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Summary. We discuss the thermal instability in a layer of a ferromagnetic fluid when the boundaries of the

layer are subjected to synchronous/asynchronous imposed time-periodic boundary temperatures (ITBT)/

time-periodic body force (TBF). Only infinitesimal disturbances are considered. The Venezian approach is

adopted in arriving at the critical Rayleigh and wave numbers for small amplitudes of ITBT. A pertur-

bation solution in powers of the amplitude of the applied temperature field is obtained. When the ITBT at

the two walls are synchronized then, for moderate frequency values, the role of magnetization in inducing

sub-critical instabilities is delineated. A similar role is shown to be played by the Prandtl number. The

magnetization parameters and Prandtl number have the opposite effect at large frequencies. The system is

most stable when the ITBT is asynchronous. The effect of TBF on the onset of convection is found to be

qualitatively similar to the effect of an asynchronous ITBT. Low Prandtl number fluids are shown to be

more easily vulnerable to destabilization by TBF compared to very large Prandtl number fluids. The

problem has relevance in many ferromagnetic fluid applications wherein regulation of thermal convection

is called for.

1 Introduction

Ferro fluid technology is the basis of a wide variety of products used for high technology ap-

plications in the semiconductor and computer industries. Ferro fluids are also used in a wide

variety of thermoelectric cooling modules which prove instrumental for the refrigeration of

semiconductor process equipment, laser diodes, medical treatment and optical communication

equipment. They are the basis of ingenious new techniques for the separation of materials ac-

cording to density. Ferro fluids have been found to be an essential element in a nuclear magnetic

resonance probe differentiating free and shale oil in oil prospecting. They are used extensively for

the study ofmagnetic domain structures inmagnetic tapes, rigid discs, crystalline and amorphous

alloys, garnets steels and geological rocks. Other commercial uses are ink jet printing, magneto

gravimetric preparations of nonferrous metals, pumping without moving parts and biotechnol-

ogy. Control of convection is important in many of these non-isothermal applications.

One of the effective mechanisms of hindering convection is through the maintenance of a

non-uniform temperature gradient which is only space-dependent. However, in many practical

situations non-uniform temperature gradients find their origin in transient heating or cooling at

the boundaries, hence warranting the use of a basic temperature profile which is a function of

both position and time. Venezian [1] investigated the stability of a horizontal layer of a viscous

Acta Mechanica 161, 131–150 (2003)

DOI 10.1007/s00707-002-1004-z

Acta Mechanica
Printed in Austria



fluid heated from below when, in addition to a steady temperature difference between the

surfaces of the layer, a time-dependent sinusoidal perturbation is applied to the wall temper-

atures. Subsequently, it was shown by Yih and Li [2] that time-periodic modulation of the wall

temperatures has a destabilizing effect on the onset of convection over a wide range of fre-

quencies of modulation although such a modulation is stabilizing for low frequencies. The

critical Rayleigh number (corresponding to onset of convection) in these problems depends on

the frequency of the imposed temperature modulation, and the study suggests that it is possible

to hasten or delay the onset of instability by adjusting this modulation. The works of Lage [5],

[6] deal with oscillatory heating and time-dependent vertical density gradient effects on con-

vection. The stability of a non-ferromagnetic fluid layer subjected to an ITBT/TBF has also

been studied ([1]–[4], [7], [8] and references therein).

The unmodulated Benard convection in ferromagnetic fluids has been considered by many

authors ([9]–[16] and references therein). The problem of control of convection is of relevance

and interest in innumerable ferromagnetic fluid applications [17], [18] and is also mathemati-

cally quite challenging. It is with this motivation that we study the problem of the ITBT/TBF–

means of regulating convection. We determine the onset of convection in a ferromagnetic fluid

layer heated from below when, in addition to a fixed temperature difference between the walls,

an additional time-periodic perturbation is applied to the wall temperatures or we consider a

time-periodic body force. We present below the two cases separately.

2 Time-periodic boundary temperatures

2.1 Mathematical formulation

We consider a ferromagnetic fluid layer confined between two infinite horizontal surfaces, a

distance ‘‘h’’ apart. A vertical downward gravity force acts on the fluid together with a uniform,

vertical magnetic field ~HH0. A Cartesian co-ordinate system is taken with the origin in the lower

boundary and the z-axis vertically upwards. The surface temperatures are

TR þ
1

2
DT 1þ e cos xt½ � at z ¼ 0 ð1Þ

and

TR �
1

2
DT 1� e cos xtþ /ð Þ½ � at z ¼ h; ð2Þ

where TR is a reference temperature, DT is the temperature difference between the two surfaces

in the unmodulated case, e is the amplitude of the thermal modulation, x is the frequency and /
is the phase (see Fig. 1). For the velocity we choose the stress-free boundary conditions and an

idealized one for the magnetic field (discussed later). We adopt the Boussinesq approximation,

and for small departures from TR the density q, as a function of temperature T, is given by

q ¼ qR 1� a T � TRð Þ½ �; ð3Þ

where a is the constant coefficient of thermal expansion and qR ¼ q TRð Þ. The thermal diffusivity

j and the kinematic viscosity m of the fluid are regarded as constants. The governing equations

for a Boussinesq, Newtonian ferromagnetic fluid are

qR

D~qq

Dt
¼ �rpþ q~ggþr � ~HH~BB

� �
þ lr2~qq; ð4Þ
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qRCVH � l0
~HH � @ ~MM

@T

 !

V ;H

2
4

3
5DT

Dt
þ l0T

@ ~MM

@T

 !

V ;H

�D
~HH

Dt
¼ K1r2T; ð5Þ

and

r �~qq ¼ 0; ð6Þ

where l is the dynamic coefficient of viscosity, K1 is the thermal conductivity, l0 is the magnetic

permeability, ~qq is the velocity, CVH is the specific heat at constant volume and constant mag-

netic field, ~gg is the acceleration due to gravity, p is the pressure, ~MM is the magnetization, ~BB is the

magnetic induction and ~HH is the magnetic field.

Maxwell’s equations, simplified for a non-conducting fluid with no displacement current,

become

r � ~BB ¼ 0; r� ~HH ¼ 0 ð7Þ

and

~BB ¼ l0
~MM þ ~HH

� �
: ð8Þ

We assume that the magnetization ~MM is aligned with the magnetic field, but allows a dependence

on the magnitude of the magnetic field as well as the temperature,

~MM ¼
~HH

H
M H;Tð Þ: ð9Þ

The magnetic equation of state is linearized about the magnetic field H0 and an average tem-

perature TR to give

M ¼ M0 þ v H � H0ð Þ � Km T � TRð Þ; ð10Þ

where v is the magnetic susceptibility and Km is the pyromagnetic coefficient.

We now study the condition for onset of convection in the aforementioned ferromagnetic

fluid layer. In the undisturbed state, the temperature TH , pressure pH , applied magnetic field
~HHH , magnetic induction ~BBH and magnetization ~MMH satisfy the following equations:

� @pH

@z
¼ qHg� BH

@HH

@z
; ð11Þ

Ferromagnetic
fluid

H0

z

z = h

z = 0
x

y

TR + 1 ∆T [1 + ecosw t]
2

TR + 1 ∆T[1– ecos(wt + f)]
2

Fig. 1. Physical configuration of the

Rayleigh–Benard convection in a
ferromagnetic fluid with imposed time

periodic boundary temperatures
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qRCVH � l0
~HHH �

@ ~MMH

@T

 !

V ;H

2
4

3
5 @TH

@t
¼ K1r2TH ð12Þ

and

qH ¼ qR 1� a TH � TRð Þ½ �: ð13Þ

Following Venezian [1], the solution of (12) satisfying the thermal boundary conditions (1) and

(2) is

TH ¼ TR þ
DT

2h
h� 2zð Þ þ e Re a kð Þekz

h þ a �kð Þe�kz
h

h i
e�ixt

n o
; ð14Þ

where

k ¼ 1� ið Þ xh2

2K 0

� �1
2

; a kð Þ ¼ DT

2

e�i/ � e�k

ek � e�k

� �
;

K 0 ¼ K1

C1
; C1 ¼ qRCVH � lo

~HHH �
@ ~MMH

@T

 !

V ;H

ð15Þ

and Re stands for the real part.

2.2 Linear stability analysis

Let the basic state be disturbed by an infinitesimal thermal perturbation. We now have

~qq ¼ ~qqH þ~qq 0; p ¼ pH þ p0; q ¼ qH þ q0; T ¼ TH þ h;

~HH ¼ HHk̂kþ ~HH
0

and ~MM ¼ MHk̂kþ ~MM
0
:

ð16Þ

The prime indicates that the quantities are infinitesimal perturbations.

Substituting Eqs. (16) into Eqs. (3)–(10) and using the basic state solution, we get the

linearized equations governing the infinitesimal perturbations in the form:

q0 ¼ �aqRh; ð17Þ

qR

@~qq 0

@t
¼ �rp0 þ q0~gg� l0Km

1þ vð Þ
DT

h
� e

@T1

@z

� �
1þ vð ÞH03 � Kmh

� �

þ l0 M0 þ H0ð Þ @
~HH0

@z
þ lr2~qq; ð18Þ

qRC0 �
l0K2

m

1þ vð Þ
DT

2h
2z� hð Þ � eT1

	 
� �
@h
@t
þ qRC0w

@TH

@z

� l0Km T0 �
DT

2h
2z� hð Þ þ eT1

� �
@

@t

@U
@z

� �
þ l0K2

mT0

1þ vð Þ
DT

h
� e

@T1

@z

	 

w ¼ K1r2h; ð19Þ

r �~qq 0 ¼ 0; ð20Þ

1þ vð Þ @
2U
@z2
þ 1þM0

H0

� �
r2

1U� Km

@h
@z
¼ 0; ð21Þ

where U is the magnetic potential and ~HH
0 ¼ rU.
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Substituting Eq. (17) in (18) and operating curl twice on the resulting equation, writing Eqs.

(18)–(21) in dimensionless form by setting

x�; y�; z�ð Þ ¼ x

h
;
y

h
;
z

h

� �
; W� ¼ w

K1

qRC0h

� � ; D� ¼ hD;

t� ¼ t

qRC0h2

K1

� � ; h� ¼ h
mK1

qRC0agh3

� � ; U� ¼ U
KmmK1

qRC0 1þvð Þagh2

� � ;
ð22Þ

we get:

r2 r2 � 1

Pr

@

@t

� �
W þ 1�M1

@TH

@t

� �
r2

1hþM1
@TH

@z

@

@z
r2

1U
� �

¼ 0; ð23Þ

1þM2ð Þ @h
@t
þ 1þM2ð ÞRW

@TH

@z
�M2 1þ TH

T0

� �
@ DUð Þ
@t

¼ r2h; ð24Þ

@2

@z2
þM3r2

1

� �
U� @h

@z
¼ 0; ð25Þ

where r2
1 ¼ @2

@x2 þ @2

@y2 and r2 ¼ r2
1 þ @2

@z2.

In the above equations the asterisks have been dropped for simplicity. The dimensionless

parameters are

Pr ¼ m
j

(Prandtl number);

R ¼ q0C0agDTh3

mK1
(Rayleigh number);

M1 ¼
l0K2

mDT

1þ vð Þagq0h
(Buoyancy magnetization parameter);

M2 ¼
l0K2

mT0

q0C0 1þ vð Þ (Magnetization parameter);

and

M3 ¼
1þ M0

H0

� �

1þ vð Þ (Non-buoyancy magnetization parameter):

In Eq. (24), @TH

@z
is given by

@TH

@z
¼ �1þ e f ; ð26Þ

where

f ¼ Re A kð Þekz þ A �kð Þe�kz
� �

e�ixt
 �

and

A kð Þ ¼ k
2

e�i/ � e�k

ek � e�k

� �
:

Equations (23)–(25) are solved subject to the following conditions appropriate for stress–free,

isothermal and magnetic boundaries:
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W ¼ @
2W

@z2
¼ h ¼ @U

@z
¼ 0 at z ¼ 0; 1: ð27Þ

The last of the conditions in Eq. (27) is based on the assumption of infinite susceptibility with

respect to the perturbed magnetic potential. This simple boundary condition (27) though ad-

mittedly an artificial one to consider, is of importance since its exact solution is readily ob-

tained, and the essential features of the problem can be disclosed by a discussion of this case.

Combining Eqs. (23)–(25) we obtain an equation for the vertical component of velocity W in

the form:

r2 r2 � 1

Pr

@

@t

� �
r2 � @

@t

� �
@2

@z2
þr2

1M3

� �
þM2 1þ TH

T0

� �
@2

@z2

@

@t

� �
W

¼ �R
@TH

@z
1�M1

@TH

@z

� �
@2

@z2
þr2

1M3

� �
þM1

@TH

@z

@2

@z2

� �
r2

1W : ð28Þ

In dimensionless form, the velocity boundary conditions are (see [19])

W ¼ @
2W

@z2
¼ @

4W

@z4
¼ @

6W

@z6
¼ 0 at z ¼ 0; 1; ð29Þ

where the sixth-order condition has been derived from the governing equations.

2.3 Stability analysis

Let us now seek the eigenfunctions W and the eigenvalues R of Eq. (28) for the basic tem-

perature distribution (26) which departs from the linear profile @TH

@z
¼ �1 by quantities of order

e. Thus, the eigenvalues of the present problem differ from those of ordinary Benard convection

by quantities of order e. Since the adopted technique is based on small-amplitudes, e has to be

less than unity. We seek a solution of (28) in the form:

W ¼ W0 þ eW1 þ e2W2 þ � � � � � � � � � ;

R ¼ R0 þ eR1 þ e2R2 þ � � � � � � � � � ;
ð30Þ

where R0 is the critical Rayleigh number for the unmodulated Rayleigh–Benard convection in

ferromagnetic fluids. Substituting Eq. (30) into Eq. (28) and equating powers of e , we obtain

the following system of equations:

LW0 ¼ 0; ð31Þ

LW1 ¼ R1
@2

@z2
þM3 1þM1ð Þr2

1

� �
r2

1W0 � R0 f M1M3r2
1 þ

@2:

@z2
þM3 1þM1ð Þr2

1

� �� �
r2

1W0;

ð32Þ

LW2 ¼ R0 f r4
1M1M3 f W0 �W1ð Þ � @2

@z2
þr2

1M3 1þM1ð Þ
� �

r2
1W1

� �

� R1 M1M3 fr4
1W0 þ

@2

@z2
þr2

1M3 1þM1ð Þ
� �

r2
1 f W0 �W1ð Þ

� �

þ R2

@2

@z2
þr2

1M3 1þM1ð Þ
� �

r2
1W0; ð33Þ

where
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L ¼ r2 r2 � 1

Pr

@

@t

� �
r2 � @

@t

� �
@2

@z2
þr2

1M3

� �
þM2 1þ TH

T0

� �
@2

@z2

@

@t

� �

�r2
1

@2

@z2
þr2

1M3 1þM1ð Þ
� �

R0: ð34Þ

We now perform some simplifications in Eq. (34). To this end we note that typical values of M2

are 10�6 (see [9]). Hence, we consider M2 ¼ 0 in Eq. (34) and proceed further. Justification for

the neglect of this term can also be provided computationally (see Results and Discussion).

The function W0 is the solution of the unmodulated Rayleigh–Benard problem in ferro-

magnetic fluids [9]. The marginally stable solution for that problem is

W0 ¼ exp i kxxþ kyyð Þ
 �

sin pz; ð35Þ

corresponding to the lowest mode of convection with the Rayleigh number given by [9]

R0 ¼
p2 þ a2
� �3

a2 1þM1 � M1p2

p2þa2M3ð Þ

h i : ð36Þ

Equation (32) on using Eq. (35) becomes

LW1 ¼ R1a2 p2 þ a2M3 þ a2M1M3

� �
sin pz� Rofa2 p2 þ a2M3 þ 2a2M1M3

� �
sin pz: ð37Þ

If the above equation is to have a solution, then the right hand side must be orthogonal to the

null space of the operator L. This implies that the time-independent part of the right hand side

of Eq. (37) must be orthogonal to sin pz. Since f varies sinusoidally in time, the only steady

term is R1a2 p2 þ a2M3 þ a2M1M3

� �
sin pz, so that R1 is zero. This result could have been

anticipated because changing the sign of e merely amounts to a shift in the time origin by half

a period. Since such a shift does not affect the stability problem, it follows that all the odd

co-efficients R1;R3; . . . . . . in Eq. (30) must vanish.

To solve Eq. (37) we expand the right hand side in a Fourier series and obtain W1 by

inverting the operator L term by term. Following Venezian [1], we arrive at the following

expression for R2:

R2 ¼ �
R2

0a2

2

p2 þ a2M3 þ 2a2M1M3

� �
p2 þ a2M3 þ a2M1M3½ �

X1
n¼1

n2p2 þ a2M3 þ 2a2M1M3

� �
Bn kð Þj j2Cn

dn

	 

: ð38Þ

2.4 Minimum Rayleigh number for convection

The value of R obtained by this procedure is the eigenvalue corresponding to the eigenfunction

W which, though oscillating, remains bounded in time. Since R is a function of the horizontal

wave number a and the amplitude of perturbation e, we may take

R a; eð Þ ¼ R0 að Þ þ e2R2 að Þ þ � � � � � � � � � ð39Þ

It was shown by Venezian [1] that the critical value of R, i.e., Rc to evaluate the critical value of

R2 is determined to O(e2) by evaluating R0 and R2 at a ¼ a0. It is only when one wishes to

evaluate R4 that a2 must be taken into account where a ¼ a2 minimizes R2. To evaluate the

critical value of R2 (denoted by R2c) one has to substitute a ¼ a0 in R2, where a0 is the value at

which R0 given by Eq. (36) is minimum. We evaluate R2c in the following three cases:

(a) When the oscillating temperature field is symmetric so that the wall temperatures are modu-

lated in phase (with/ ¼ 0). In this caseBnðkÞ ¼ bn or 0 according to whethern is even or odd.
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(b) When the wall temperature field is antisymmetric corresponding to out-of-phase modula-

tion (with / ¼ p). In this case BnðkÞ ¼ 0 or bn according to whether n is even or odd.

(c) When only the temperature of the bottom wall is modulated, the upper plate being held at a

constant temperature. This case corresponds to / ¼ �i1. Here BnðkÞ ¼ ð1=2Þbn for

integer values of n, where

bn ¼
�4np2k2

k2 þ nþ 1ð Þ2p2
h i

k2 þ n� 1ð Þ2p2
h i ;

k ¼ 1� ið Þ x
2

� �1
2

;

bnj j2¼
16n2p4x2

x2 þ nþ 1ð Þ4p4
h i

x2 þ n� 1ð Þ4p4
h i ;

Cn ¼
n2p2 þ a2
� �

n2p2 þM3a2
� �

n2p2 þ a2
� �2� x2

Pr

� �

�a2R0 1þM1ð Þ n2p2 þM3a2
� �

�M1p2
� �

8<
:

9=
;

and

dn ¼
n2p2 þ a2
� �

n2p2 þM3a2
� �

n2p2 þ a2
� �2� x2

Pr

� �

�a2R0 1þM1ð Þ n2p2 þM3a2
� �

�M1p2
� �

8><
>:

9>=
>;

2

þ x 1þ 1

Pr

� �
n2p2 þ a2
� �2

n2p2 þM3a2
� �	 
2

:

Following Venezian [1], we get the expression for R2c in the form

R2c ¼ �
R2

0a2

2

p2 þ a2M3 þ 2a2M1M3

� �
p2 þ a2M3 þ a2M1M3½ �

X
n2p2 þ a2M3 þ 2a2M1M3

� �
bnj j2

Cn

dn

: ð40Þ

In Eq. (40), the summation extends over even values of n for case (a), odd values of n for case

(b) and all integer values for case (c). The infinite series (40) converges in all cases for 5 terms.

3 Time-periodic body force

3.1 Mathematical formulation

We consider a Boussinesq ferromagnetic fluid layer confined between two infinite horizontal

walls, a distance ‘‘h’’ apart. A periodically varying vertical gravity field acts on the fluid and is

taken as

~gg ¼ g0 1þ e cos xt½ �k̂k; ð41Þ

where g0 is the mean gravity, e is the amplitude of the TBF, x is the frequency, t is the time and

k̂k is the unit vector in the vertical direction. The TBF is also referred to as g-jitter and can be

generated by vertically oscillating the fluid layer, rhythmically, thus causing a cosinusoidal

modulation of the gravitational field [8].
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The governing equations are essentially those used in case A except Eq. (4) in place of which

we take the following equation:

q0

D~qq

Dt
¼ �rpþ qg0 1þ e cos xtð Þk̂kþr: ~HH~BB

� �
þ lr2~qq; ð42Þ

where all the quantities have their usual meaning as defined in Sect. 1.

3.2 Basic state

The basic state and the perturbations are as indicated in part A. Following the analysis of

Sect. 1, we get the equation for the vertical component of the velocity W in the nondimensional

form as

r2 r2 � @

@t

� �
r2 � Pr

@

@t

� �
@2

@z2
þr2

1M3

� �
Pr

@

@t
�r2

� �� �
W

¼ R 1þ e cos xtþM1ð Þ @2

@z2
þr2

1M3

� �
Pr

@

@t
�r2

� �	 

�M1

@2

@z2
Pr

@

@t
�r2

� �� �
r2

1W;

ð43Þ

and the velocity boundary conditions are Eq. (29).

3.3 Stability analysis

As in Sect. 1, we seek the eigenfunctions W and the eigenvalues R of Eq. (43) for small

amplitude of the modulation (e < 1). The eigenvalues of the present problem differ from those

of ordinary Rayleigh–Benard convection by quantities of order e.
Following the approach given in Sect. 1, we get

R2c ¼
R2

0a2

2

p2 þ a2M3

� �
p2 þ a2M3 þ a2M1M3½ �

X
n2p2 þ a2M3

� �
Cn; ð44Þ

where

Cn ¼
n2p2 þ a2
� �

n2p2 þM3a2
� �

n2p2 þ a2
� �2�Prx2
� �

�a2R0 1þM1ð Þ n2p2 þM3a2
� �

�M1n2p2
� �

8<
:

9=
;=dn;

dn ¼
n2p2 þ a2
� �

n2p2 þM3a2
� �

n2p2 þ a2
� �2�Prx2
� �

�a2R0 1þM1ð Þ n2p2 þM3a2
� �

�M1n2p2
� �

8><
>:

9>=
>;

2

þ x 1þ Prð Þ n2p2 þ a2
� �2

n2p2 þM3a2
� �n o2

:

The expression for R0, the eigenvalue of the unmodulated problem, is the same as Eq. (36). We

now discuss about the roles played by ITBT/TBF and magnetization parameters on Rayleigh–

Benard convection in Newtonian ferromagnetic Boussinesq fluids.
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4 Results and discussion

We note here that the applied uniform magnetic field affects convection in the electrically non-

conducting fluid essentially due to the micron-sized ferrite particles which are suspended in the

carrier fluid. The micron-sized magnetic particles make the fluid magnetically-responding in

addition to being thermally responding. Before we embark on a discussion of results depicted

by the graphs, we must note that the presence of suspended ferrite particles in the carrier fluid is

to increase its viscosity. This follows from the well-known Einstein relation for suspended

particles,

l ¼ l0 1þ 2:5a/ð Þ;

where l and l0 are the viscosities of ferromagnetic suspension (i.e. carrier fluid + suspended

ferrite particles) and carrier fluid, respectively, a is the shape factor and / is the volume fraction

of the suspended particles. In view of this we consider values of the Prandtl number of fer-

romagnetic fluids higher than those of carrier fluids without suspended particles. We first

discuss the results of ITBT followed by those of TBF.

ITBT

A note on the role played by ITBT is also to be mentioned here. In this case R2c is a crucial

quantity which determines whether ITBT leads to sub-critical instability or not. The study of

the behaviour of R2c is of some interest in the limiting cases of very small and very large

frequencies. We find that when x� 1;R2c depends weakly on the magnetization parameters M1

and M3 but when x� 1;R2c tends to zero, so that the effects of ITBT and the magnetization

parameters become small. For moderate values of x, magnetization parameters will affect R2c.

In the paper we consider two types of ITBT:

(i) Synchronous ITBT which means that the two ITBTs are in-phase. (/ ¼ 0)

(ii) Asynchronous ITBT which means that the two ITBTs are out-of-phase. In this case we

consider two sub-cases:

Type i: There is phase difference between the two ITBTs (/ ¼ p) and
Type ii: Only one wall, say the lower one, is ITBT-affected. (/! �i1)
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Fig. 2a. Plot of TU versus t for / ¼ 0

Fig. 2b. Plot of TU versus t for / ¼ p
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Exhaustive computation reveals that the term M2 1þ TH

T0

� �
@ DUð Þ
@t

in Eq. (34) makes a contribu-

tion in the fifth decimal digit to the eigenvalue and hence warrants neglect.

Figures 2 and 3 are plots of TU ¼ �1þ ecos xtþ /ð Þ and TL ¼ 1þ ecos xtð Þ versus t for

synchronous ITBT and type (i) of asynchronous ITBT. Type (ii) essentially means there is no

ITBT at the upper surface. The lower surface ITBT is as in Fig. 3. We now discuss the results

arrived at in the paper.

Figure 4 is the plot of R2c versus x for different values of buoyancy magnetization parameter

M1 (the Prandtl number Pr and non-buoyancy magnetization parameter M3 being fixed) with

respect to synchronous ITBT. The buoyancy magnetization parameter M1 is the ratio of the

magnetic to gravitational forces. It can be seen that for synchronous ITBT, R2c increases with

an increase in M1 at a given frequency x. Hence, M1 has a stabilizing effect on the flow. It is also

interesting to see from the figures that for a given M1;R2c first decreases with an increase in x,

reaches a minimum at x ¼ 20 and then increases with an increase in x. This shows that for a

ferromagnetic fluid the flow is destabilized for small values of x and stabilized for large x. This
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is due to the fact that when the frequency of modulation is low, the effect of ITBT is felt

throughout the fluid. For synchronous ITBT of the fluid, the temperature profiles consist of the

steady line section plus a parabolic profile which oscillates in time. As the amplitude of the
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modulation increases the parabolic part of the profile becomes more and more significant. It is

known that a parabolic profile is subject to finite amplitude instabilities so that convection

occurs at lower Rayleigh numbers than those predicted by the linear theory. There is also a

value of x for which the stabilizing influence is minimum, and this minimum decreases with an

increase in M1.
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Fig. 9. R2c as a function of x with respect to asynchronous ITBT (with / ¼ p) for different values of Pr
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Figure 5 is the plot of R2c versus x for different values of M3 (Pr and M1 being fixed) with

respect to synchronous ITBT. The non-buoyancy magnetization parameter M3 measures the

departure of linearity in the magnetic equation of state. It can be seen that for synchronous

ITBT, R2c decreases with an increase in M3 at a given frequency x. Thus M3 has a destabilizing

effect on the flow. It is also interesting to see from the figures that for a given M3;R2c first

decreases with an increase in x, reaches a minimum at x ¼ 20 and then increases with an

increase in x. This shows that for a ferromagnetic fluid the flow is destabilized for small values

of x and stabilized for large x. The observed invariance of xc with change in M1 and M3 (also

seen in the other graphs) is quite intriguing and presently inexplicable.

Figure 6 shows the variation of R2c with x for different values of Pr (with M1 and M3 fixed) in

the case of synchronous ITBT. It is appropriate to note here that Pr does not affect the R0 –

part of R. It affects only R2. We also observe here that the increase in Pr is due to increased

concentration of ferrite suspended particles. It may be noticed that for moderate values of

frequency R2c decreases with an increase in Pr. We can infer from this that the effect of increasing

Pr is to destabilize the system. It is also observed that for low concentration of the suspended

ferrite particles (i.e., Pr � 3) supercritical motion is possible and for high concentration only

(i.e., Pr > 3) subcritical motion is possible. Thus, in the case of fluids with suspended particles

subcritical motions are more likely than supercritical motions, for x < 200. In this graph we
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considered the most destabilizing (M1 ¼ 1) and most stabilizing (M3 ¼ 1) cases. The case of

most stabilizing (M1 ¼ 1) and most destabilizing (M3 ¼ 100) was considered in Fig. 5. Earlier in

Fig. 4 we also considered the most stabilizing (M1 ¼ 10) and most destabilizing (M3 ¼ 1) cases.

Figures 7, 8 and 9 show the plot of R2c versus x for different values of M1;M3 and Pr (with

other corresponding parameters fixed) in the case of asynchronous ITBT with a phase differ-

ence between the two ITBTs. We observe that R2c decreases with increasing M1;M3 and Pr.

Thus in these cases the effect is one of stabilization decreasing with increasing frequency.

We observe that for asynchronous ITBT with a phase difference between the two ITBTs,

even though R2c decreases with an increase in M1;M3 and Pr it does not become negative. Thus

subcritical motions are ruled out in this case. The above results are due to the fact that in the

case of asynchronous ITBT the temperature field has essentially a linear gradient varying in

time, so that the instantaneous Rayleigh number is supercritical for half a cycle and subcritical

during the other half cycle [1]. We also observe that M1 and Pr have opposing influences in

synchronous and asynchronous ITBT whereas M3 has an identical influence on R2c in both

synchronous and asynchronous ITBT.

For asynchronous ITBT where only the lower wall is ITBT-affected we observe from

Figs. 10, 11 and 12 that the effect of the various parameters on R2c is qualitatively similar to the

previous case of asynchronous ITBT with a phase difference between the two ITBTs. A point to

be noted in this case is that for very high values of the Prandtl number Pr, sub-critical motions

are possible for low and moderate values of the frequency.
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TBF

The solution obtained in Sect. 3 is based on the assumption that the amplitude of TBF is small.

When x < 1, i.e., the period of TBF is large, the TBF affects the entire volume of fluid and

hence the disturbances grow large. On the other hand, the effect of TBF disappears for large

frequencies as is the case of ITBT. This is due to the fact that the buoyancy force takes a mean

value leading to the equilibrium state of the non-TBF case. In the TBF problem R2c is a crucial

quantity which determines whether TBF leads to sub – critical instability or not.

In Fig. 13, R2c is plotted against x for different values of M1 (the Prandtl number Pr and M3

being fixed). It can be seen that R2c decreases with an increase in M1 at a given frequency x. M1

has a destabilizing effect on the flow.

In Fig. 14, R2c is plotted against x for different values of M3 (the Prandtl number Pr and M1

being fixed). It can be seen that R2c decreases with an increase in M3 at a given frequency x. M3

has a destabilizing influence on the flow. It is also interesting to see from Figs. 13, 14 that for a

given M1 and M3;R2c first increases with an increase in x, reaches a maximum at x ¼ 7 and

then decreases with an increase in x. This shows that for a ferromagnetic fluid the flow is

stabilized for small values of x and destabilized for large x.

Figure 15 shows the variation of R2c with x for different values of the Prandtl number Pr

(with M1 and M3 fixed). It may be noticed that for moderate values of frequency R2c decreases

with an increase in Pr. Since R0 is independent of Pr, we may infer that an increase in Pr has a
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destabilizing effect on the flow for moderate values of x. It is interesting to note that at large

Prandtl number R2c can become negative and for lower values of the Prandtl number we get

only supercritical motions.

5 Conclusion

The results of the study indicate that ITBT can give rise to sub-critical motion and TBF leads to

delayed convection. It is also observed that for large frequencies the effects of ITBT/TBF

disappear. The problem throws light on an external means of controlling convection in fer-

romagnetic fluids which is quite important from the application point of view [17], [18].

Presently work is under progress to consider the effect of a time-periodic boundary magnetic

potential on convection.
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