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Abstract In this paper, a theoretical analysis is presented

for magnetohydrodynamic flow of blood in a capillary, its

lumen being porous and wall permeable. The unsteadiness

in the flow and temperature fields is caused by the time-

dependence of the stretching velocity and the surface

temperature. Thermal radiation, velocity slip and thermal

slip conditions are taken into account. In order to study the

flow field as well as the temperature field, the problem is

formulated as a boundary value problem consisting of a

system of nonlinear coupled partial differential equations.

The problem is analysed by using similarity transformation

and boundary layer approximation. Solution of the problem

is achieved by developing a suitable numerical method and

using high speed computers. Computational results for the

variation in velocity, temperature, skin-friction co-efficient

and Nusselt number are presented in graphical/tabular

form. Effects of different parameters are adequately dis-

cussed. Since the study takes care of thermal radiation in

blood flow, the results reported here are likely to have an

important bearing on the therapeutic procedure of hyper-

thermia, particularly in understanding/regulating blood

flow and heat transfer in capillaries.

List of symbols

g Dimensionless distance

u Velocity of blood along the axis of the capillary

v Transverse velocity of blood in the capillary

T Temperature of blood at any point

in the capillary

us Velocity-slip at the wall

Uw Stretching velocity

Vw Injection/suction velocity

Tw Surface temperature

Ts Thermal slip

B(t) Time-dependent magnetic field intensity

k1(t) Time-dependent permeability parameter of blood

k2 Constant permeability of the medium

k3 Non-dimensional permeability parameter

qr Radiative heat flux of blood

k Thermal conductivity of blood

N Velocity-slip factor

K Thermal-slip factor

M Hartmann number of the blood mass

A Unsteadiness parameter

Nr Radiation parameter

Sf Non-dimensional velocity-slip factor

St Non-dimensional thermal-slip factor

Pr Prandtl number

S Injection/Suction parameter

q Density of blood

r Electrical conductivity of blood

m Kinematic coefficient of viscosity of blood

cp Specific heat at constant pressure

rH Stefan-Boltzmann constant

kH Mean absorption co-efficient

Cf Skin-friction coefficient

Nux Local Nusselt number
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1 Introduction

Radiation effect in blood flow is an important subject of

research, because it has got significant applications in

Biomedical engineering and several medical treatment

methods, particularly in thermal therapeutic procedures.

Infrared radiation is one of the frequently used techniques

for making heat treatment to various parts of the human

body. This technique is preferred in heat therapy, because

by using infrared radiation it is possible to directly heat the

blood capillaries of the affected areas of the body. In the

treatment of muscle spams, myalgia (muscle pain), chronic

wide-spreed pain (fibromyalgia, in medical terms) and

permanent shortening of muscle (medically called as con-

tracture), heat therapy is found to be very effective. It is

also used in the treatment of bursitis, that is, inflammation

of the fluid-filled sac (bursa) that lies between tendon and

bone, or between tendon and skin. Several experimental

investigations have been carried out by some researchers

(cf. Kobu [1], Inoue and Kabaya [2], Nishimoto et al. [3])

to examine the effects of infrared radiation/ultrasonic

radiation on blood flow. The effect of radiative heat

transfer on blood flow in a stenosed artery was studied

theoretically by Prakash and Makinde [4]. By using a

numerical model, He et al. [5] discussed the effect of

temperature on blood flow in human breast tumor under

laser irradiation.

While flowing through the arterial tree, blood carries a

large quantity of heat to different parts of the body. On the

skin surface, the transfer of heat can take place by any of

the four processes: radiation, evaporation, conduction and

convection. It is known that in the case of radiative heat

transfer, energy is transferred through space by means of

electromagnetic wave propagation. There are several

determinants for the quantity of heat that blood can carry

with it, namely, (1) heat transfer coefficient of blood, (2)

density of blood, (3) velocity of blood flow, (4) radius of

the artery and (5) temperature of the tissues that surround

the artery. Out of these, since Reynolds number is related

to the velocity and density of blood as well as the arterial

radius, the quantity of heat carried by blood can be

regarded as dependent only on Reynolds number and heat

transfer coefficient of blood, and the temperature of the

tissues surrounding the artery.

It may further be mentioned that blood flow enhances

when a man performs hard physical work and also when

the body is exposed to excessive heat environment. In cases

like these, blood circulation can not remain normal. In

order to take care of the increase in blood flow, the

dimensions of the artery have to increase suitably. It is

known that when the temperature of the surroundings

exceeds 20 �C, heat transfer takes place from the surface of

the skin by the process of evaporation through sweating

and when the temperature is below 20 �C, the human body

loses heat by conduction and radiation both. Blood flow

with radiative heat transfer was discussed by Ogulu and

Bestman [6] on the basis of a theoretical study. Shah et al.

[7] designed an instrument for measuring the heat con-

vection coefficient on the endothelial surface of arteries.

Effects of pulsatile blood flow in arteries during thermal

therapy were studied by Craciunescu and Clegg [8] as well

as by Horng et al. [9]. Shrivastava and Roemer [10] studied

heat transfer rate from one blood vessel to another and also

that from a blood vessel to tissue.

In addition to the aforementioned usefulness of radiative

heat transfer in blood vessels, the radiation effect in blood

is of significant interest to clinicians in the therapeutic

procedure of hyperthermia, which has a well-recognized

effect in oncology. Its effect is achieved by overheating the

cancerous tissues (cf. Szasz [11]) by means of electro-

magnetic radiation. Misra et al. [12] reported theoretical

estimates of blood flow in arteries during the therapeutic

procedure of electromagnetic hyperthermia used for cancer

treatment. Some relevant useful discussions are also

available in that paper. Different aspects of hyperthermia

were discussed/studied by several researchers (cf. Abe and

Hiraoka [13], Molls [14], Chen and Roemer [15], Overg-

aard [16], Feldmann et al. [17], Habash et al. [18]). Deng

et al. [19] observed significant thermal effects in blood

vessels during cryosurgery by means of infrared tempera-

ture mapping.

Two major functions that blood performs while flowing

in the circulatory system are to carry nutrients and to

supply heat to body tissues. The exchange of materials

mainly takes place at the capillary level. However, there

exists evidence to support that materials are also trans-

ported across the permeable walls of arteries (and veins)

[20]. The transport of water across the arterial wall is of

interest in the study of metabolism and pathology of an

artery. The nourishment of the arterial wall depends pre-

dominantly on the transport of materials from the arterial

lumen. This transport can, sometimes, cause the genesis

and the progression of arterial diseases such as athero-

sclerosis, atherogenesis, atheroma. Oka and Murata [21]

discussed the steady flow of blood through a permeable

capillary wall. Pallat et al. [22] studied the flow field in an

infinite permeable tube.

Computational bio-fluid dynamics has made it possible

to simulate complex flows in vascular passages such as

cerebral and carotid arteries. The geometry of blood vessels

and arterial walls, their structure and mechanical properties

are largely dependent on pressure and flow conditions.

Moreover, the effect of porosity of the medium on blood

flow can not be ignored in many pathological situations.

Vankan et al. [23] performed a simulation for blood flow

through a contracting muscle, with a hierarchical structure

618 Heat Mass Transfer (2013) 49:617–628

123



of pores. Dash et al. [24] employed the Brinkman equation

to model the pathological blood flow when there is accu-

mulation of fatty plaques of cholesterol in the lumen of an

arterial segment and artery-clogging takes place by blood

clots. They treated the clogged region as a porous medium

and assumed the permeability parameter to be either a

constant or varying in the radial direction. Preziosi and

Farina [25] analyzed flow of a Newtonian fluid in a porous

medium in the presence of mass exchange between the

constituents.

The magnetic response of blood involves paramagnetic

contribution emerging from the iron content of hemoglobin

molecules and the diamagnetic contribution emerging from

hydrogen, oxygen, nitrogen and carbon atoms contained in

vessel tissues. The red blood cell (erythrocyte) is a major

biomagnetic substance and therefore, it is quite possible

that blood flow will be influenced by the presence of an

external magnetic field. Reduction in blood flow rate is

caused by either an increase in flow resistance or a

reduction in blood pressure.

The effect of a magnetic field on blood flow has been

analyzed theoretically by Chen [26] treating blood as an

electrically conducting fluid. Tzirtzilakis and Tanoudis [27]

studied the biomagnetic fluid flow over a stretching sheet.

Pulsed magnetic fields have been used to treat various

conditions, such as soft-tissue injury [28], chronic pelvic

pain [29]. It has also been reported that application of a

magnetic field is useful for nerve regeneration [30, 31],

bone grafts [32] and fracture healing [33]. Keeping all

these in mind, presence of an external magnetic field has

been paid due consideration in the present study.

The flow over a stretching surface has received attention

of several researchers in the past. Flow and heat transfer

problems for a stretching sheet in different situations were

studied by Liu [34] as well as by Sajid and Hayat [35].

However, in these studies, the flow and temperature fields

were considered to be steady. But the cases in which the

stretching force and surface temperature vary with time,

have received scant attention of previous researchers. One

of the merits of the present study is that it takes due care of

the time-dependence of the stretching force and surface

temperature of blood capillaries. This makes the study

closer to the real situation.

It is a well known fact that a viscous fluid normally

sticks to a boundary, i.e., there is no slip of the fluid rel-

ative to the boundary. However, Beavers and Joseph [36]

observed that there are many situations, where there may

be a partial slip between the fluid and the boundary. For

many fluids, e.g. particulate fluids, although the motion is

governed by Navier-Stokes equations, it is desirable that

the no-slip condition at the boundary should be replaced by

velocity-slip condition. Nubar [37] suggested the presence

of a red cell (erythrocyte) slip at the vessel wall. Misra

et al. [38] conducted a study concerning blood flow

through an arterial segment where they considered no-slip

condition at the vessel wall. Subsequently however, Misra

and Shit [39] investigated the role of slip velocity in blood

flow through stenosed arteries.

Since blood is an electrically conducting fluid, in the

presence of a magnetic field, its flow exhibits magneto-

hydrodynamic (MHD) behaviour. Pal, Misra and Gupta

[40] investigated the steady MHD flow of an electrically

conducting fluid (with particular reference to blood flow in

arteries) in a slowly varying channel in the presence of a

uniform transverse magnetic field. Misra and Shit [41]

developed a mathematical model of the flow of a bio-

magnetic viscoelastic fluid over a stretching sheet. Misra

and Shit [42] also investigated the flow and heat transfer of

an MHD viscoelastic fluid in a channel with stretching

walls. All these investigations carried out by Misra and his

research group have been recognized as benchmark con-

tributions in the field of physiological fluid dynamics.

In view of the discussion made above, we have been

motivated towards investigating the problem of unsteady

magnetohydrodynamic flow and heat transfer of blood in a

narrow permeable blood vessel, which is in a state of

unsteady stretching motion. The analysis of the model

takes due care of thermal radiation that takes place when

blood flows inside the vessel. Also, the thermal slip

accompanied by velocity-slip at the capillary wall has

been accounted for in the study. Because of the perme-

ability of capillary blood vessel walls, consideration of the

slip-velocity at the wall makes the study closer to the

reality. Moreover, magnetic effects of blood (as discussed

earlier) on the flow and heat transfer of blood have been

considered under the purview of the same model. Keeping

in view that during surgery, or thermal therapy, the cli-

nician needs to control the blood flow by regulating the

intensity of the externally applied magnetic field which

the system is subject to, has been taken to be time-

dependent. These are some of the novel features of the

study. It may be mentioned here that although some

attempts were made by previous researchers (cf. Raptis

[43]) to study thermal radiation and free convection flow

of a viscous fluid through a porous medium bounded by

porous plates with constant suction velocity, the study was

limited to steady flow in the absence of any magnetic

field.

Moreover, keeping in the mind that in the physiological

state, blood vessels (more particularly, the capillary blood

vessels) execute a stretching motion, the blood vessel has

been modelled as one that executes unsteady stretching

motion and has its wall permeable, as per experimental

reports available in scientific literatures.

The analysis of the model gives rise to a set of non-

linear partial differential equations. For solving these
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equations subject to the boundary conditions appropriate to

the physical problem, we have made an endeavour to

develop a suitable numerical method that involves the use

of finite differences, together with the method of discreti-

zation, where the matrix of unknown physical variables is

diagonally dominant. The computational results obtained

by the use of high speed computers have been presented

through graphs and tables. The results give the theoretical

estimates of various parameters that govern the physical

problem.

The present research being motivated towards studying

the flow and heat transfer in capillary blood vessels bear

the promise of useful applications in clinical sciences,

particularly in thermal therapy. It also bears the potential of

significant applications in different problems of biomedical

engineering. In addition to these, being primarily a study

on a problem of unsteady flow and heat transfer over a

stretching sheet, it will find some important applications in

various industrial manufacturing processes that involve

interaction of the stretching sheet flow with radiative heat

transfer. By using the theoretical analysis, changing the

values of the parameters appropriately and employing the

method of parametric variation, the estimates of different

parameters controlling various problems of manufacturing

industries can be obtained. The study is thus useful in

assessing the quality of the final products too.

2 The model

Let us investigate the flow of blood through a narrow artery

having permeable wall, which is in a state of unsteady

stretching motion. We consider that the artery is under the

action of a time-dependent magnetic field B(t), which acts

in a direction transverse to that of the flow. As per exper-

imental observation, blood is a conducting fluid. Hence

under the action of the magnetic field, the flow of blood

will be of magneto-hydrodynamic (MHD) nature. In the

analysis, presented in the next section, it is assumed that

the magnetic Reynolds number is much less than unity so

that the induced magnetic field is negligible in comparison

to the applied magnetic field. Let us consider the axes of x

and y in directions parallel and perpendicular to the axis of

the artery (cf. Fig. 1). At time t = 0, the blood vessel is

considered to be impulsively stretched with velocity

Uw(x, t) along the x - axis, where the origin is kept fixed

in the fluid medium of ambient temperature T1.

As mentioned in a very recent communication by Misra

et al. [44], although the flow in the circulatory system is

mainly three-dimensional, blood flow in micro-vessels can

be taken to be two-dimensional in many cases.

Thus in the analysis that follows, blood flow in a narrow

vessel will be approximated as a magneto-hydrodynamic

unsteady flow over a stretching sheet. The wall being

permeable, velocity-slip as well as thermal slip will be

taken into account. The associated heat transfer problem

will also analysed. Consideration of the thermal radiation

that takes place during blood flow in narrow vessels will

also be made.

3 Analysis

The analysis of the present model will be carried out under

the purview of all the considerations/assumptions made in

Sect. 2, keeping in view the discussions made in Sect. 1.

Thus the flow will be considered as a channel flow. Hence

the equations that govern the flow of blood for the present

problem may be considered in the form

ou

ot
þ u

ou

ox
þ v

ou

oy
¼ m

o2u

oy2
� rB2ðtÞ

q
u� m

k1ðtÞ
u; ð1Þ

oT

ot
þ u

oT

ox
þ v

oT

oy
¼ k

qcp

o2T

oy2
� 1

qcp

oqr

oy
ð2Þ

and

ou

ox
þ ov

oy
¼ 0 ð3Þ

The definitions of all the symbols involved in the equations

are included in the Nomenclature. The assumptions under

which the above-written governing equations are valid,

have been clearly stated in the formulation of the model,

presented in Sect. 2. The boundary conditions for the

problem can be written as (cf. [45, 46])

u ¼ Uw þ Nl
ou

oy
¼ Uw þ us; v ¼ Vw;

T ¼ Tw þ K
oT

oy
¼ Tw þ Ts at y ¼ 0

ð4Þ

T=T

v=vw

u=U w +us

T=T w +Ts

y

xo

B(t) B(t)

Fig. 1 Sketch of the physical problem
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and

u! 0; T ! T1 at y!1 ð5Þ

In Eq. (4) Vw represents the blood velocity at the capillary

wall and is equal to injection/suction velocity given by

Vw ¼ �
ffiffiffiffiffiffiffiffiffi

mUw

x

r

f ð0Þ: ð6Þ

Equation (6) implies that the mass transfer at the surface of

the capillary wall takes place with a velocity Vw, where

Vw [ 0 in the case of injection and Vw \ 0 in the case of

suction. In Eq. (1), k1(t) = k2(1 - ct) represents the time-

dependent permeability parameter, in Eq. (4), N ¼ N0ð1�
ctÞ

1
2 is the velocity-slip factor, and K ¼ K0ð1� ctÞ

1
2 is the

thermal slip factor. The no-slip conditions can be

recovered, by setting N = K = 0. The velocity Uw(x, t)

of the stretching motion of the blood capillary and the

surface temperature Tw(x, t) are considered in the following

forms

Uwðx; tÞ ¼
ax

1� ct
; and Twðx; tÞ ¼ T1 þ

bx

1� ct
; ð7Þ

where a, b and c are the constants such that

a [ 0, b C 0, c C 0 and ct \ 1. Let us choose

BðtÞ ¼ B0ð1� ctÞ�
1
2, where B0 is a constant representing

the magnetic field strength at t = 0. By using Rosseland

approximation, the relative heat flux can be expressed as

qr ¼ �
4rH

3kH

oT4

oy
: ð8Þ

Considering that the temperature differences within the

mass of blood inside the capillary are sufficiently small,

using Taylor expansion and neglecting higher-order terms,

we write:

T4 ¼ 4T3
1T � 3T4

1; ð9Þ

T1 being the embedded temperature. We now introduce

the following dimensionless functions f and h, and

similarity variable g as

g ¼
ffiffiffiffiffiffiffiffiffi

Uw

mx
y

r

; f ðgÞ ¼ w=
ffiffiffiffiffiffiffiffiffiffiffi

mxUw

p
and h ¼ T � T1

Tw � T1
:

ð10Þ

Now substituting (10) into the Eqs. (1) and (2), we get the

following set of ordinary differential equations

f 000 þ ff 00 � f 02 � Aðf 0 þ 1

2
gf 00Þ �M2f 0 � 1

k3

f 0 ¼ 0 ð11Þ

and

ð1þ NrÞ
Pr

h00 þ f h0 � hf 0 � Aðhþ 1

2
gh0Þ ¼ 0; ð12Þ

where A, M, k3, Nr and Pr are non-dimensional

parameters called respectively the unsteadiness

parameter, Hartman number, permeability parameter,

radiation parameter and Prandtl number given by A ¼
c
a ; M ¼ B0

ffiffiffiffi

r
qa

q

; k3 ¼ ak2

m ; Nr ¼ 16rHT3
1

3kHk
and Pr ¼ lcp

k . The

boundary conditions (4) and (5) give rise to

f ð0Þ ¼ S; f 0ð0Þ ¼ 1þ Sf f
00ð0Þ and

hð0Þ ¼ 1þ Sth
0ð0Þ: ð13Þ

We further consider the following conditions:

f 0ðgÞ ! 0; hðgÞ ! 0 as g!1: ð14Þ

In Eq. (13), S \ 0 and S [ 0 correspond to injection and

suction respectively. The non-dimensional velocity-slip

factor Sf and the non-dimensional thermal slip factor St are

defined by Sf ¼ N0q
ffiffiffiffiffi

am
p

and St ¼ K0

ffiffi

b
m

q

:

In the equations written above, primes denote deriva-

tives with respect to g. It may be noted that if we set A = 0

in Eqs. (11) and (12), the problem will be reduced to one in

the steady state.

4 Computational procedure: development of a suitable

numerical method

The two ordinary differential Eqs. (11) and (12) subject to

the boundary conditions (13) and (14) constitute a non-

linear boundary value problem. To solve the boundary

value problem, we have developed a suitable computa-

tional procedure, as outlined below. Writing f0 = P in (11),

we get

P00 þ fP0 � P2 � AðPþ 1

2
gP0Þ �M2P� 1

k3

P ¼ 0: ð15Þ

Also the boundary conditions (13) and (14) will then

become

f ð0Þ ¼ S; Pð0Þ ¼ 1þ Sf P
0ð0Þ; Pð1Þ ! 0: ð16Þ

Using the central difference scheme for derivatives with

respect to g, we can write

ðV 0Þi ¼
Viþ1 � Vi�1

2dg
þ OððdgÞ2Þ ð17Þ

and

ðV 00Þi ¼
Viþ1 � 2Vi þ Vi�1

ðdgÞ2
þ OððdgÞ2Þ; ð18Þ

where V stands for P or h; i is the grid index in g-direction

with gi = i 9 dg; i = 0, 1, …, m dg is the increment

along the g-axis. Newton’s linearization method can then

be applied to linearize the discretized equations as follows.
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When the values of the unknown functions at the nth

iteration are known, the corresponding values of these

variables at the next iteration are obtained by using the

equation

Vnþ1
i ¼ Vn

i þ ðDViÞn; ð19Þ

in which ðDViÞn represents the error at the n th iteration,

i ¼ 0; 1; 2; . . .. . .; n. It is worthwhile to mention here that

the error ðDViÞn at the boundary is zero, because the values

of Vi at the boundary are known. Using (19) in (15) and

dropping the quadratic and higher order terms in ðDViÞn,

we get a system of block tri-diagonal equations. To solve

this tri-diagonal system of equations, we have used the

‘‘Tri-diagonal matrix algorithm’’, usually referred as

‘‘Thomas algorithm’’ (cf. [47–49]). It may be mentioned

here that instead of this, one could use Gauss elimination

method. But in that case, the number of operations would

be m3, while in the method that we have employed here, the

number of operations is m, where m is the number of

unknowns. Thus the error committed in our method is

much less than that in the method of Gauss elimination. In

the process of determination of the distribution of the

function f(g), the accuracy can be defined as the difference

between the calculated values of f(g) at two successive

operations, say (n?1)th and nth. In the present case, the

error � is equal to

� ¼ jf nþ1ðgÞ � f nðgÞj

and is estimated to be less than 10-6.

5 Computation of some theoretical estimates

and related discussion

In order to study the flow and heat transfer of blood in a

time-dependent porous narrow blood vessel over a per-

meable unsteady stretching sheet (as an approximation of a

micro-vessel) under slip condition, subject to the action of

an external magnetic field, the numerical technique

described above has been employed to solve the system of

Eqs. (11)–(12), along with the boundary conditions (13)

and (14).

In order to achieve the numerical solution, it is neces-

sary to assign some specific values for the dimensionless

parameters involved in the analysis presented in Sects. 2

and 3.

In this section, the computational estimates of different

dimensionless parameters involved in the analysis, have

been presented in graphical/tabular forms. For performing

the computational study, we have made use of the values of

various dimensionless parameters (governing the flow

problem) that have been reported in scientific literatures by

previous experimental/theoretical researchers. Experimen-

tal reports reveal that like most other fluids, for human

blood the viscosity l, specific heat at constant pressure cp

and the thermal conductivity k are temperature-dependent.

On the basis of their experimental studies, Valvano et al.

[50] and Chato [51] reported the following data for human

blood at a temperature T = 310 �K:

l ¼ 3:2� 103 kg=ms; cp ¼ 14:65 J=kg �K and

k ¼ 2:2� 10�3 J=ms �K

Using these data, we find that the value of the Prandtl

number Pr ¼ lcp

k for human blood is 21.

Keeping this in view and employing the data used by

Ishak et al. [45], Hayat et al. [46], Sinha and Misra [49]

and Makinde and Osalusi [52], we performed the compu-

tation for the following spectrum of values of different

parameters:

Unsteadiness parameter A = 0.0, 0.3, 1.0, 3.0, 4.0, 5.0

Suction parameter S = 0.0, 0.5, 1.0, 1.5, 2.0

Permeability parameter k3 = 0.2, 0.3, 0.4, 0.5

Velocity slip factor Sf = 0.0, 0.3, 0.6, 1.0, 1.5, 2.0, 2.5,

3.0, 4.0

Thermal slip factor St = 0.0, 0.5, 1.0, 1.5, 2.5

Prandtl number Pr = 21.0, 22.0, 23.0, 24.0, 25.0

Radiation parameter Nr = 0.0, 0.2, 1.0, 2.0, 3.0

M2 = 0.2, 0.5, 0.7, 1.0, M being the Hartmann number.

The computational procedure has been executed by

taking dg = 0.0125 with 321 grid points. The results

computed have been reported graphically in Figs. 2, 3, 4, 5,

6, 7, 8, 9, 10, 11 and 12. The results presented in these

figures have all been computed by choosing 321 grid

points. Figure 13 shows that the results do not change, if

we further increase the number of grid points. Figure 14

establishes the validity of our results.

The variation of non-dimensional axial velocity f0 for

different values of Hartmann number M, velocity slip

factor Sf, porosity permeability k3 and the suction param-

eter S are shown in Figs. 2, 3, 4 and 5. Figure 2 reveals that

axial velocity decreases as Hartmann number M increases.

This may be attributed to the fact that an increase in

M signifies an enhancement of Lorentz force, thereby

reducing the magnitude of the velocity. This figure further

indicates that blood velocity in the capillary decreases with

increase in distance from the lower wall of the capillary.

Figure 3 describes the effects of the velocity-slip factor Sf

on axial velocity. Clearly velocity in the axial direction

reduces when the slip velocity increases. In fact, the

quantity 1 - f0(0) increases monotonically with Sf. So the

limiting case (i,e, for large values of Sf) implies that

the frictional resistance between the viscous fluid (blood)

and the wall is eliminated and stretching of the blood vessel

622 Heat Mass Transfer (2013) 49:617–628

123



does not significantly add to the motion of the fluid. Fig-

ure 4 shows that the axial velocity increases with a rise in

permeability. Moreover, for small permeability (k3 = 0.2),

the axial velocity reduces faster than when the permeability

is higher (k3 = 0.3, 0.4, 0.5). Figure 5 gives the distribu-

tion of axial velocity for different values of the suction

parameter S defined in Eq. (16). The influence of S on axial

velocity is similar when compared with Fig. 2, but the

reduction in velocity is slightly larger in case of M in

comparison to the case of the suction parameter S.

Figures 6, 7, 8, 9, 10 and 11 give some characteristic

temperature profiles for different values of Hartmann

number (M), velocity slip, thermal slip, suction parameter

(S), Prandtl number (Pr) and radiation parameter (Nr). The

effect of magnetic parameter (M) on temperature profile h
is shown in Fig. 6. It is noticed that presence of a magnetic

field enhances the temperature of the boundary layer of the

capillary. This can be attributed to the fact that the intro-

duction of the transverse magnetic field to an electrically

conducting fluid gives rise to a resistive type of force

known as Lorentz force. This force bears the potential to

enhance the temperature of blood. Figures 7 and 8 illustrate

the changes that take place in the temperature distribution

in blood when the values of velocity-slip factor (Sf) and

thermal slip factor (St) vary. It is important to observe from

these two figures that with a rise in velocity-slip, the

temperature at any point in the flow medium increases;

however, the temperature reduces when thermal slip

enhances. From Fig. 9 which elucidates the influence of the

suction parameter (S) on temperature distribution, it is

revealed that when the injection/suction velocity increases,

the temperature of blood at any point of the flow medium

diminishes.

Figure 10 presents the change in the temperature dis-

tribution in the boundary layer, when the Prandtl number

(Pr) changes gradually. It shows that as the Prandtl number

increases, the temperature of the boundary layer dimin-

ishes. This may be attributed to the fact that the thermal

boundary layer thickness reduces with an increase in Pra-

ndtl number. Further, this figure indicates that the tem-

perature gradient at the surface increases with a rise in

Prandtl number. This implies that an increase in Prandtl

number is accompanied by an enhancement of the heat

transfer rate at the wall of the blood vessel. The underlying

physics behind this can be described as follows. When

blood attains a higher Prandtl number, its thermal con-

ductivity is lowered down and so its heat conduction

capacity diminishes. Thereby the thermal boundary layer

thickness gets reduced. As a consequence, the heat transfer

rate at the vessel wall is increased.

Figure 11 illuminates a very important effect of thermal

radiation on the temperature profile. This figure emphasizes
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that as thermal radiation increases during blood flow in

capillaries, there is a significant rise in the thickness of

boundary layer. Thereby the temperature of the boundary

layer in enhanced by an appreciable extent.

Of profound interest in problems such as the one under

our present consideration, is the skin-friction coefficient

denoted by Cf and defined by Cf ¼ sw

qU2
w=2
¼ 1

2
Re
�1

2
x f 00ð0Þ; sw

being equal to lðou
oyÞy¼0. Figure 12 gives the variation of

skin-friction with the Hartmann number for different val-

ues of unsteadiness parameter A. It is seen that skin-friction

increases as the unsteadiness parameter A increases.

Another important characteristic that has significant rele-

vance in the present study is the local Nusselt number Nux,

defined as Nux ¼ xqw

kðTw�T1Þ ¼ �Re
�1

2
x h0ð0Þ; qw being

measured by �kðoT
oyÞy¼0. The above definition of the local

Nusselt number shows that its variation depends on the

variation of the factor h0(0), the values of which on the

stretching wall, as per our computational study are pre-

sented below in tabular form. The tabulated values corre-

spond to the particular case when k3 = 0.4, S = 0.5,

Sf = 2.5 and St = 1.0.

The computed values displayed in Table 1 indicate that

an increase in local Nusselt number, when the value of any

of the parameters A, M or Nr increases, the local Nusselt

number will diminish.

In order to perform grid independent test for the choice

of 321 grid points, we repeated the computational proce-

dure by considering a number of mesh sizes by altering the

values of dg. Figure 13 shows that the plots for the velocity

distribution for dg = 0.008 (mesh size = 501) and for
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dg = 0.01 (mesh size = 401) coincide with the plot cor-

responding to dg = 0.0125, that is, to a mesh size of 321. It

has also been ascertained that for any mesh size less than

321, the results are inaccurate.

In order to validate the results of our study, which we

obtained by employing our numerical procedure, we have

made an attempt to compare with the numerical results

reported by Ishak et al. [45], which they obtained by using

their analytical solution. For the purpose of a meaningful

comparison, we had to bring our problem to the same

platform as that of [45], by setting M = 0.0, Sf = 0.0,

A = 0.0, S = 1.0. Moreover, for making the comparison,

we considered in our study a large value of the perme-

ability parameter (taking k3 = 100.0).

The analytical solution for f(g) presented by Ishak et al.

[45] is given by f ðgÞ ¼ f� 1
fe
�gf, so that f 0ðgÞ ¼ e�gf
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In their analysis, f0 ¼ f� 1
f is the suction/injection

parameter, while in the analysis of our model, S stands for

the injection/suction parameter.

The results of our study for the particular case described

above and those of [45] have been presented side by side in

Fig. 14. It may be noted that our results are in excellent

agreement with those reported by Ishak et al. [45].

6 Summary and conclusion

The mathematical model formulated and analyzed in the

study has been motivated towards investigating the effect

of thermal radiation on the flow as well as heat transfer in a

narrow permeable blood vessel, when the system is subject

to the action of an external magnetic field. The study is

particularly applicable to a situation, where the lumen of

the blood vessel has turned into a porous medium due to

the deposition of cholesterol, fatty substances etc., our

target being to study the flow pattern and heat transfer in

the blood vessel when it is in a pathological state. The

blood vessel is considered to execute an unsteady

stretching motion. The erythrocyte slip at the vessel wall

and the thermal slip have been duly accounted for. All

these considerations have made the study quite close to a

real situation.

The study bears the potential to explore some important

information regarding the complex flow behaviour of blood

in situations, where all the eight physical parameters

M, A, S, k3, Sf, St, Pr and Nr play prominent roles on

the hemodynamical flow and heat transfer in arterioles. The

numerical estimates presented here elucidate the effects of

the said parameters. These may be summarized as follows:

1. The velocity of blood can be controlled by suitably

regulating the intensity of the external magnetic field.

2. Thermal radiation bears the potential to bring about a

significant change in the temperature field of the

boundary layer. With a rise in thermal radiation, the

thermal boundary layer thickness increases by an

appreciable extent.

3. An increase in erythrocyte-slip at the capillary wall

leads to an increase in the temperature of the boundary

layer, while an increase in thermal slip reduces the

temperature field.

4. When the injection/suction velocity increases, the

velocity and temperature of blood in the capillary

both diminish.

5. The temperature of blood inside the boundary layer

also reduces, if the Prandtl number increases.

6. The velocity of blood along the axis of the capillary

increases with a rise in permeability.

In order to treat the patients more accurately with an aim

to get better results in thermal therapy for relieving pain,

the theoretical estimates presented here will be useful.

Moreover, the study gives an understanding of the thermal

processes that take place during blood flow in micro-ves-

sels of the arterial tree. The study will also be of sufficient

interest to clinicians who are engaged in the treatment of

cancers and tumors by using the method of electromagnetic

hyperthermia. This is because this technique involves

overheating the affected tissues, usually around 42 �C.

This study will also find applications in estimating the

electromagnetic radiation when a human being has to work

in radiation fields. Owing to the reason that the study takes

into account heat transfer, it will find application in per-

forming heat-dose sensitivity tests, which are required for

using the method of hyperthermia in an appropriate

manner.

Since the study takes into account velocity-slip and also

since blood velocity in micro-vessels is low, it bears the

potential to furnish some additional information regarding

the causes and development of arterial diseases, such as

atherosclerosis. It is worthwhile to mention here the con-

jecture made by Caro et al. [53] that arterial diseases, like
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Table 1 Numerical values of h0(0) for different values of unsteadi-

ness parameter (A), Hartmann number (M), Prandtl number (Pr) and

radiation parameter (Nr)

A M2 Nr Pr -h0 (0)

3.0 0.5 1.0 21.0 0.4659137

3.0 0.5 1.0 25.0 0.5335517

3.0 0.5 2.0 21.0 0.3294789

3.0 1.0 1.0 21.0 0.4242029

4.0 0.5 1.0 21.0 0.3904817
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atherosclerosis occur mostly in regions, where blood

velocity is low. Due to similar reasons, the study will find

applications in surgical operations, where it is necessary to

reduce the blood flow rate, since this study clearly reveals

that reduction of the volumetric flow rate of blood can be

accomplished by exposing the system to a magnetic field.

Further, the present study will be useful in assessing the

accuracy of future experimental/theoretical studies of more

complex nature, that may involve greater number of

physical parameters.
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