni, (c) acid treatment + 10 µm Ni, (d) sandblasting + 4 µm Ni.

3.2. In Situ Observation of the Brazing Alloy Contact Angle

In order to analyse the wetting behaviour and spreading dynamics of the brazing
alloy, a real-time wetting angle-measuring device was used to observe the wetting of the
brazing alloy. Figure 4 shows the melting and wetting behaviour of the brazing alloy on
substrates of acid treatment at 1190 ◦C/25 min. The shape of the brazing alloy was stable
at a temperature of 1060 ◦C. When it reaches 1070 ◦C, it can be seen that the brazing alloy
has collapsed, and the root is connected with the base substrate, which proves that the
brazing alloy begins to melt. Then the brazing alloy agglomerates into a circular arc on the
sample surface as the temperature increases. When the temperature reaches 1100 ◦C, the
upper surface becomes completely smooth. It can be regarded as the initial wetting stage.
Two minutes are required for the brazing alloy to show a smooth surface on the substrates
of the acid treatment since it starts to melt because the heating rate in this experiment is
15 ◦C/min. The wetting angle of the brazing alloy on the base substrate is 38.1◦. Based on
the images corresponding to the temperature of 1130 ◦C, 1150 ◦C, 1170 ◦C, and 1190 ◦C,
it can be observed that the contact angle decreases gradually. The contact angle has been
reduced to 30.0◦ at a temperature of 1190 ◦C. During holding at 1190 ◦C for 25 min, the
results of the brazing alloy wetting angle are measured. Considering the error of fitting
calculation, it can be considered that the contact angle of the brazing alloy does not change
obviously at this stage. In addition, the height of the brazing alloy at 1100 ◦C is larger than
that at 1190 ◦C, proving that the brazing alloy and the base metal gradually dissolve and
diffuse during the heating process, which is consistent with the change of contact angle.
It can be concluded that the dynamic wetting angles of brazing alloy on the substrates
decrease rapidly at first and then slowly change, agreeing with previous research [21].
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Figure 4. High-temperature contact angle on substrates of acid treatment.

Figure 5 presents the initial stage of brazing alloy wetting on substrates of acid treat-
ment + 4 µm Ni at 1190 ◦C/25 min. The brazing alloy starts melting at 1070 ◦C, similar to
the sample in Figure 4. However, the brazing alloy could wet and spread fast on the sample
surface. When the temperature reaches 1075 ◦C, a smooth upper surface is obtained. It
means that only 1/3 min is used for the brazing alloy to complete the initial wetting stage
since it starts to melt on the substrates of acid treatment + 4 µm Ni, indicating that the Ni
deposition layer could promote the spreading.
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To compare the effect of surface roughness on the wetting behaviour at 1190 ◦C/25 min,
the contact angle of the brazing alloy on substrates of acid treatment + 10 µm Ni and
sandblasting + 4 µm Ni were observed at the same time, as shown in Figure 6. After the
brazing alloy starts melting at 1070 ◦C, the brazing alloy completes the initial wetting
stage at 1075–1076 ◦C on the substrates of acid treatment + 10 µm Ni, indicating that the
thickness of the Ni layer has a limited effect on the initial wetting stage. Interestingly, the
brazing alloy spreads much faster on the substrates of sandblasting + 4 µm Ni. The initial
wetting stage is completed at 1072 ◦C. Since the surface after sandblasting shows the largest
surface roughness, it indicates that the high roughness could accelerate the spread process
of melting brazing alloy. At 1100 ◦C, the contact angles of the two samples are 21.8◦ and
23.4◦, respectively. When the temperature increases to 1190 ◦C, the angles decrease to 16.9◦

and 18.3◦. After holding at 1190 ◦C for 10 min, the angles decrease to 15.9◦ and 13.0◦. Then
the wetting angle generally remains unchanged.
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Thus, by analysing the wetting behaviour on different surfaces, it can be seen that the
Ni deposition on the stainless steel surface can decrease the contact angle of the brazing
alloy. The Ni layer could also accelerate the initial wetting stage. The high roughness
further improves the spreading speed of the brazing alloy at the initial wetting stage.

3.3. The Wetting and Spreading Properties

After cooling, the brazing alloy’s contact angle and spreading area were measured
and listed in Table 2. Since the amount of brazing alloy on each sample is fixed, the contact
angle and spreading area are directly related. The better wetting behaviour leads to a
smaller contact angle and larger a spreading area.

Firstly, it can be noticed that the samples with Ni layers are more beneficial for the
brazing alloy wetting. The contact angles are obviously smaller than those on the samples
with only acid treatment, proving the Ni layer can lead to a decrease in contact angles.
Based on the results in Section 3.2, the high surface roughness could accelerate the initial
wetting stage. However, the final contact angles on the samples with high roughness are
roughly similar to those with small roughness. The effect of heating temperature and
holding time can also be summarised as follows: (1) When only acid is used to treat the
samples, the wetting angles increase slightly and then decrease as the temperature increases;
(2) for the samples after acid treatment and Ni deposition, the contact angles decrease as
holding time increases; and (3) the effect of heating parameters is not very obvious for the
samples after blasting treatment.



Coatings 2022, 12, 1328 8 of 15

Table 2. Contact angle and spreading area of brazing alloy.

1Cr18Ni19Ti
No. Surface States

Contact Angle/Brazing Alloy Spreading Area (mm2)

1150 ◦C/15 min 1170 ◦C/15 min 1190 ◦C/15 min

1 Acid treatment 15.4◦/26.463 19.5◦/25.092 20.6◦/21.264

2 Acid treatment + 4 µm Ni 6.1◦/49.662 7.7◦/38.031 11.8◦/37.532

3 Acid treatment + 10 µm Ni 15.3◦/42.318 18◦/31.408 14◦/28.142

4 Sandblasting + 4 µm Ni 10.4◦/36.121 13.3◦/30.121 15.3◦/26.044

5 Acid treatment 18.9◦/26.248 24.7◦/18.511 22.4◦/23.681

6 Acid treatment + 4 µm Ni 11.6◦/39.246 6.4◦/45.595 6.6◦/41.073

7 Acid treatment + 10µm Ni 7.9◦/39.581 12.0◦/39.173 11.9◦/31.660

8 Sandblasting + 4 µm Ni 13.0◦/31.944 11.7◦/27.681 8.9◦/32.523

9 Acid treatment 20.9◦/26.892 24.2◦/22.125 20◦/23.647

10 Acid treatment + 4 µm Ni 10.1◦/38.905 6.3◦/51.458 6.6◦/43.396

11 Acid treatment + 10 µm Ni 8.2◦/40.169 8.6◦/45.662 6.3◦/57.521

12 Sandblasting + 4 µm Ni 15.1◦/32.660 9.1◦/39.551 10.1◦/32.533

3.4. The Interfacial Microstructure between Brazing Alloy and Substrates

After the wetting experiment, the samples were cut and treated to investigate the
cross-sectional interface between brazing alloys and substrates. Figure 7 shows the SEM
image and corresponding element map distribution of brazing alloy on substrates of acid
treatment at 1170 ◦C/25 min. The brazing alloy part is composed of Fe, Cr, Mn, and Ni.
The base substrate is mainly composed of the elements Fe and Cr. In addition, some Ti-rich
points are distributed randomly in the interface. As shown in Figure 7, Table 3 shows the
EDS analysis at different points. Point A corresponds to the FeCrNi phase on the top surface
of the brazing alloy. Point B contains more Mn compared to point A due to the diffusion of
Mn. The chemical composition at point C is similar to that of the base substrate. Point D
is basically at the base substrate, which contains 70.10% Fe and 19.56% Cr. A coordinate is
built in the Fe element distribution image. The x-axis is the original surface of the substrates.
In region IV, the boundary line between the brazing alloy and substrate is below the x-axis,
indicating the dissolving of substrates. In region I, the Mn content is lower in the top layer
than in the inner part of the brazing alloy. The other element behaved with an opposite
distribution trend, showing the diffusion during the wetting process. It is noticeable that
the boundaries between brazing alloys and substrates are not easily identified because of
the dissolving and diffusion between the molten brazing alloys and solid substrates at the
high-temperature stage. The transition area of element change is always at the interface
between brazing alloys and substrates in the field of brazing metal [46].

The SEM image and EDS result of brazing alloy on substrates of acid treatment + 4 µm
Ni at 1170 ◦C/25 min are displayed in Figure 8 and Table 4. The microstructures and
element distribution are similar to that in Figure 7, except that a Ni layer can be seen in the
top layer of substrates, as shown in point C of Figure 8. There is element diffusion between
the initial Ni deposition layer and the substrate, resulting in a chemical composition of
49.19% Fe and 40.91% Ni. Points A and B correspond to the different regions of the
brazing alloy. Point D is located at the base of the substrates. At the interface between the
brazing alloy and the base substrate, the Ni deposition layer on the base substrate is totally
dissolved by the brazing alloy.
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Table 4. The EDS results in Figure 8.

Element
(At.%) Ti Cr Mn Fe Ni

A - 16.06 5.50 21.92 56.53
B - 14.44 22.37 15.87 47.32
C 1.38 8.21 0.33 49.16 40.91
D 0.65 19.07 1.73 70.69 7.87
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The SEM image and EDS results of brazing alloy on substrates of acid treatment + 10 µm
Ni at 1170 ◦C/25 min are shown in Figure 9 and Table 5. It can be seen that the Ni thickness
on the substrates has little influence on the wetting behaviour. Point C contains more Ni
compared with the same region in Figure 8, because there is a thicker initial Ni deposition
layer. The other areas are all similar to those in Figure 8.
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Figure 9. The SEM image and the corresponding element map distribution of brazing alloy on
substrates of acid treatment + 10 µm Ni at 1170 ◦C/25 min.

Table 5. The EDS results in Figure 9.

Element
(At.%) Ti Cr Mn Fe Ni

A - 18.38 3.09 22.04 56.49
B - 13.77 25.23 12.69 48.32
C 1.13 7.73 0 42.4 48.90
D 0.45 19.01 1.67 70.75 8.12

Figure 10 and Table 6 present the SEM image and the corresponding EDS results of
brazing alloy on substrates of sandblasting + 4 µm Ni at 1170 ◦C/25 min. A thin layer is
distributed on the surface of the substrates. Point A is mainly composed of the FeCrNi
phase. Point B contains the Mn-rich phase based on the FeCrNi phase. (Mn, Ni) solution
is a typical phase in the joint of an Mn-based brazing alloy [47]. Point C is approximately
at the interface between the brazing alloy and the base of the substrates. The chemical
composition at Point D is similar to that in Figures 7–9. A big gap can be observed in the
cross-sectional interface, resulting from the sandblasting treatment of the substrates. The
border of brazing alloys ends at the edge of the gap. It can be speculated that the melting
brazing alloy spreads to the edge of the gaps, and then the flow is prevented by the gap.
Therefore, the brazing alloy contact angle on the sample after sandblasting + Ni deposition
treatment is smaller than that with only the Ni layer.
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Table 6. The EDS results in Figure 10.

Element
(At.%) Ti Cr Mn Fe Ni

A - 19.06 7.66 21.04 52.25
B - 10.07 34.57 7.83 47.53
C 6.51 19.52 8.35 52.77 12.84
D 0.65 19.18 1.76 70.20 8.21

Based on the above results, there are several main phenomena observed. The first
is that the Ni layer could decrease the contact angle of the brazing alloy on the stainless
steel samples. The second is that high surface roughness could further accelerate the initial
wetting speed. If the dissolving and diffusion between brazing alloys and substrates are
ignored, the effect of surface states on wetting properties can be discussed as follows. The
contact angle of the melting brazing alloy on stainless steel substrates at equilibrium can be
analysed by Equation (1).

γlg cos θ = γsg − γsl (1)

where γlg, γsg, and γsl are the tension forces of liquid-gas, solid-gas, and solid-liquid,
respectively. θ is the contact angle of the brazing alloy on the substrates. When the Ni layer
is deposited on the surface of stainless steel substrates, the interface energy and tension
force between the substrate and melting brazing alloy have been changed, leading to a
decrease in contact angle [33].

The contribution of the surface roughness to the spread of brazing alloy could be
explained by Equation (2) proposed by Miao et al. [48].

L0 =

√√√√4πwγlg

(
cos θ − sin β

2

)
λ(β)η

×
√

t (2)

where η is the viscosity of the melting brazing alloy, and t is the spreading time. Assuming
that the shape of microstructures on the surface is a triangle, the side length is w and its
open angle is β. The length of the triangle is L. λ(β) is a geometric parameter corresponding
to the angle β.
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To simplify the calculation and analysis, the open angle β approximately remains
unchanged for the surface with higher roughness. The larger side length of the triangle is
wm. Then the spreading length could be written as Equation (3).

Lm =

√√√√4πwmγlg

(
cos θ − sin β

2

)
λ(β)η

×
√

t (3)

In this case, the ratio of liquid spreading length on the rough surface and on the
relatively flat surface can be concluded.

Lm

L
=

√
wm

w
(4)

Based on Equation (4), the relationship between Lm/L and wm/w is shown in Figure 11.
The spreading speed of brazing alloys could be improved as wm increases, indicating the
effect of high surface roughness on the spreading of brazing alloys.
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4. Conclusions

In summary, the wetting behaviour of Mn-based brazing alloy on different surface
states of stainless steel has been studied in detail. Acid treatment, Ni deposition, and
sandblasting were used to prepare stainless steel with different surface states. After acid
treatment, the surface shows a roughness of Ra 0.1842. The Ni deposition introduces a
large number of small protrusions, but the roughness value only changes a little. The
substrates after sandblasting show a high roughness Ra of 8.1604. When the heating
temperature reaches the melting point, the brazing alloy spreads on the sample surface.
The Ni deposition could accelerate the initial spread of melting brazing alloy and decrease
the final contact angle because the Ni layer could change the interface energy between the
brazing alloy and substrates. The initial spreading speed can be further developed by the
high roughness after sandblasting. Meanwhile, the Ni layer on the sample surface will
be dissolved by melting brazing alloy. Diffusion and dissolving take place between the
brazing alloy and substrates. This paper systematically discussed the influence of surface
states on the wetting behaviour of brazing alloys, providing a theoretical reference and
data support for brazing stainless steel in actual application. Additionally, it is the first time
to analyse the mechanism of the surface roughness on the spreading rate of a brazing alloy.
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brazing alloy; Figure S2: Characterization of 1Cr18Ni9Ti base substrates without surface treatment.
(a) Two-dimensional AFM image, (b) Three-dimensional AFM image, (c) EDS results, and (d) XRD
spectra; Figure S3: AFM images of 1Cr18Ni9Ti base substrates after surface treatment. (a,c) Acid
treatment and (b,d) acid treatment + 4 µm Ni.
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