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Abstract The adjoint gradient method is well recognized

for its efficiency in large-scale production optimization.

When implemented in a sequential quadratic programming

(SQP) algorithm, adjoint gradients enable the construction

of a quadratic approximation of the objective function and

linear approximation of the nonlinear constraints using just

one forward and one backward simulation (with multiple

right-hand sides). In this work, the focus is on the perfor-

mance of the adjoint gradient method with respect to the

adaptive time step refinement generated in the underlying

forward simulations. First, we demonstrate that the mass

transfer in reservoir simulation and, as a consequence, the

net-present value (NPV) function are more sensitive to the

degree of the time step refinement when using production

bottom-hole pressure (BHP) controls than when using pro-

duction rate controls. Effects of this sensitivity on optimiza-

tion process are studied using six examples of uniform time

stepping with different degrees of refinements. By compar-

ing those examples, we show that corresponding optimal

solutions for target production BHPs deviate at early stages

of the optimization process. It indicates an inconsistency in

the evaluation of the adjoint gradients and NPV function

for different time step refinements. Next, we investigate the
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effects of this inconsistency on the results of a constrained

production optimization. Two strategies of nonlinear con-

straints are considered: (i) nonlinear constraints handled in

the optimization process and (ii) constraints applied directly

in forward simulations with a common control switch pro-

cedure. In both strategies, we observe that the progress

of the optimization process is greatly influenced by the

degree of the time step refinement after control update. In

the case of constrained simulations, the presence of con-

trol switches combined with large time steps after control

update forces adaptive refinement to vary the time step size

significantly. As a result, the inconsistency of the adjoint

gradients and NPV values provoke an early termination of

the SQP algorithm. In the case of constrained optimization,

the inconsistencies in gradient evaluations are less signif-

icant, and the performance of the optimization process is

governed by a satisfaction of nonlinear constraints in SQP

algorithm.

Keywords Reservoir simulation · Adjoint gradient ·
Production optimization · Time step sensitivity

Mathematics Subject Classification (2010) 35Q93 ·
76N25 · 86A22 · 90C06

1 Introduction

As the capabilities of reservoir simulators grow, it is becom-

ing possible to solve a reservoir optimization problem of

great complexity. Large realistic reservoir models require

massive computational resources, which can be mitigated

using efficient computational optimization algorithms. The

reservoir production optimization can be cast as a con-

strained optimization problem where the majority of con-

straints has the form of partial differential equation (PDE).
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In this class of optimization problems, efficiency is often

achieved by using an adjoint-based gradient method imple-

mented within the nonlinear programming (NLP) algorithm.

Among NLP algorithms, sequential quadratic programming

(SQP) and method of moving asymptotes (MMA) have

been applied successfully to solve production optimization

problems [2, 20]. This work concentrates only on the SQP

algorithm since it has a long history in solving optimal well

control problems and has proven to be highly efficient [1].

The SQP algorithm finds a local optimum of a con-

strained optimization problem by solving a sequence of

quadratic programming (QP) problems where the objective

function and constraints are approximated by quadratic and

linear models, respectively. To improve the accuracy and

efficiency of these models, the adjoint gradient method is

applied. This method serves to eliminate PDE constraints

and calculates the total variation of the objective func-

tion and remaining non-PDE constraints, with respect to

the optimization variables. It is accomplished by calculat-

ing sensitivities of the objective function with respect to

the PDE constraints, called adjoint variables [16, 18]. For

a given state of the reservoir, the adjoint variables can be

accurately computed using one backward in time simulation

with a linearized reservoir system.

To build a quadratic model of the objective function,

the SQP algorithm uses an approximation of the second-

order sensitivity (Hessian) of the objective function with

respect to the optimization variables. The approximation of

the Hessian is assembled from objective gradients computed

at several optimization iterations and, therefore, relies on the

consistency of the gradients among simulations. The Hes-

sian represents information about the curvature of an objec-

tive function. If its estimation is inaccurate, it might wrongly

shape the optimum search space and not allow the solu-

tion to converge, i.e., to satisfy the Karush–Kuhn–Tucker

conditions [13].

The theoretical studies of how the gradient consistency

affects the performance of the SQP algorithm are often lim-

ited to the cases of smooth and convex objective functions.

For example, in [4], the authors prove theoretically that the

SQP algorithm fails to converge when the relative error of

the gradient is above 50 %. Obviously, the analysis detailed

in [4] cannot be readily replicated in the case of a gen-

eral production optimization problem. Instead, in this work,

we design a numerical experiment that induces the com-

monly observed gradient errors and study their impact on

the optimization process.

The adjoint gradients may have large errors in realis-

tic production optimization problems, due to the following

reasons:

(i) Inaccurate partial derivatives in the linearization of the

reservoir equation system

Multiphase fluid mass balance in the reservoir

is modeled by highly nonlinear conservation equa-

tions representing volume-averaged flow. The model

parameters are often determined through experimen-

tal studies and, therefore, lack smoothness. Nondif-

ferentiability of model parameters and phase appear-

ance/disappearance can be the primary source of lin-

earization errors.

(ii) Residual errors left by the linear and nonlinear solvers

of the system of reservoir equations

By construction, adjoint-based gradients are the gra-

dients of the sum of the original objective function

and a linear combination of the PDE constraints. In

theory, the PDE constraints vanish when solving the

reservoir equation system. In practice, the residual

errors are always present and contribute to the incon-

sistency between the original objective function value

and gradient supplied to the SQP algorithm.

(iii) Different time discretization in different simulations

caused by the adaptive time step refinement

Reservoir simulator often employs an adaptive

time step refinement algorithm to accurately capture

the dynamical behavior of the reservoir. Compress-

ibility, gas or water break-through, and well con-

trol updates are phenomena that have a significant

impact on the time step size during the adaptive

refinement. The refinement algorithm results in a

trade-off between accuracy and speed of the simu-

lation. In optimization iterations, any change in the

time stepping strategy alters the objective function

value.

The first two sources of inconsistency are known and

have found remedies in the design of the reservoir simula-

tor and its tuning parameters. The last of the sources has not

been studied thoroughly and is the focus of this study.

Errors in the linearization of the model equations can be

reduced by using automatic differentiation and smooth non-

linear laws. An automatic differentiation approach allows

to avoid the complexity of symbolic manipulations, inac-

curacy of numerical differentiation, and effort of finding

analytic derivatives. The gradients obtained with automatic

differentiation have been successfully used in SQP algo-

rithms to solve PDE constrained optimization problems [9].

This work utilizes automatic differentiation-based general

purpose research simulator (AD-GPRS) [26]. AD-GPRS is

built on the top of the automatic differentiation expres-

sion templates library [31, 35]. This framework is designed

to simulate thermal multiphase multi-component flow in

porous media [11, 33]. AD-GPRS has several nonlinear for-

mulations [28, 34], generic multi-point flux approximation

for space discretization, flexible adaptive implicit method

for time discretization [36], and shared-memory parallel
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realization [22]. An important part of the AD-GPRS frame-

work is the optimization module [24]. In this module, a

general adjoint formulation is used to derive objective gra-

dients for almost any physical reservoir model supported by

AD-GPRS.

The inconsistency of the adjoint gradient resulting from

residual errors is mitigated by using tight convergence cri-

teria for both linear and nonlinear solvers. It may only

slightly increase the time needed for a forward simulation

run since a nonlinear solver based on the Newton’s method

has quadratic convergence near the solution.

The inconsistency of the gradient evaluation as a result

of the adaptive time step refinement may be avoided by

using a fixed time step discretization for all forward sim-

ulations involved in production optimization process. It is

achieved by using a dedicated advanced Newton solver,

e.g., an adaptively localized continuation method [32] or

a trust-region method [27, 30]. These methods guaran-

tee the consistency of the time step refinement from one

simulation to another. However, they suffer a large com-

putational burden due to the onerous time step selection

algorithm, which is an obstacle for large-scale reservoir

simulations.

In this work, we investigate the effects of a typical adap-

tive time step refinement on the optimization process and

optimal solution. In this refinement, the time step selec-

tion procedures are limited to the basic instructions, such

as prescribing the minimum/maximum time step sizes and

increase/decrease factors of the refinement. They are readily

available in the majority of reservoir simulators. By varying

the degree of time step refinement, we attempt to provide

general recommendations for the tuning parameters of the

refinement scheme.

In addition, in order to reduce the influence of the time

discretization of the simulation on the computation of the

objective function, numerical experiments are performed.

In these experiments, the objective function is treated as

continuous in time and approximated with a high-order

numerical integration formula. As a result, a time discretiza-

tion scheme is obtained and then supplied to the reservoir

simulation. In this approach, the commonly used right end-

point rectangle approximation rule is replaced by the Gaus-

sian quadrature rule. We emphasize that the adjoint prob-

lem is still managed using the “discretize–then–optimize”

approach.

An alternative approach, referred to as “optimize–then–

discretize”, formulates optimality conditions and an opti-

mization algorithm based on the discrete–in–space and

continuous–in–time ordinary differential equation (ODE)

form of the problem. An often discussed disadvantage of the

“optimize–then–discretize” approach is the inconsistency

between the numerical approximation of the continuous

gradient and the optimization problem itself, see [10] for

a detailed discussion. Here, we mention only that, when

time discretizations of the forward and adjoint problems

are different, the continuous gradient relies on the accuracy

of re-interpolation of the solution of the forward problem,

which is beyond the scope of this article. In the case where

time discretizations of the forward and adjoint problem

coincide, the discrete ODE adjoint systems generated by

“optimize–then–discretize” and “discretize–then–optimize”

approaches are identical [15].

The well control parameters such as BHP and flow rates

are always bounded by the physical limits of the facil-

ity equipment and, therefore, explicit nonlinear constraints

are common in the production optimization. It is impor-

tant to investigate the effects of the time step refinement

on the nonlinear constraints satisfaction. In our study, two

strategies are considered: constraints satisfied during the

(i) simulation or (ii) optimization process. In constrained

simulation, the violation of a constraint initiates a con-

trol switch that may trigger additional changes in the time

step refinement. In constrained simulation, the amount by

which constraints are violated depends partially on the time

step size. Therefore, the time step refinement affects the

search for the optimal solution. Previous numerical studies

of the SQP algorithm have shown that the optimization with

constrained simulation has better performance than con-

strained optimization [14, 25]. In this work, we use different

time step refinement strategies to explain the observed

difference.

This paper is organized as follows: the first three sec-

tions contain an outline of the adjoint-based gradient algo-

rithm and its application to solving a constrained produc-

tion optimization problem. The fourth section is devoted

to the description of a simple model problem that is

employed in all numerical experiments conducted in this

work. The main results on the effects of time discretization

on the optimization process and its impact on production

optimization with nonlinear constraints are presented in

Sections 5 and 6. The last section contains conclusions and

recommendations.

2 Adjoint-gradient-based production optimization

2.1 Forward simulation

A reservoir is modeled by a system of mass conservation

equations

∂

∂t

(
φ

∑

p

ycpρpsp

)
+ div

∑

p

ycpρpŪp

+
∑

p

ycpρpq̃p = 0, c = 1, . . . , Nc. (1)
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Here, we defined

– φ – rock porosity

– sp – mobile phase saturation

– ρp – phase molar density

– ycp – molar fractions

– Ūp – phase velocity

– q̃p – phase volumetric rate per unit bulk volume.

A Darcy’s law is used to describe a flux of the phase p

Ūp = −
(

k
krp

μp
(∇pp − ρ̄pg∇d)

)
, (2)

where k and krp are absolute and relative permeabilities, μp

is the viscosity, pp is the phase pressure, ρ̄p is the mass den-

sity. In addition, g and d denote the gravitational constant

and vertical depth.

To close the system, Eqs. 1–2, we assume instantaneous

thermodynamical equilibrium of all components, which can

be written as

fc1(p, T , y1) − fcp(p, T , yp) = 0, (3)

where yp is the vector of molar fractions and fcp is the

fugacity of the component c = 1, . . . , Nc in the phase

p = 1, . . . , Np.

The reservoir model equations are discretized using a

flexible discretization framework [36]. The fully implicit

method and two-point flux approximation are applied for

the time and space discretizations, respectively. Let xn

denote a vector of the state variables (e.g., pressure p, sat-

uration s, and molar fractions ycp) at time tn, and un is the

vector of control variables (e.g., target well BHP or phase

flow rate) during the time step from tn−1 to tn. This time

step size is denoted �tn. The notations without subscripts x

and u are used to describe the full sets of state and control

variables taken at all times.

The discretization scheme generates a system of nonlin-

ear algebraic equations

gn(xn, xn−1, un) = 0. (4)

As mentioned previously, the state equation (4) is solved

using AD-GPRS. This reservoir simulator admits a generic

multi-component multiphase formulation where reduction

to a particular physical model (such as black-oil or dead-

oil) is obtained as the nonlinear algebraic reduction of the

system (1–3). Different combinations of the equations and

variables can be employed in AD-GPRS to solve this dis-

crete system of equations [28]. In this work, the natural

variable formulation [3, 6] is used where pressure p, satura-

tion sp and phase concentrations ycp are defined as nonlinear

unknowns for the solution of system (1–3).

After linearization, the resulting system is solved using

the generalized minimal residual method (GMRES) with

the two-stage constrained pressure residual (CPR) precon-

ditioning [3, 12, 29].

2.2 Optimization problem

The production optimization consists of finding the values

of the control variables u and corresponding values of the

state variables x that maximize the net-present value (NPV)

defined by

J (x, u) =
N∑

n=1

�tn

⎛
⎝

Nw∑

j=1

Np∑

p=1

Cp,j (tn)qp,j (xn, un)

⎞
⎠, (5)

where qp,j and Cp,j denote the production/injection phase

flow rate and discounted price of the phase p in the j -th

well, respectively.

In addition to the objective function (5), the functional

specifications of the engineering systems in the reservoir

and facilities impose m nonlinear constraints on the state

and control variables

hk � Hk(xn, un) � Hk ∀n = 1, . . . , N, (6)

where k = 1, . . . , m. These inequalities may be either lin-

ear with respect to the control variables (e.g., upper and

lower bounds on un) or nonlinear (e.g., upper and lower

bounds on phase flow rates, gas-oil ratio, or water cut for

BHP controlled wells). The intersection of these constraints

in the space of pairs (x, u) defines a feasibility region of the

production optimization problem, denoted here as D.

Using Eqs. 4–6, the production optimization problem can

be stated as

maximize
x,u

J (x, u), (7a)

subject to gn(xn, xn−1, un) = 0, (7b)

x0 = x(t0), (7c)

(x, u) ∈ D. (7d)

The state variables x appear as unknowns in the opti-

mization problem (7a–7d). However, because their number

corresponds to the number of equations in Eq. 7b, they

can be efficiently eliminated from J and Hk to reduce

the computational load of the SQP algorithm. We notice

that, although, the SQP implementation used in this work is

designed for problems with many thousands of constraints

and variables, this implementation is best suited for prob-

lems with up to 2000 degrees of freedom [8]. The next

section describes the adjoint algorithm applied to eliminate

the state variables.

2.3 Adjoint algorithm

The most efficient way to eliminate x from Eq. 7a is an

application of the adjoint variable method. In this method,

one constructs a Lagrangian function L which effectively
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replaces the original objective function J in such a way

that, once Eq. 7b is satisfied, L would have the same criti-

cal points (i.e., points where the gradient is zero) as J . By

construction

L = J +
N∑

n=1

λT
n gn(xn, xn−1, un), (8)

where λT
n is a Lagrange multiplier corresponding to the

state equation gn. An extremum of the Lagrangian (8), with

respect to x, u, and λ, is located either at a critical point or

on the boundary of the feasibility region D.

Let us postpone the feasibility discussion until the next

section and just consider the algorithm for searching criti-

cal points. By setting the total variation of the Lagrangian

to zero, a system of equations called the first optimality

conditions is obtained, see [18]

gn(xn, xn−1, un) = 0, (9a)
(

∂gn

∂xn

)T

λn +
(

∂gn+1

∂xn

)T

λn+1 +
(

∂J

∂xn

)T

= 0, (9b)

(
∂gn

∂un

)T

λn +
(

∂J

∂un

)T

= 0, (9c)

for n = 1, 2, . . . , N . Equations 9b are adjoint equations

based on the transposed Jacobian matrix from Eq. 9a. They

are solved backward-in-time and, therefore, supplied with a

fictitious initial condition

λN+1 = 0, (10)

to satisfy Eq. 9b for n = N [15].

Equations 9a and 9b are used to compute state x and

adjoint λ variables, respectively. The third condition Eq. 9c

is utilized to define the total variation of the objective func-

tion J , corresponding to an arbitrary perturbation of the

control variables δun

dJ = dL =
N∑

n=1

[
λT

n

∂gn

∂un
+

∂J

∂un

]
δun. (11)

The square bracket term in Eq. 11 does not depend on the

perturbation δun. In the space of controls un, it is a vector

orthogonal to the level sets of J pointing in the direction of

the steepest increase of J . This row-vector term is called the

adjoint-based gradient and denoted by ∇unJ . The gradient

thus obtained is supplied to the SQP algorithm and con-

structs the approximation of Hessian and quadratic model

of J using a variation of the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. A detailed description of the

SQP algorithm is provided in [8].

So far, u has been considered to vary over the same

time steps as x. However, well control parameters (such as

BHP or phase flow rates) are usually discretized on a time

scale coarser than the time steps of the reservoir simulation.

This coarse time-scale is called the control steps further in

the paper. It can be readily shown that the gradient corre-

sponding to a control step is a sum of the gradient terms

computed for each time step in this control step. For exam-

ple, if the time steps {ni, ni +1, . . . , ni+1 −1} belong to the

i-th control step, the gradient of an objective function with

respect to the i-th control variable Ui (U denotes the vec-

tor control variables discretized at control steps) is defined

as

∇Ui
J =

ni+1−1∑

n=ni

[
λT

n

∂gn

∂un

+ ∂J

∂un

]
. (12)

The adjoint-based gradient algorithm is also applied to

linearize constraint functions utilized in the SQP algorithm.

This procedure is explained in the next section.

3 Nonlinear constraints

In this paper, the focus is on nonlinear constraints corre-

sponding to the well characteristics that may, otherwise, be

employed as well control parameters. For example, con-

straints on the well phase flow rates are frequently applied

as controls in the reservoir simulations. The well character-

istics that do not satisfy this criterion are, for example, the

water cut and gas-oil ratio.

As mentioned previously, in the constrained optimization

problem (7a–7d), some control variables do not have to

satisfy ∇Ui
J = 0 once they attain the boundary of the fea-

sibility region D. Two strategies to handle those variables

are considered: (i) constraints in reservoir simulation and

(ii) nonlinear constraints in the optimization problem.

3.1 Constraints in reservoir simulation

In this strategy, the production optimization problem (7) is

simplified to Eqs. 7a, 7b, 7c and upper/lower bounds of u.

Nonlinear constraints from Eq. 7d are satisfied immediately

during simulation (see [7, 26] for details) in the follow-

ing way. Each well is supplied with a default control and

constraints. When a constraint cannot be satisfied in a par-

ticular time step, it switches the role with the control. The

rules for switching are directly implemented in the nonlin-

ear solver of a reservoir simulator. The main disadvantage of

this strategy is that, when switching occurs, the sensitivity of

J with respect to the default well control is not computed.

At the same time, the variables of the production optimiza-

tion problem are always associated with the target values

of the default well control parameters. Therefore, if control

switch occurs at every time step of a control step, the adjoint

gradient term corresponding to this control step vanishes.

The optimization variables corresponding to the vanishing

gradient terms hold their current values till the end of the
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optimization iteration. Accurate estimation of the sensitivity

as a result of a control switch and its effect on the optimal

solution is a separate topic and will be discussed in future

work.

3.2 Constraints in optimization problem

In this strategy, a quadratic model of the objective func-

tion is supplemented with linear models of the constraint

functions (6). The linearization of the constraints Eq. 6 is

done using an adjoint variable algorithm similar to the one

described in Section 2.3. The sensitivities with respect to the

control variables have the form

∇Ui
Hk =

ni+1−1∑

n=ni

[
µT

k,n

∂gn

∂un

+
∂Hk

∂un

]
, (13)

where k = 1, . . . , m and µk,n are the adjoint variables of

Hk(x, u) satisfying
(

∂gn

∂xn

)T

µk,n +
(

∂gn+1

∂xn

)T

µk,n+1 +
(

∂Hk

∂xn

)T

= 0, (14a)

µk,N+1 = 0. (14b)

We emphasize that the transposed Jacobian matrix

(∂gn

/
∂xn)

T used in Eq. 14a is identical to the one intro-

duced in Eq. 9b. In practice, the matrix (∂gn

/
∂xn)

T is

constructed once and utilized for λn and µk,n. Therefore,

a single backward simulation is performed which requires,

at each time step, to solve 1 + m linear systems. In large

production optimization problems, this approach is more

efficient than running multiple backward simulations, i.e.,

one for the objective function, and one for each constraint.

A quadratic model of J is constructed and solved as a

QP sub-problem

maximize
ξ

J
(l) + ∇UJ

(l)
(
ξ − U(l)

)

+ 1
2

(
ξ − U(l)

)T

∇2
UJ

(l)
(
ξ − U(l)

)
,

subject to hk � H
(l)
k + ∇UH

(l)
k

(
ξ − U(l)

)
� Hk, (15)

where k = 1, . . . , m, ∇2
UJ

(l) is an approximation of the

Hessian and l corresponds to the current optimization itera-

tion. The optimal solution of Eq. 15 contributes to the search

direction of the next update of U.

In the constrained optimization strategy, all underlying

simulations are unconstrained which has one positive and

one negative implication. On the positive side, the control

switch is not triggered, and the sensitivity of J is not miss-

ing which allows a broad exploration of the control space.

On the negative side, the truncation error introduced by

linearization of the nonlinear constraints requires frequent

updates of the gradient that may significantly slow down the

optimization process.

Linearization requires a constraint function Hk to be dif-

ferentiable. However, after being lumped in time, the upper

and lower bound constraints on the well flow rate become

obviously non-differentiable

Hk(xn, un) � Hk ∀n ⇔ max
n

Hk(xn, un) � Hk, (16a)

hk � Hk(xn, un) ∀n ⇔ hk � min
n

Hk(xn, un). (16b)

A smooth approximation of the maximum and minimum

functions is utilized and defined as follows

max(a, b) ∼=
a + b +

√
(b − a)(b − a) + ε

2
, (17a)

min(a, b) ∼=
a + b −

√
(b − a)(b − a) + ε

2
, (17b)

where ε is the parameter that ensures smoothness of the

derivative. If the values of a and b are smaller than one,

ε needs to be scaled down to maintain the accuracy of the

approximation. In the production optimization, meaning-

ful a and b are often larger than one and we can assign

ε = 10−10 with a view to prevent the square root in Eqs.

17a and 17b from vanishing. The approximation (17) seems

to be particularly suitable for the production optimization

(refer to Appendix A).

The approximation (17) is applied recursively, in

conjunction with automatic differentiation, to evaluate

maxn Hk(xn, un), minn Hk(xn, un) and their partial deriva-

tives with respect to xn and un employed in Eqs. 13 and 14a.

3.3 SQP algorithm

The optimization problem is solved using the SQP code

implemented in the sparse nonlinear optimizer (SNOPT)

library. A detailed description of this library can be found

in [8]. SNOPT is coupled with the AD-GPRS sub-routines

calculating the gradients of the objective function and non-

linear constraints. The optimization iterations loop consists

of the following steps

l ← 0

U (0) ← initial guess

repeat

Algorithm 1

given estimate of U ( l), solve (9a) for x ( l)

given x ( l) and U ( l) , solve (9b) for λ ( l)

update the gradient U J
( l) and Jacobian U H

( l)

k

solve QP problem (15) to find the search direction

perform a line search to find a new estimate U ( l

l l

+1)

← + 1

until termination criteria are satisfied.
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A sequence of optimization solutions U(l) is considered

converged when the KKT conditions described in [8] are

satisfied to a given tolerance.

4 Case study

For all studies below, a standard water flooding model

with a complex geology and simplified physical properties

is considered. The model includes a reservoir of dimen-

sions 30 × 110 × 10 described by layers 33 to 42 of the

upscaled SPE10 model [5]. The logarithm of permeabil-

ity of this model and the initial oil saturation are shown in

Fig. 1.

The reservoir is supplied with nine vertical water injec-

tion wells (W1, W2, W3, W6, W7, W8, W11, W12, W13)

and four vertical producers (W4, W5, W9, W10) completed

through all ten layers. The base case, which is also an ini-

tial guess for the optimization, uses control targets such that

the well BHPs are 300 bars for producers and 500 bars for

injectors. The physical properties of both fluid and rock are

taken from [23] and summarized in Table 1:

In this study, two types of NPV are considered:

– without water penalty (i.e., water production and injec-

tion costs are zero)

– with a large water penalty (i.e., water production and

injection costs are set to 6 $/bbl)

The oil production price is 75 $/bbl. The water cost is

added to avoid the trivial solution of the full blast when

no nonlinear constraints are present. This work focuses

on the short-term production optimization where the NPV

behavior is dictated by the oil production term. In all cases

Table 1 Parameter values for models

Parameter Value Description

φ 20 % Porosity

cr 10−5 1/bar Rock compressibility

co, cw 10−5 1/bar Fluid compressibility

ρo, ρw 1000 kg/m3 Fluid density

μo, μw 1 cP Fluid viscosity

Sw,ini 0.1 Initial water saturation

Swr , Sor 0 Rel. perm. endpoints

nw, no 2 Rel. perm. exponents

below, the optimization process is terminated when the

KKT conditions described in [8] are satisfied to a given

tolerance, or the number of gradient evaluations exceeds

60.

5 Time step refinement and optimization process

An iterative optimization algorithm often requires multiple

evaluations of the objective function. Therefore, a reservoir

simulation performed at each evaluation should be accom-

plished in a reasonable amount of time. For this purpose,

one often employs the fully implicit first-order discretiza-

tion schemes with a reasonable large time step. Although

this may not be an issue in the reservoir simulation, it may

affect the value of the objective function in production opti-

mization. This claim is investigated by an example of the

unconstrained production optimization with a large water

penalty, based on a test model presented earlier.

Fig. 1 Logarithm of permeabilities (a) and base case oil saturation (b) for Example 2
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5.1 The influence of the time step refinement

on the computation of NPV

This section investigates the response of the objective func-

tion to the time step refinement in reservoir simulation with

fixed control variables corresponding to the initial guess.

Six simulations are performed, each with constant time

steps of �t = 1, 2, 4, 8, 16, and 32 days. All simulations

contain six control steps of 32 days each. Figure 2 shows the

change of the NPV as a function of time step size. In Fig. 2,

three curves in each plot match three control scenarios:

Case 1. BHP controlled production and injection,

Case 2. BHP controlled production and rate controlled

injection,

Case 3. Rate controlled production and BHP controlled

injection.

Nonlinear regression of the NPV values with the function

�tα gives α = 1.012, 0.963, 1.028 for Cases 1, 2, and 3,

respectively. Although NPV changes linearly with respect

to the time step size �t , this change has a different origin

in Case 3 versus Cases 1 and 2. In Cases 1 and 2, the large

variation is observed in the oil production term, which is

the major contributor to the NPV. In Case 3, the oil produc-

tion term does not change with �t , and the change of the

NPV as function of �t is generated by minor contributors,

i.e., water production and injection terms. The large varia-

tion non-controlled production/injection rates can occur as

a result of:

– numerical integration error in the computation of the

NPV function,

– accumulation of phase rate evaluation errors for well

BHP being a control parameter.

We denote by t1, . . . , tN an initial discretization used in

the example problem. To mitigate the integration error, the

NPV function is redefined using a high-order numerical

integration described below.

The production optimization problem is reformulated,

with the objective function J in Eq. 5 replaced by the sum

of integrals

J̃ =
N∑

n=1

∫ tn+1

tn

⎛
⎝

Nw∑

j=1

Np∑

p=1

Cp,jqp,j

⎞
⎠ dt, (18)

where tn and tn+1 are the start and end points of the n-th time

step. Cp,j qp,j is considered to be a continuous function of

time, with the sum of integrals in Eq. 18 approximated by a
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Fig. 2 Cumulative a NPV, b oil production, c water production, d

water injection after 192 days as a function of the time steps size used
in the underlying reservoir simulations. Each simulation is performed

at fixed control variables corresponding to the initial guess with
constant time steps of �t = 1, 2, 4, 8, 16, and 32 days
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Fig. 3 Cumulative a NPV, b oil production, c water production, and
d water injection, corresponding to the second-order integration for-
mula (19). Each simulation is performed at fixed control variables

corresponding to the initial guess with the time step refinement defined
by constant time steps of �t = 1, 2, 4, 8, 16, and 32 days, and
supplemented with Gauss quadrature points

composite Gaussian quadrature formulas [21], resulting in a

discrete form of J̃

Jg =
N∑

n=1

Ng∑

r=1

�t

2
Wr

⎛
⎝

Nw∑

j=1

Np∑

p=1

Cp,jqp,j

⎞
⎠

∣∣∣∣∣∣
t=τn,r

, (19)

where τn,r = 1/2 (tn + tn+1)+ 1/2 �t ξr . ξr are the quadra-

ture points in (−1, 1) and Wr are the associated weights for

r = 1, . . . , Ng. Next,

t1,τ1,1, . . . ,τ1,Ng ,t2,τ2,1, . . . ,τ2,Ng , . . . ,tN ,τN,1, . . . ,τN,Ng

is designated as the time discretization points in the reser-

voir simulation and the optimization problem (17) is solved

with the objective function J replaced by Jg , defined in

Eq. 19. It is shown in [21] that for a constant step �t the

numerical integration error is of the order O(�t2Ng).

Figure 3 shows a change of the objective function Jg with

respect to the time step size for Ng = 1. One notices that

Cases 1 and 2 exhibit a considerable change in Jg and the

corresponding cumulative oil production. At the same time,

in Case 3, the change in Jg is less prominent than the change
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Fig. 4 Cumulative NPV corresponding to the a third- and b fourth-
order integration formula (19). Each simulation is performed at fixed
control variables corresponding to the initial guess, with the time step

refinement defined by constant time steps of �t = 1, 2, 4, 8, 16, and
32 days, and supplemented with Gauss quadrature points
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in the original NPV depicted in Fig. 2. The conclusion in

Case 3 is that the variation of the original NPV, defined in

Eq. 5, is a result of the numerical integration error in the

computation of the NPV function. Whereas, in Cases 1 and

2, it is due to the accumulation of phase rate evaluation

errors. The behavior of Cases 1, 2, and 3 is confirmed in

Fig. 4 for high-order Gauss quadrature formulas Ng = 2

and 3.

We conclude that the variation of the NPV, with respect

to the time step size, has to be taken into account in the

optimization process and analysis of the optimal solution. In

the case of production optimization with well BHP control

variables, the differences in the time discretization generate

an accumulation of phase rate evaluation errors that make

objective function evaluation inconsistent between differ-

ent simulation runs. This inconsistency is passed onto the

SQP algorithm and affects line search, adjoint gradients, and

approximation of the Hessian. Our recommendation is that

the results of the case studies in production optimization, in

particular with BHP controls, should be accompanied by a

test of robustness with respect to time step refinement.

5.2 The influence of the time step refinement

on the optimal solution

Next, the focus is on the consistency of optimal solutions

obtained with reservoir simulations, subject to time step

refinements �t = 1, 2, 4, 8, 16, and 32 days, introduced

previously. Figure 5 illustrates the correlation of optimiza-

tion variables U(l) corresponding to �t = 1, 2, 4, 8, 16,

and 32 days, as they progress through optimization iteration

l = 10, 20, and 40. The correlation is calculated by

corr(U(l)
α , U

(l)
β ) =

〈
U

(l)
α − U

(l)
α , U

(l)
β − U

(l)
β

〉

||U(l)
α − U

(l)
α || ||U(l)

β − U
(l)
β ||

, (20)
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Fig. 5 Correlation of the optimization variables obtained when using reservoir simulations with constant time steps �t = 1, 2, 4, 8, 16, and
32 days, at optimization iterations a, b, c l = 10, d, e, f l = 20, and g, h, i l = 40. Here, a, d, g correspond with Case 1, b, e, h with Case 2, and
c, f, i with Case 3
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Fig. 6 Correlation of the optimization variables obtained when using
reservoir simulations with the time step refinement defined by con-
stant time steps of �t = 1, 2, 4, 8, 16, and 32 days and supplemented

with Gauss quadrature points. The optimal variables are compared at
the optimization iterations a, b, c l = 10, d, e, f l = 20, and g, h, i

l = 40 for a, d, g Case 1, b, e, h Case 2, and c, f, i Case 3

where U
(l)
α = U(l)|�t=α for α, β ∈ 1, 2, 4, 8, 16, and

32 days.

In Case 1, all solutions U(l) except those corresponding

to �t = 1 and 2 deviate largely at l = 10, see Fig. 5a.

By the 40th iteration, their correlation decreases further to

83 ± 13 %, see Fig. 5g. In Case 2, the solutions U(l) have

a high correlation at l = 10, see Fig. 5b, which becomes

94 ± 2 % at l = 40, see Fig. 5h. In Case 3, the solutions

U(l) remain highly correlated for l = 10 through 20, see

Fig. 5c, f. As the optimal solution is approached at l = 40,

Fig. 7 NPV as a function of
major optimization iterations for
a constrained optimization and
b optimization with constrained
simulations; all simulations
performed for small (black),
medium (red), and large (blue)
time step refinements after
control update

(a) (b)
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(a) (b)

Fig. 8 Correlation of the optimal solution computed using small,
medium, and large refinement scenarios for a constrained optimization
and b optimization with constrained simulations

the correlation of Case 3 slightly decreases to 98 ± 2 %,

due to the time truncation errors in forward simulations, see

Fig. 5i.

Similar results are observed for Jg, i.e., when the orig-

inal NPV function (5) is replaced with the second-order

numerical integration formula (19) with Ng = 1, see Fig. 6.

We conclude that the significant variation of correlations

among Cases 1, 2, and 3 in Figs. 5 and 6 is attributed

to the differences in phase rate evaluations of the oil pro-

duction of BHP controlled wells. We recall that this study

was performed using reservoir simulations with constant

time steps. In practice, however, the time step size varies

through the control step. Often, the decrease in the time

step size occurring after the control update has a partic-

ular implication in the case of the constrained production

optimization.

6 Time step refinement and nonlinear constraints

In the previous section, we investigated well control scenar-

ios corresponding to an unconstrained optimization prob-

lem. Constraints introduce additional complexity resulting

from the change of the well equation when switching con-

trols from BHP to phase rate and vice versa. Here, we

consider a production optimization problem without water

penalty. In this formulation and specifically for incompress-

ible two-phase problems, the NPV is proportional to the

water injection rate. The main purpose of this simplification

is to make production optimization problems convenient for

systematic analysis.

This study focuses on BHP controlled production and

injection, i.e., Case 1 in Section 5. As stated above, this con-

trol scenario admits large changes in oil production for time

steps varying from 1 to 32 days. To isolate the effects of

the adaptive time refinement, the production BHP controls

are fixed to the initial values. In such case, the optimiza-

tion variables are the target values of the injection BHP with

upper-bound constraints on the injection flow rates.

According to theory [17], an instantaneous change of

the BHP value results in a singularity of the phase flow

rate. If the BHP control remains constant for a long period

afterward, the corresponding phase flow rate converges

asymptotically to a constant value. In the numerical simula-

tion, the sizes of the control step and the first time step after

control update are finite. Therefore, the singularity turns

into an instantaneous increase/decrease of the phase flow

Fig. 9 Injection BHP and phase
flow rates of well W07 for
constrained optimization (a,c)
and optimization with
constrained simulations (b,d);
all simulations performed for
small (black), medium (red) and
large (blue) time step
refinements after control update

(a) (b)

(c) (d)
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rate value followed by the rate adjustment. The magnitude

of the pick and duration of the adjustment period depend on

the reservoir properties, as well as on the size of the first

time step after control update. In a reservoir simulation, the

adjustment period is often smaller than a typical time step

size that does not affect results. However, an extremely fine

time step after control update may reveal the pick and trigger

the rate constraint violation.

The effects of time step refinement are studied for two

implementations of the nonlinear constraints: (i) optimiza-

tion with constrained simulations and (ii) constrained opti-

mization. We use the setup of Section 5 and replace the

constant time steps with three patterns of the refinement:

small, medium, and large. For small refinement, the high-

est time step after control update is 0.01 day, for medium —

10 days, and for large — 32 days (meaning no refinement).

Afterward, the time step size is gradually increased by a fac-

tor of three until it reaches the next control step. Time step

adjustment with respect to changes in state variables x is

not applied in this strategy. The production optimization is

performed on 11 control steps of 32 days each. The upper

bound constraint of injection wells is 1500 m3/day.

Figure 7 shows a comparison of the NPV for the cases

of optimization with constrained simulation and constrained

optimization. Here, the final values of the NPV are traced

at the major optimization iterations (i.e., evaluations of the

adjoint gradient) for small (black), medium (red), and large

(blue) time step refinements. Next, those results are used to

analyze various aspects of the optimization process.

6.1 Robustness with respect to the time step refinement

One notices that the final values of the NPV for the small

and medium refinements are similar (black and red lines,

respectively) in both constraining strategies. On the con-

trary, the values for the large refinement (blue line) differ

from others quantitatively, as well as qualitatively. For con-

strained optimization, the large refinement performed better

than the small and medium ones, whereas it failed for

optimization with constrained simulations. This behavior

is analyzed later. Here, the focus is on the robustness of

the optimal solution. Similar to the case of unconstrained

production optimization presented earlier, constrained opti-

mization in Fig. 7 clearly demonstrates robustness with

respect to the time step refinement. The correlations of the

optimal solution, computed using Eq. 20, give 65 ± 5 % for

constrained optimization and 58 ± 15 % for optimization

with constrained simulations, see Fig. 8.

Fig. 10 Injection BHP optimal
controls for optimization with
constrained simulations; all
simulations performed for small
(black), medium (red), and large
(blue) time step refinements
after control update
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6.2 Number of optimization iterations

One notices in Fig. 7 that the optimization with constrained

simulations requires fewer gradient evaluations than the

constrained optimization. It happens because, in SQP, linear

model of nonlinear constraints (7) requires more frequent

updates of the gradients to ensure feasibility. This is con-

firmed by the behavior of the optimal controls of the

injection well W07, in Fig. 9. Here, the top plots contain

both the target control values (solid lines) and actual values

obtained in simulation (dots). The difference between the

two curves indicates which control type has changed from

BHP to phase flow rate, or where a well has been shut-in.

The spacing of the dots corresponds to the actual time steps.

Figure 9a and c illustrate the effort of constrained opti-

mization to satisfy the upper bound of the injection rate.

We observe that when an extremely high rate occurs at

the beginning of the control step, nonlinear constraints (7)

become more sensitive to the changes in BHP control and

the constraint gradient gets higher. It indicates that the time

step approaches the transient time scale and it is, therefore,

more difficult for a well control to satisfy those constraints.

In Fig. 9c, it is exemplified by the rate corresponding to the

small refinement scenario (black line) which has not con-

verged to an optimal solution within an allocated number of

gradient evaluations.

The optimization with constraint simulation results in a

high injection due to the switching of injection control from

BHP to phase flow rate, see Fig. 9d. The actual BHP val-

ues lie on a curve smoother than the target BHP values

according to Fig. 9b.

6.3 Convergence failure in optimization

In this section, the focus is on the optimal solution corre-

sponding to constrained simulations with the large refine-

ment scenario. Two observations can be made about this

solution. On the one hand, Fig. 7b indicates the early ter-

mination of the optimization algorithm. On the other hand,

the optimization results lack consistency since their corre-

lation with the small refinement solution is higher than the

correlation with the medium one, see Fig. 8b. The combi-

nation of these observations indicates failure of the SQP

algorithm. The origin of this failure can be traced once

Fig. 11 Injection BHP optimal
controls for constrained
optimization; all simulations
performed for small (black),
medium (red), and large (blue)
time step refinements after
control update
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the optimal BHP controls between the two constraining

scenarios are compared. Figure 10 shows that the designed

time step refinement is significantly violated for the case in

question (blue line) with constrained simulations. Accord-

ing to the previous findings, it results in inconsistencies of

the adjoint gradient sufficient to become an obstacle for the

SQP algorithm. In comparison, the violation of the designed

refinement is less prominent in constrained optimization,

see Fig. 11.

7 Conclusions and recommendations

This paper focuses on how the time stepping strategy

in reservoir simulation influences production optimization

solutions performed with the adjoint gradient method and

the SQP algorithm. Using a reservoir simulator featuring

automatic differentiation and flexible time step refinement,

it is shown that one must be cautious when using fully-

implicit simulations with large time steps. In the BHP

controlled production and injection, variations in the phase

rate evaluation between different runs of the reservoir sim-

ulator affect the objective function value and adjoint gradi-

ents. As a result, the optimal solution becomes sensitive to

time step refinement. These observations are supported by

examples both in constrained and unconstrained production

optimization.

In real field reservoir simulations, the well BHP con-

trols are often paired with well flow rate constraints. The

same strategy can also be applied to the SQP solver. In the

second part of this paper, we studied how these two con-

straining strategies are affected by the time step refinement.

In particular, we study the refinement occurred immedi-

ately after control update. Using an SPE10 test case, the

robustness of both strategies is demonstrated when the

maximum time step size after update varies from 32 days

to 0.01 day. It is established that when nonlinear con-

straints are introduced in optimization, the NLP solver

requires high number gradient evaluations to maintain the

accuracy of the approximated constraints. As a result, the

number of gradient computations doubled in comparison

to optimization with constrained simulations. We empha-

size that this observation is limited to the SQP algorithm

that uses a linear approximation of nonlinear constraints.

One may achieve faster convergence when using the NLP

solver featuring a suitable nonlinear approximation of

constraints.

In conclusion, when performing production optimiza-

tion with the SQP solver, we recommend using the phase

rate constraints in a simulation with a moderate time step

refinement after control update.
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Appendix A: Smooth approximation

of the maximum function

In addition to Eq. 17a, two other approximations of the

maximum function frequently used in continuous variable

optimization [19] are

max(a, b) ∼=
a exp(a κ) + b exp(b κ)

exp(a κ) + exp(b κ)
, (21a)

max(a, b) ∼=
1

κ
log(exp(a κ) + exp(b κ)). (21b)

Equations 21a and 21b require scaling parameter κ to be

adjusted to the orders of magnitude of a and b. This require-

ment is twofold. On the one hand, the larger is the value of

κ , the better is the approximation in 21a and 21b. On the

other hand, because of the computational limits of the expo-

nential function, overflow and underflow errors may occur if

the argument is above the limit dictated by the machine pre-

cision. Unlike Eqs. 21a and 21b, Eq. 17a needs parameter

adjustment only for small values of the arguments a and b.

Therefore, Eq. 17a seems more suitable for the production

optimization.

In addition, when the arguments a and b differ by a small

amount, Eq. 17a yields more accurate approximation of the

values and derivatives of the function than Eqs. 21a and

21b. For example, an input of a = 100, b = 101 results

in 101.000002, 100.999071, and 101.000133 for Eqs. 17a,

21a and 21b, respectively. Here, we select κ = 6.981

to be the most suited value in double precision, whereas

ε = 10−5. Partial derivatives of the functions in Eqs. 17a,

21a, 21b are respectively 2.49998 × 10−6, −0.0055474 ×
10−3, 0.00092851×10−4 for a and 0.999998, 1.00555, and

0.999071 for b.

References

1. Brouwer, D., Jansen, J.D.: Dynamic optimization of waterflooding
with smart wells using optimal control theory. SPE J. 9(4), 391–
402 (2004)

2. Bukshtynov, V., Volkov, O., Durlofsky, L., Aziz, K.: Compre-
hensive framework for gradient-based optimization in closed-loop
reservoir management. Comput. Geosci. 19(4), 877–897 (2015)

3. Cao, H.: Development of techniques for general purpose simula-
tors. PhD Thesis, Stanford University (2002)

4. Carter, R.: Numerical experience with a class of algorithms for
nonlinear optimization using inexact function and gradient infor-
mation. SIAM J. Sci. Comput. 14, 368–388 (1993)



722 Comput Geosci (2016) 20:707–722

5. Christie, M., Blunt, M.: Tenth SPE comparative solution project: a
comparison of upscaling techniques, SPE72469-PA. SPE Reserv.
Eval. Eng. 4(4), 308–316 (2001)

6. Coats, K.: An equation of state compositional model. SPE J. 20(5),
363–376 (1980)

7. Geoquest: Eclipse Technical Description 2005A. Schlumberger
(2005)

8. Gill, P.E., Murray, W., Saunders, M.: SNOPT: an SQP algorithm
for large-scale constrained optimization. SIAM J. Optim. 12(4),
979–1006 (2002)

9. Griesse, R., Walther, A.: Evaluating gradients in optimal control:
Continuous adjoints versus automatic differentiation. J. Optim.
Theory Appl. 122(2), 63–86 (2004)

10. Gunzburger, M.: Perspectives in flow control and optimization.
SIAM, Philadelphia (2003)

11. Iranshahr, A., Voskov, D., Tchelepi, H.A.: Tie-simplex parame-
terization for eos-based thermal compositional simulation. SPE J.
15(2), 537–548 (2010)

12. Jiang, Y.: Techniques for modeling complex reservoirs and
advanced wells. PhD Thesis, Stanford University (2007)

13. Karush, W.: Minima of functions of several variables with inequal-
ities as side conditions. In: M.Sc. Dissertation, University of
Chicago, Chicago, Chicago, IL, USA (1939)

14. Kourounis, D., Durlofsky, L., Jansen, J., Aziz, K.: Adjoint for-
mulation and constraint handling for gradient-based optimization
of compositional reservoir flow. Comput. Geosci. 18(2), 117–137
(2014)

15. Kourounis, D., Voskov, D., Aziz, K.: Discrete and continuous
adjoint formulations for optimization of compositional flow. In:
Proceedings of ECMOR XII European Conference on the Mathe-
matics of Oil Recovery (2010)

16. Kraaijevanger, J., Egberts, P., Valstar, J., Buurman, H.: Opti-
mal waterflood design using the adjoint method, SPE105764-
MS. In: Proceedings of SPE Reservoir Simulation Symposium
(2007)

17. Muskat, M., Wyckoff, R.: The flow of homogeneous fluids
through porous media. J.W. Edwards Inc., Ann Arbor, Michigan
(1946)

18. Nocedal, J., Wright, S.J. Numerical optimization, 2nd edn.
Springer, New York (2006)

19. Polyak, R.: Smooth optimization methods for minimax problems.
SIAM J. Control. Optim. 26(6), 1274–1286 (1988)

20. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-
time reservoir management using adjoint-based optimal control
and model updating. Comput. Geosci. 10(1), 3–36 (2006)
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