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Abstract: Composite chitosan/phosphotungstic acid (CS/PTA) with the addition of TiO2 and Al2O3

particles were synthesized to be used as proton exchange membranes in direct methanol fuel cells
(DMFCs). The influence of fillers was assessed through X-ray diffraction, scanning electron mi-
croscopy, thermogravimetric analysis, liquid uptake, ion exchange capacity and methanol permeabil-
ity measurements. The addition of TiO2 particles into proton exchange membranes led to an increase
in crystallinity and a decrease in liquid uptake and methanol permeability with respect to pristine
CS/PTA membranes, whilst the effect of the introduction of Al2O3 particles on the characteristics
of membranes is almost the opposite. Membranes were successfully tested as proton conductors in
a single module DMFC of 1 cm2 as active area, operating at 50 ◦C fed with 2 M methanol aqueous
solution at the anode and oxygen at the cathode. Highest performance was reached by using a
membrane with TiO2 (5 wt.%) particles, i.e., a power density of 40 mW cm−2, almost doubling the
performance reached by using pristine CS/PTA membrane (i.e., 24 mW cm−2).

Keywords: chitosan; phosphotungstic acid; TiO2; Al2O3; inorganic filler; DMFC; methanol
permeability; hybrid membranes; proton exchange membrane; power density

1. Introduction

Direct methanol fuel cells (DMFCs) are among the most appealing green technologies
in energy supply for portable electronic devices, due to the several advantages related to the
usage of methanol aqueous solution, such as high volumetric energy density of methanol
(i.e., 4820 Wh L−1) [1], low operating temperature, easy fuel storage and transportation
and quick refueling [2]. Recently, DMFCs have been classified as the most cost-effective
technology as a power source for forklift applications, considering the much lower cost
of methanol infrastructure with respect to that of hydrogen and a proper improvement in
performance and reduction in PGM-based catalyst loading [3]. Additionally, the military
sector is integrating DMFC systems within its applications since DMFC can represent
a power source that is lightweight and compact, with very well controlled fuel supply,
water and heat management. Moreover, the use of DMFCs eliminate requirements for
fuel reforming and/or large onboard hydrogen storage tanks, which are key issues for the
usage and operation of PEMFC systems.

It is evident that DMFCs produce CO2 as a product of methanol oxidation reaction.
To overcome this issue, DMFC systems can use CO2-capturing systems [4]. Furthermore,
from an analysis produced by the USA Department of Energy (DoE) Hydrogen and Fuel
Cells Program Record, whether the methanol is used as a source of hydrogen that is then
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fueled in a fuel cell electric vehicle (FCEV) or is used directly in a DMFC-based FCEV, the
evaluated well-to-wheels (WTW) greenhouse gas (GHG) emissions are lower than both
internal combustion vehicles and hybrid vehicles, being almost 300 gCO2,e mile−1 [5].

However, some limitations still delay a full and widespread DMFC technology com-
mercialization, mostly due to the sluggish methanol oxidation reaction (MOR) at the anode
and severe methanol crossover through the membrane from anodic to cathodic compart-
ment [6,7]. The sluggish kinetic of MOR is basically due to the complex reaction mechanism
that involves many steps to succeed in exchanging six moles of electrons per mole of
methanol, according to the reaction:

CH3OH + H2O → CO2 + 6H+ + 6e− (1)

Typical Pt/C electrocatalysts cannot be used for MOR since strong adsorption of
carbon monoxide (CO) causes active site poisoning. For this reason, incorporation of
another metal in anodic electrocatalyst to form bimetallic compounds is the common
strategy to reduce activation overvoltage of MOR, because the second element (e.g., Ru, Pd,
Cu, Rh or Co) provides hydroxyl species helping the oxidation of CO to CO2 [2,8–10]. To
increase DMFC efficiency, high catalyst loadings should be used, but this would increase
the overall cost of the device. On the other hand, decreasing catalysts loadings can lead to
lower cost, which is important for a widespread distribution of the technology, but it could
also lead to a lower catalyst durability.

Methanol crossover from anode to cathode is the other phenomenon that can lead
to huge voltage losses, reducing the overall efficiency of the device. In fact, methanol
diffuses through the polymer electrolyte membrane because of the concentration gradient
and because of the electroosmotic drag due to the proton migration from anodic to cathodic
compartment [11,12]. This causes cathode depolarization with consequent high difference
between the electromotive force value and the open circuit voltage (OCV) value, possible
cathodic electrocatalyst poisoning (that is typically Pt-based) and consumption of O2 [7,13].

Current strategies to reduce methanol crossover enhancing DMFC efficiency are based
on the modification of the polymer electrolyte membrane as a barrier to the fuel diffu-
sion, but without compromising proton conductivity and chemical stability, which are
necessary for high-performance fuel cells. The introduction of filler nanoparticles can
make methanol diffusion difficult because of membrane channel blocking inducing steric
hindrance for methanol crossover and/or because of an increase in channels’ tortuosity
which, unfortunately, is often accompanied by a decrease in proton conductivity [13].
These strategies are usually adapted to decrease methanol permeability of Nafion® pro-
ton exchange membranes that are the state-of-art membranes for DMFCs. Nafion® and
Nafion®-based membranes, despite exhibiting high proton conductivity and durability,
suffer from high methanol permeability and high manufacturing costs [14,15], following a
non-environmentally friendly production route.

As possible substitutes of Nafion®-based membranes for DMFCs, biopolymer-based
membranes are considered due to their environmental friendliness. In particular, chitosan
(CS) is among the most used biopolymers because of its abundance, since it derives from
the N-deacetylation of chitin, its cost-effectiveness and its biocompatibility. CS-based
membranes are then used in various applications, such as electrodialysis, ultra and nanofil-
tration [16–18]. Despite their pros, CS-based membranes do not have high enough proton
conductivity to be used in FCs as solid electrolytes. In this frame, heteropolyacids (HPAs)
can be used to increase CS-based membranes’ proton conductivity. In fact, HPAs suffer
from leaching when used as solid electrolytes in FCs’ applications, leading to poor dura-
bility. Phosphotungstic acid (PTA) is one of the HPAs that were successfully employed
to form composite CS/HPA membranes to be used as proton exchange membranes in
hydrogen-fed FCs [19–23] and in DMFCs. In particular, CS/PTA membranes have been
successfully tested as proton exchange membranes, reaching high performances at 70 ◦C
with relatively low catalyst loadings at both anode and cathode [24]. Nevertheless, they
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showed quite high methanol permeability values, demonstrating that there is still room for
improving their performances and decreasing methanol crossover phenomenon.

In order to further enhance DMFC performance employing CS/PTA proton exchange
membranes, trying to use materials that can be sustainable in every production phase
and in their final disposal, in this work we synthesized hybrid inorganic-organic CS/PTA
proton exchange membranes [25] with the addition of TiO2 and Al2O3 particles to decrease
methanol permeability but retain high proton conductivity and durability. Membranes
were characterized with X-ray diffraction and scanning electron microscope to gain infor-
mation about crystallinity and morphology of the membranes as a function of the fillers’
nature. Membrane properties such as liquid uptake, ion exchange capacity and methanol
permeability were studied. Finally, composite membranes were tested in a single DMFC
module fed with methanol and oxygen.

2. Materials and Methods
2.1. Materials

Chitosan powder, acetic acid, phosphotungstic acid (H3PW12O40 × H2O) and Al2O3
powders were provided by Sigma Aldrich. TiO2 powder was supplied by Carlo Erba.

2.2. Membrane Synthesis

Membranes were synthesized by ionotropic gelation process on an anodic alumina
membrane (AAM) employed as porous support that was previously impregnated by PTA,
as described elsewhere [19,23]. CS solution was prepared by mixing CS powder (2% w/v),
acetic acid (2% w/v) and distilled water to obtain protonation and solubilization of CS.

To add fillers into the membranes, inorganic powders (2% w/v and 5% w/v) were added to
the aqueous acetic acid solution. This mixture was subjected to an ultrasonic cycle of 20 min so
that the powder could be homogeneously dispersed in the aqueous solution. Finally, CS powder
was added to the aqueous solution with acetic acid and mixed. Solutions were stirred for, at
least, 24 h before use. Higher content of inorganic nanoparticles led to worse performances or
non-uniform dispersion in acetic acid aqueous solution.

CS solutions and fillers were put in contact with a porous medium previously im-
pregnated with an aqueous PTA solution (0.38 M) to induce membrane reticulation (cross-
linking). The reticulation time (60 min in this work) was useful for controlling the thickness
of the membrane. Finally, all the membranes were put in the aqueous PTA solution for 24 h
for the functionalization process, i.e., to increase the proton conductivity of the membranes.
The whole synthesis process is schematically reported in Figure 1.
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2.3. X-ray Diffraction (XRD)

X-ray diffraction (XRD) patterns were collected using a Pan Analytical Empyrean,
powder X-ray diffractometer with a copper anode (Cu Kα radiation, λ = 0.15405 nm, 30 kV,
30 mA). XRD patterns were recorded over the 2θ angle range from 10◦ to 90◦ with a step
size of 0.03◦ and a scan speed of 4◦ min−1.

2.4. SEM Characterization

Scanning electron microscope (SEM) analysis was conducted using a Philips XL30
ESEM coupled with EDX equipment. Prior to image acquisition, several pieces of each
sample were fixed on the metal stubs with Ag conductive paste.

2.5. Liquid Uptake

Liquid uptake was calculated through the following relationship [26]:

L.U. [%] =
Wwet −Wdry

Wdry
× 100 (2)

where Wdry (mg) is the weight of the dried membrane and Wwet (mg) is the weight of the
wet membrane. Specifically, once synthesized, the membrane was washed for 5 min in
distilled water to remove any traces of membrane synthesis solution and then dried for,
at least, 24 h at 25 ◦C. After the membrane was weighed, it was immersed for 24 h in
methanol aqueous solution at different concentrations (1 M, 2 M and 5 M). The membrane
was weighed by removing excess solution to estimate the correct Wwet value. Each liquid
uptake measurement was repeated four times for all characterized membranes.

2.6. Ion Exchange Capacity

The ion exchange capacity (IEC) of the membranes was determined using a titration
process. IEC was measured for functionalized membranes.

Membrane weight (Wdry) after a drying step was measured, then it was washed and
left for 15 min in distilled water to remove excess acid deposited on the surface. The
membrane thus was immersed in a 1 M NaCl solution for 2 h so that the exchange between
H+ contained in the membrane with the Na+ ions in the solution takes place. Therefore,
the solution had an acidic character due to the formation of HCl, so it was neutralized by
the addition of a 0.01 M NaOH solution. The volume of NaOH (VNaOH, [L]) required to
reach the equivalent point (pH = 7) was calculated. The IEC of each membrane was, then,
determined using the following equation [26]:

IEC =
[NaOH] VNaOH

Wdry
(3)

2.7. Methanol Permeability

The methanol permeability of the synthesized membranes was estimated using a
two-compartment diffusion cell at 70 ◦C.

The membrane was placed between the donor compartment (A), where a 1 M methanol
aqueous solution was present, and the receptor compartment (B), where distilled water
was present. At first, the two compartments were loaded with 96 mL of deionized water
each; when the two compartments reached 70 ◦C, 4 mL of water was added to B and 4 mL
of methanol to A.

Once the test began, liquid samples were taken from the downstream cell (B compart-
ment) at different time intervals, specifically after 1 min, 10 min, 30 min, 1 h, 3 h, 5 h and 7 h
from the start of the test, in order to evaluate the trend of methanol concentration as a func-
tion of time (CB(t)). The samples taken were then analyzed with a GC-2010 SHIMADZU
gas chromatograph, inside which 0.2 µL of solution was injected for each measurement via
a 2 µL HAMILTON syringe.



Membranes 2023, 13, 210 5 of 19

The methanol permeability of the membrane was calculated by the following equation [27]:

P =
1

CA

(
∆CB
∆t

)(
L V
A

)
(4)

where P is the methanol diffusion permeability into the membrane (cm2 s−1), CA is the
concentration of methanol in cell A (mol L−1), ∆CB(t)/∆t is the slope of the change in the
molar concentration of methanol in the B cell as a function of time (mol L−1 s−1), V is
the volume of each diffusion tank (cm3), L is the membrane thickness (cm) and A is the
membrane area (cm2).

2.8. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was carried out to study the thermal stability of
hybrid inorganic-organic membranes by using a thermobalance TG/DTA NETZSCH 449
F1 Jupiter. Membrane samples were placed in an alumina crucible and heated from 30 to
400 ◦C with a heating rate of 10 ◦C min−1 in nitrogen atmosphere.

2.9. Single DMFC Performances

The single cell characterizations were carried out by using in-house prepared elec-
trodes. For the anode a 60% Pt-Ru/C (Alfa Aesar) electrocatalyst with a Pt loading of
2.3 mg cm−2 was used, while a 40% Pt/C (Alfa Aesar) with a Pt loading 0.5 mg cm−2

was used at the cathode. The catalytic inks, obtained by mixing the electrocatalysts with
Nafion (5 wt% hydro-alcoholic solution IonPower-LQ1105) and a pore-former (ammonium
carbonate), were deposited by spray coating technique onto a commercial gas diffusion
layer Sigracet-24 BC (from the SGL group), as described elsewhere [28,29].

Membrane electrode assembly (MEA) was obtained by placing electrodes and mem-
brane in the single cell module with an applied torque of 4 Nm for each measurement. To
evaluate the membranes performance in the DMFC, a 2 M methanol aqueous solution was
used, fed to the anode at a flow rate of 3 mL min−1, while humidified oxygen (99.5% purity)
was fed to the cathode at 50 mL min−1. Oxygen and methanol were fed using high-purity
graphite plates with high electrical and thermal conductivity. In addition, silicone gaskets
were inserted between the MEA and the graphite plates. Gold-plated plates were used
as current collectors, which in turn were joined to the graphite plates. Electrochem Inc.
DMFC station was used for the DMFC in-cell characterization. EIS measurements were
made by superimposing a 10 mV amplitude sinusoidal signal in the frequency range of
100 kHz to 10 mHz on the constant continuous cell voltage. Working and sense electrodes
were connected to the cathode (oxygen side) whilst counter and reference electrodes were
connected to the anode (methanol side). ZSimpWin software was used to fit the obtained
EIS spectra. Electrical equivalent circuit used for the fitting procedure is discussed in
Section 3.6. All cell tests were performed at 50 ◦C with a Parstat 4000 (Princeton Applied
Research) and refer to an active (apparent) area of 1 cm2. A triple serpentine flow field was
used to supply reactants to the cell.

3. Results and Discussion
3.1. XRD Analysis

XRD analysis was performed to study the crystallinity of the membranes and verify
the correct incorporation of the fillers within the chitosan/PTA matrix. In the case of proton
exchange membranes used in DMFC, crystallinity degree is important since it affects the
mass transport across the membrane [30,31], i.e., methanol crossover (in the case of DMFC)
with consequent performance decrease. XRD pattern for CS/PTA membrane without any
filler is reported in Figure S1. Reflection at 2θ = 20.5◦ is due to the presence of Form II
polymorph of chitosan. This reflection is present only after the functionalization step [20],
which leads to an increase in crystallinity degree of the membranes.

XRD patterns of CS/PTA membranes after fillers addition are shown in Figure 2a,b.
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With the addition of the TiO2 particles, the crystallinity degree of the obtained com-
posite membrane increases if compared to pristine CS/PTA polymer (see Figure 2a), due to
the inclusion of the filler particles. Characteristic reflections of rutile polymorph of TiO2
can be seen at 2θ = 27.6◦, 36.2◦, 41.4◦, 54.4◦, 62.8◦ and 69.2◦ [32]; therefore, TiO2 particles
were successfully incorporated into the CS/PTA membranes synthesized by ionotropic
gelation process.

The effect on the crystallinity degree of addition of Al2O3 particles during the synthesis
of the membranes is completely different with respect to TiO2 particles, as can be noted in
Figure 2b where the XRD pattern for membrane with Al2O3 particles is reported. Diffraction
peaks relative to pristine CS/PTA membranes, which can be identified from Figure S1, are
flattened after the inclusion of Al2O3 particles. Furthermore, diffraction peaks of Al2O3
powder (see Figure S2) that was used for preparing the Al2O3-containing membranes are
not present in XRD pattern shown in Figure 2b. These findings suggest an increase in the
amorphous degree of the membranes and the incorporation of a small concentration of
Al2O3 particles.

3.2. Membranes Morphology and TGA Analysis

CS/PTA hybrid inorganic-organic membranes were morphologically characterized at the
microscale by SEM. In previous works, it has been demonstrated that PEMs for hydrogen-
fed and methanol-fed low-T fuel cells can be successfully synthesized through ionotropic
gelation method [21,22,24]. These PEMs were compact and flaw-free, without the presence of
micro/macro voids that can negatively affect cell performance. The addition of inorganic fillers
can lead to changes to the structural and morphological properties of PEMs.

In Figure 3, SEM micrographs related to the morphology of TiO2-containing mem-
branes are reported.

Notably, the addition of TiO2 particles does not cause any significant changes to the
membranes, at least from a morphological point of view. In fact, compact and uniform
membranes can be appreciated in Figure 3a,c, regardless of the TiO2 content added during
the membranes synthesis. TiO2 particles were uniformly dispersed across the entire thick-
ness without sign of particle aggregates/clusters. It is noteworthy to mention that a higher
TiO2 wt% concentration during the synthesis leads to thicker membranes. In fact, using
TiO2 2 wt%, membrane thickness is ~58 µm whilst using a TiO2 5 wt% concentration the
membrane thickness is ~73 µm. These thickness values are lower than the usual Nafion
membranes thickness used for DMFC (~125 µm for Nafion® 115) and are in the same order
of magnitude of pristine CS/PTA membranes without the addition of any filler, indicating
the optimal dispersion of the particles inside the membranes.
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In Figure 4, SEM micrographs related to the morphology of Al2O3-containing membranes
are shown.
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It can be noted that the membranes still appear without any flaws, confirming that
the addition of fillers can be successfully performed during the ionotropic gelation process.
Using Al2O3 2 wt%, membrane thickness is ~46 µm, i.e., slightly lower than that obtained
using TiO2 2 wt%, whilst using a Al2O3 5 wt% concentration the membrane thickness is
~79 µm, i.e., slightly higher than that obtained using TiO2 5 wt%. It is worth noting that
membrane morphology (see cross sections in Figure 4b,d) is different with respect to that
of TiO2-containing membranes. It is similar to pristine membrane morphology [20] due to
a low degree of particle incorporation, leading also to amorphous membranes (see before).
These different morphologies can lead to different properties, specifically crystallinity and
methanol permeability (see below).

Weight loss, evaluated by thermo-gravimetric analysis, for all the synthesized mem-
branes is reported in Figure 5.
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Up to 100 ◦C, the weight loss is ≈5% and is due to the water evaporation. However,
this low weight loss indicates that synthesized hybrid membranes can safely work up to
80 ◦C. It is worth noting that the total weight loss, evaluated at 400 ◦C, is only about 20%
for the membrane with the worst thermal behavior, i.e., pristine CS/PTA. The addition of
inorganic filler improves, in any case, the thermal stability. The hybrid inorganic-organic
membrane with the lowest weight loss is the TiO2-containing membrane with 5% wt.

3.3. Liquid Uptake

Measurement of the liquid uptake of synthesized membranes is important to predict
performance in single cell setup because it strongly depends on the liquid (i.e., water and
methanol) content that the membrane is able to absorb and retain. In fact, one of the main issues
affecting DMFC cells performance is the methanol crossover through the polymer membrane,
which can permeate along with water from the anodic to cathodic compartment.

Liquid uptake measurements were performed by the double-weighted gravimetric
technique, using an aqueous solution with several methanol concentrations (i.e., 1 M, 2 M
and 5 M) to assess if feed methanol concentration can affect the liquid uptake. Liquid
uptake values related to different membranes and different methanol concentration are
shown in Figure 6.
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No significant changes in membranes liquid uptake were detected depending on the
methanol concentration used for the test, meaning that these membranes do not show any
tendency to retain more methanol than water.

Evaluating the effect of the nature of fillers, membranes prepared with 5% wt TiO2
particles have the lowest values of liquid uptake (≈23%) at any CH3OH concentration. On
average, TiO2-containing membranes present lower liquid uptake than Al2O3-containing
membranes, which is lower than that related to pristine CS/PTA membranes.

It is documented in the literature that water retention properties strongly depend on
the surface properties of inorganic filler particles [33–37], considering that the strength
of water adsorption on the particles is related to the charge of surface functional groups
and to the particle surface area. Surface charge can be directly correlated to isoelectric
point or zero charge pH, pHpzc, of the inorganic filler particles [38]. In particular, if the
solution pH is lower than the particle pHpzc, the surface will be positively charged. Con-
versely, if the solution pH is higher than the particle pHpzc, the surface will be negatively
charged. Furthermore, the difference between pH and pHpzc can be related to the density
of positive/negative site of the particles. If we consider that TiO2 pHpzc is 5 and Al2O3
pHpzc is 9.5 [38], the difference between pH and pHpzc of alumina particles is higher with
respect to that related to titania particles; therefore, the surface charge is higher in the case
of alumina particles as filler. This causes a higher liquid uptake in the case of alumina as
filler, concluding that membrane with TiO2 5% wt retains less water, but at the same time it
also absorbs less methanol.

3.4. Ion Exchange Capacity

IEC values are strictly related to the content of functional groups of the membranes,
and thus are also strictly related to the membranes’ proton conductivity. To achieve higher
proton conductivity, high IEC values are required.

IEC values related to all the membranes studied in this work are reported in Figure 7.
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As average trend, it can be noted that the addition of inorganic filler increases IEC
value of the pristine CS/PTA membrane, that is, 1.3 meq g−1, to values close to 1.5 meq
g−1. Only membranes with Al2O3 2% wt present slightly lower IEC values than pristine
membranes (1.1 meq g−1), but even higher than those measured for Nafion® 115 membrane,
i.e., 0.8 meq g−1. Therefore, adding fillers to the CS/PTA slightly enhances IEC of the
pristine CS/PTA.

3.5. Methanol Permeability

Membranes methanol permeability is one of the most important characteristics of the
PEM to be used in DMFC since methanol crossover, from anodic to cathodic compartment,
can lead to dramatic performance losses. Fillers’ inclusion in PEM can be a solution to
decrease methanol permeability, since their presence inside the membrane channels can be
a physical obstacle to the methanol diffusion introducing tortuous pathways and/or steric
blocking.

In Figure 8, methanol concentration in the permeate compartment (see experimental
section) vs. time graph is reported for all synthesized membranes.

As expected, methanol concentration increases almost linearly with measurement time.
The slope of the graph depends on the properties of the membrane, i.e., on the nature and
concentration of the filler. From the slope, according to Equation (4), it is possible to estimate
methanol permeability for all the studied membranes. Lowest methanol permeability value
has been estimated for membrane prepared with TiO2 2% wt, 2.5× 10−6 cm2 s−1, whilst the
highest one for the membrane prepared with Al2O3 5% wt, 7.1× 10−6 cm2 s−1 (see Figure 8).
Except for the latter case, methanol permeability turned out to be lower with respect to
that estimated for pristine CS/PTA membrane, 5.6 × 10−6 cm2 s−1. This result is coherent
with the data discussed before: TiO2-containing membranes are more crystalline than
pristine CS/PTA membrane with a lower liquid uptake, and therefore they show the lowest
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methanol permeability value. However, the presence of inorganic fillers leads to lower
methanol permeability values, with high IEC and low water uptake.
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3.6. Single DMFC Performance

Figure 9 shows the polarization and power density curves measured for different
synthesized hybrid membranes, changing filler type and concentration, at T = 50 ◦C feeding
2 M methanol solution at the anode. Notably, low Pt loading (2.3 mg cm−2) at anode and
Pt loading (0.5 mg cm−2) at cathode were used with respect to those reported usually in
the literature [9].
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Open circuit voltage (OCV) values, regardless of membrane inserted in the MEA,
were lower than electromotive force, that is, 1.21 V. OCV value strongly depends on the
fuel crossover phenomena, leading to a depolarization of the cathode. It is noteworthy
to mention that the presence of fillers inside the membrane reduced methanol crossover
with respect to pristine CS/PTA membranes due to a reduced methanol permeability. In
fact, higher OCV values were measured for the membranes with fillers with respect to that
prepared with Al2O3 5% wt due to a higher methanol permeability (see Figure 8), which
are comparable or higher OCV values than those obtained with Nafion membranes with
the same or higher thickness values (i.e., 0.59 V—0.66 V) [39].

The highest power density value was measured using a hybrid membrane CS/PTA
with TiO2 (5 wt%), achieving 40 mW cm−2, sensibly higher than that measured by using
a pristine CS/PTA membrane, i.e., 24 mW cm−2. Hybrid membrane CS/PTA with TiO2
(5 wt%) was also tested with 9 h stability test (see polarization curve recorded after the test
in Figure S4) demonstrating a low decrease in performance. These power density peaks are
higher than that reached by using commercial Nafion® 212, i.e., Nafion membrane with
comparable thickness, which was 12 mW cm−2, mainly due to a low measured OCV value
(≈0.6 V) confirming a high methanol permeability (see Figure S3). From the slope of the
linear part of the polarization curves, considered as close to the membrane resistance value,
Rm (Ohm cm2), it is possible to estimate membranes’ proton conductivity, σ (mS cm−1),
according to the following equation [20]:

σ =
L

Rm A
(5)

Where A (cm2) is the active (apparent area) and L (cm) is the membrane thickness.
The highest proton conductivity values were estimated for hybrid membranes containing
5% of the filler (7.6 mS cm−1 and 7.3 mS cm−1 for TiO2-containing and Al2O3-containing
membranes, respectively). For membranes containing 2% of the filler, 4 and 4.4 mS cm−1

were estimated for TiO2-containing and Al2O3-containing membranes, respectively.
As a general trend, all the power density values measured using membranes with the

addition of filler, regardless of their nature, were higher than power density obtained by
using a pristine CS/PTA membrane. In the particular case of a membrane with TiO2 (5 wt%)
as filler, cell performance can be related to the specific features of this membrane, i.e., low
liquid uptake, high IEC and low methanol permeability. By taking into account the acidic
environment inside the DMFC and corresponding pHpzc values, TiO2 and Al2O3 particles
inside the solid electrolyte are negatively charged. In particular, being pHpzc, Al2O3 = 9.5
and pHpzc, TiO2 = 5.0, the superficial charge density, which can be assumed to be propor-
tional to the difference between particle pHpzc and environment pH, is lower in the case of
TiO2 particles with respect to Al2O3 particles. This can be directly related to the amount
of bound and free water inside the proton exchange membrane since particles with a
higher superficial charge density will be bound to more water molecules. Therefore, for
membranes with TiO2 particles as filler, more free water will be present inside the solid
electrolyte with respect to the amount of free water present inside the membranes with
Al2O3 particles, which have a higher superficial charge density. It is known that water
plays a crucial role in the transport of protons across the polymer electrolyte. More specifi-
cally, two transport mechanisms are used to describe protons transport in the electrolytes,
i.e., Grotthuss and vehicular mechanisms. The former considers the protons’ migration as a
“hopping” mechanism in a water chain through the formation of hydrogen bonds between
adjacent water molecules [40,41] and it is typically related to high T fuel cells conditions.
According to the vehicular mechanism, protons migrate bonded to a “vehicle”, such as
water molecules [42,43], and therefore protons’ movement is directly related to the amount
of free water inside the membrane. For this reason, this mechanism is typically related to
low-T fuel cells conditions. Therefore, free water is essential for the vehicular mechanism
to have efficient proton migration. Since DMFC studied in this work worked at 50 ◦C, i.e.,
low-T conditions, the proton migration can be associated with the vehicular mechanism
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and to the presence of free water inside the polymer electrolyte. For this reason, membranes
with TiO2 particles as filler worked better in these particular operating conditions, leading
to the highest measured cell performances.

To have more insight about cell performance as a function of inorganic filler, we recorded
EIS spectra at 550 mV and at 250 mV, i.e., in activation region and in ohmic region of the
polarization curve, respectively. EIS spectra for cell employing TiO2 (5 wt%)-containing and
Al2O3 (2% wt)-containing membranes are reported in Figure 10 in Nyquist representation.
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To model the electrochemical behavior of the DMFC, two different equivalent electrical
circuits (EECs) were used. EEC used to fit impedance data recorded in activation region,
i.e., at 550 mV as cell voltage, comprised a resistance, Rohm, which is representative of the
cell ohmic contributions, e.g., contact and membrane resistances. This is in series with
two parallels (RQ) between a resistance and a constant phase element, CPE (see inset
Figure 10a). The former is representative of the charge transfer resistance, Rct, directly
related to the anode/cathode reaction kinetics, whilst the latter is inserted to model the non-
ideal double layer capacitance of the electrode. Two parallel (RQ) are expressed in Nyquist
representation by two depressed semicircles, as those shown in Figure 10a,c, suggesting
a contribution to the overall impedance of the charge transfer resistance of both half-cell
reactions, i.e., methanol oxidation (MOR) and oxygen reduction (ORR), regardless of the
inorganic filler used inside the proton exchange membrane. Another EEC was used to fit
impedance data recorded in ohmic region, i.e., at 250 mV as cell voltage. In this case, in
addition to the previous EEC, a series between a resistance and an inductance was used in
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parallel to the (RQ) representative of the PtRu anode (see inset Figure 10d). This change
in EEC was necessary because of the presence in EIS spectra shown in Figure 10b,d of
the beginning of an inductive loop in the low frequencies range. This behavior is usually
related to reactions whose kinetics depend on surface coverage, for instance methanol
electrooxidation, where the adsorption and desorption of CO species at the electrode play
a key role. EIS spectra fitting parameters are reported in Table 1.
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Table 1. Fitting parameters of EIS spectra recorded for all the investigated membranes. EECs: inset of Figure 10a,d.

Pristine CS/PTA TiO2 (2% wt) TiO2 (5% wt) Al2O3 (2% wt) Al2O3 (5% wt)

550 mV 250 mV 550 mV 250 mV 550 mV 250 mV 550 mV 250 mV 550 mV 250 mV

Rohm
[Ω·cm2] 0.5 0.5 0.7 0.6 0.6 0.6 0.6 0.7 0.5 0.6

Rct,C
[Ω·cm2]

3.5 1.3 2.8 1.2 1.6 0.7 2.0 0.9 5.7 1.5

QC
[S·sn·cm−2] 0.04 0.03 0.05 0.13 0.05 0.06 0.04 0.06 0.04 0.07

nC 0.79 0.82 0.81 0.56 0.85 0.79 0.88 0.74 0.90 0.75
Rct,A

[Ω·cm2]
74 1.9 34 2.0 40 1.1 30 1.4 25 1.7

QA
[S·sn·cm−2] 0.28 0.27 0.29 0.58 0.33 0.41 0.39 0.32 0.38 0.84

nA 0.91 1 0.93 0.84 0.91 1 0.92 1 1 0.84
L

[H·cm2] - 1.2 - 1.0 - 0.8 - 0.7 - 0.6

R
[Ω·cm2] - 1 × 10−7 - 2.1 - 1 × 10−2 - 1 × 10−7 - 0.4

X 2 3 × 10−3 7 × 10−4 4 × 10−3 3 × 10−3 4 × 10−4 9 × 10−4 2 × 10−3 2 × 10−3 6 × 10−3 8 × 10−4
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Regarding the impedance spectra recorded in the activation region, anode charge
transfer resistance, Rct,A, is always at least one order of magnitude higher with respect to
cathode charge transfer resistance, Rct,C, regardless of the nature of inorganic filler. This
is due to the methanol electrooxidation reaction which is intrinsically more sluggish than
oxygen reduction reaction. It is noteworthy to mention that Rct,A in the case of inorganic
filler-modified membrane is always lower with respect to Rct,A estimated with pristine
CS/PTA membrane. Since it is difficult to think to any catalytic effect of TiO2 or Al2O3
particles on the MOR reaction, this result is supposed to be due to a better contact between
PtRu catalyst layer and the proton exchange membrane.

Regarding the impedance spectra recorded in the ohmic region, Rct,A and Rct,C values
are comparable. This result can be explained by considering that, at 250 mV, both electrode
reactions have enough overpotential to be fully activated and, therefore, voltage drop is
essentially due to the ohmic losses. To understand the reason why it is important to insert
an inductance in the EEC to model the electrochemical behavior of the DMFC depending
on the impedance spectrum cell voltage, we can consider the MOR as a two-step reaction,
based on the following steps [24]:

CH3OH
k1→ COads + 4H+ + 4e− (6)

COads + H2O
k2→ CO2 + 2H+ + 2e− (7)

with k1 and k2 the rate constants of the two steps considered for the overall MOR. In partic-
ular, Reaction (6) is the methanol oxidation, involving four moles of electrons, which leads
to the adsorption of intermediate CO species, whilst Reaction (7) involves the oxidation of
COads to CO2. It can be demonstrated that, if only one intermediate reaction is involved
in the overall MOR (i.e., COads), the admittance, Y (i.e., impedance reciprocal) related to
methanol oxidation is expressed by the following equation [24]:

Y =
1

Rct
+

A
B + jω

(8)

that is, corresponding to an EEC that depends on the A value. The latter depends on many
factors, such as the Tafel slopes of Reactions (6) and (7), but also on k1 and k2. In particular,
if A > 0, the suitable EEC to model the behavior of the cell is that reported in the inset of
Figure 10d, i.e., EEC with an inductance in series with a resistance. If A < 0, the suitable
EEC to model the behavior of the cell is that reported in the inset of Figure 10a, i.e., the
typical EEC describing two electrodes within in series an ohmic resistance. In the activation
region, electrode kinetics control overall cell performance, and in particular MOR is the
reaction with highest overpotential, as also demonstrated by the values of Rct,A and Rct,C
reported in Table 1. In these cell operating conditions, probably reaction 6a is the rate
determining step of the overall MOR, since it involves the exchange of 4 moles of electrons,
and therefore k1 < k2 and A < 0. In the ohmic region, where MOR overpotential becomes
high, k1 and k2 could have comparable values; therefore, A > 0 and it is necessary to insert
an inductance in the EEC (see inset of Figure 10d) to suitably model the electrochemical
behavior of the cell.

4. Conclusions

Hybrid inorganic-organic CS/PTA membranes were successfully synthesized by
ionotropic gelation process with the addition of TiO2 and Al2O3 particles in different
weight ratios (2 and 5 wt%). The addition of inorganic fillers to pristine CS/PTA mem-
branes led to changes in several properties of the membranes that have a key role in DMFC
performance. In fact, TiO2-containing membranes were more crystalline with lower liquid
uptake and methanol permeability. Al2O3-containing membranes followed the same trend
but resulted to be amorphous and, generally, showed higher liquid uptake and methanol
permeability than TiO2-containing membranes.
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In-cell testing and EIS measurements showed that TiO2-containing and Al2O3-containing
membranes can be efficiently used as proton exchange membranes for acidic DMFCs, operating
in a single module of 1 cm2 as active area, operating at 50 ◦C fed with 2 M methanol aqueous
solution at the anode and oxygen at the cathode. Highest performance was reached by using a
membrane with TiO2 (5 wt.%) particles, i.e., a power density of 40 mW cm−2, almost doubling
the performance reached by using pristine CS/PTA membrane (i.e., 24 mW cm−2).

These hybrid inorganic-organic membranes, produced by ionotropic gelation process,
were found to be suitable for energy storage and conversion applications but they could be
also used for other applications, such as electrodialysis, nanofiltration and ultrafiltration,
widening the potential application field of this environmentally sustainable membrane
production route.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13020210/s1. Figure S1: X-ray diffraction patterns
related to pristine CS/PTA membrane; Figure S2: X-ray diffraction patterns related to Al2O3 powder;
Figure S3: Polarization and power density curves related to a single module DMFC of 1 cm2 as active
area, employing Nafion® 212, operating at 50 ◦C fed with 2 M methanol aqueous solution at the
anode and oxygen at the cathode; Figure S4: Polarization and power density curves related to a single
module DMFC of 1 cm2 as active area, employing CS/PTA with TiO2 (5%) as electrolyte, operating
at 50 ◦C fed with 2 M methanol aqueous solution at the anode and oxygen at the cathode, recorded
after 9 h of potentiostatic stability test.
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