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Abstract

Background: Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control

interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic

parasitaemia in multiple sites.

Methods: We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan

Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and

examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over

varying transmission intensity.

Results: Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria

within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p < 0.001).

However, statistical significance of hotspots was lowest at extremely low and extremely high MPFs, with a peak in

statistical significance at an MPF of ~0.3. In four sites with longitudinal data we noted temporal instability and variable

negative correlations between MPF and average age of symptomatic malaria across all sites, suggesting varying

degrees of temporal stability.

Conclusions: We observed geographical micro-variation in malaria transmission at sites with a variety of transmission

intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to

show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with

which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for

responding to apparent clustering of cases.
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Background

Heterogeneity of infectious agents (including Plasmo-

dium falciparum malaria parasites) has long been recog-

nized empirically and explored using mathematical

models. For many infectious diseases, ~20% of the hu-

man population account for ~80% of the infectious bur-

den [1]. Therefore, targeting high-risk populations with

effective malaria control measures is likely to be more

effective than the same level of untargeted intervention

[2]. Furthermore, elimination may not be achieved with-

out some focus on hotspots. Such a strategy requires the

accurate identification and a better understanding of the

properties of malaria hotspots.

Spatial analyses to describe clustering have been exten-

sively applied in malaria epidemiology [3]. For instance,

Kulldorff ’s spatial scan statistic and Moran’s I statistic

have previously been used in malaria epidemiology to

demonstrate spatial heterogeneity [4–8]. The scan statis-

tic has been used to identify high-risk areas (’hotspots’)

that would potentially benefit from targeted intervention* Correspondence: PMogeni@kemri-wellcome.org
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[9], and Moran’s I can be used to demonstrate spatial

autocorrelation throughout datasets.

Variation in malaria risk has been associated with many

factors such as distance to the nearest mosquito breeding

grounds (for instance, dams, wet/swampy areas and irri-

gated farm land) [10, 11], rainfall and temperature [12],

altitude [7, 8, 13], proximity to dense vegetation [7, 14],

wind direction [15], administration of malaria control in-

terventions (such as insecticide-treated net coverage, in-

door residual spraying and anti-malaria drug use) [16, 17],

urbanization [18], host genetic factors [19] and human

factors including but not limited to social economic status

and housing characteristics [7, 20–22]. These factors act

at various spatial scales and may explain why some house-

holds experience higher risk of malaria while others re-

main free or experience fewer episodes of the disease.

It has been predicted that hotspots of P. falciparum

malaria transmission become more marked as transmis-

sion intensity declines [2, 23]. Widely used metrics for

mapping malaria risk include the prevalence of symp-

tomatic and asymptomatic parasitaemia from cross-

sectional surveys [24], fraction of symptomatic malaria

cases determined either through the use of case control

methods at health facilities [5, 17] or active and passive

case detection from cohort studies [4], serological

markers and anopheles mosquito abundance conducted

using a variety of mosquito collection methods in house-

holds [6, 25].

In this study, we describe trends in micro-heterogeneity

of malaria transmission using the following empirical data:

acute symptomatic malaria (detected through active and/

or passive case detection or cross-sectional surveys), and

prevalence of parasitaemia detected through cross-

sectional surveys. These data are drawn from 19 different

study sites across seven sub-Saharan African countries,

representing a range of transmission intensities from in-

tense transmission in Burkina Faso [26] to low transmis-

sion in The Gambia and the northern part of Kilifi, Kenya

[17]. We aimed to (1) examine trends in parameters de-

scribing local clustering (or hotspots) and in global mea-

sures of spatial autocorrelation of malaria cases at varying

transmission intensities, (2) examine temporal stability of

hotspots of malaria and (3) investigate the association be-

tween micro-variations in mean age of symptomatic mal-

aria (as a proxy for exposure/acquired immunity) and the

malaria positive fraction (MPF) across the sites.

Methods

Data

Data were assembled from studies conducted in sub-

Saharan Africa (Fig. 1, Table 1) with homestead-level geo-

spatial records linked to malaria surveillance at sites with

varying transmission intensities. These studies used micros-

copy for detection of malaria parasites, clinical assessments

for presence or absence of fever and reported homestead-

level geospatial coordinates. For cluster-randomized or

individual-randomized controlled trials, data from interven-

tion and control arms were analysed separately. Datasets

were then further divided by year before analysis for spatial

clustering. Ethical approval and consent for human partici-

pation was granted by relevant authorities of the countries

in which the studies were conducted (see references in

Table 1). Data were shared with no personal identifiers ex-

cept geospatial coordinates.

Malaria case definition

Symptomatic malaria and asymptomatic parasitaemia

were classified per the definitions shown in Table 1. The

key metrics were P. falciparum parasite rate (i.e. the pro-

portion of asymptomatic parasite carriage from commu-

nity cross-sectional surveys), MPF (defined as the

fraction of symptomatic malaria) and mean age of chil-

dren presenting with symptomatic malaria.

Statistical methods

Data from each site were used to quantify spatial cluster-

ing of malaria (described in detail in the following sec-

tions). The various metrics from each site were then

pooled to examine systematic variation in metrics of

spatial clustering over transmission intensity using site

as the unit of analysis. Observations with missing geo-

coordinates, age and malaria slide results in any of the

requested datasets were excluded prior to the analysis.

No data imputation was done at any analysis stage.

Local cluster detection

Hotspots are defined as geographical areas experiencing

significantly more malaria cases (or more prevalent asymp-

tomatic parasitaemia) than would be expected by chance.

Kulldorff ’s spatial scan statistic [27], estimated in SaTScan

software, was used to detect hotspots. SaTScan imposes a

circular scanning window that moves across geographical

space with radius varying from zero to a maximum radius

enclosing at most 30% (prespecified by the user) of the

population in the sampling frame. For each location and

size of the window, the number of observed cases was

counted, and expected cases were computed by assuming

a uniform distribution of cases across the population. The

scan statistic compared the count within each circle and

that outside to derive a log likelihood statistic. To test the

null hypothesis of complete spatial randomness, SaTScan

employs multiple random permutations or Monte Carlo

simulations based on the observed cases across the entire

set of data locations. The observed log likelihood is then

compared with the simulated log likelihoods to determine

significance [27]. In this analysis, spatial scan statistics were

used to detect local spatial clusters of asymptomatic car-

riers and/or symptomatic malaria cases using a Bernoulli
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model, where cases were individuals with malaria and con-

trols were individuals without malaria. We assessed vari-

ation in the number of hotspots per study site, the risk

ratio (RR) of the most likely (primary) hotspot (i.e. the ratio

of the risk of malaria within the hotspot divided by the risk

outside the hotspot) and the p value of the primary hotspot

over transmission intensity.

Global spatial pattern analysis

We used Ripley’s K function to analyse binary data (i.e.

cases vs controls) and Moran’s I for continuous data

(e.g. the average ages of children with clinical malaria).

The K function [28] was used to test consistency with

or departure from spatial randomness within each site.

The spatial point pattern data consisted of locations of

homesteads with slide positive cases and slide negative

controls. The K function is a global measure of the num-

ber of observed cases within a set of distances of any

given case. To control for heterogeneity in the under-

lying population density distribution, the difference be-

tween the K function summarizing the degree of

clustering of homesteads with cases and controls was

computed. Under the null hypothesis of no spatial de-

pendence, the K function for cases (Kcase(d)) and that for

the controls (Kcont(d)) are identical through the distance

(d). A difference in K function {(Kcase(d)) – (Kcont(d))

[29], also known as the D function, greater than zero

suggests spatial clustering. The 95% critical regions of

the observed D functions for the various spatial scales

were constructed using repeated simulations. Edge ef-

fects due to points close to the boundary of the K func-

tion were corrected using Besag’s method. Key

parameters of interest from this analysis were the esti-

mate of the D function and its significance. A sensitivity

analysis was conducted at various predefined distances.

Moran’s I tests the null hypothesis that there is no

spatial clustering of a metric [3]. The test examines

whether values among neighbouring homesteads/loca-

tions are spatially auto correlated (clustered), random or

dispersed. The Moran’s I statistic ranges between –1 and

1. A positive Moran’s I indicates a tendency towards

spatial clustering, a negative Moran’s I indicates a ten-

dency towards regularity (dispersion) while a value of 0

indicates a random distribution of events.

Fig. 1 Map of sub-Saharan Africa showing countries and their respective number of studies included in the analysis
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Table 1 Study characteristics

Location Study description Sample
size (N)

Malaria case definition
(symptomatic malaria)

MPF
(n/N)

Asymptomatic
parasitaemia
assessed?

Parasite
prevalence (%)

Kilifi Kenya [5] Ngerenya Dispensary Surveillance;
monitoring was conducted from
1 April 2014 to 31 December 2015

1998 Any presentation with
parasitaemia

0.048 No Not applicable

Kilifi Kenya [4] Junju cohort, monitored between
1 January 2005 and 31 December 2015

4534 Temperature >37.5 °C and
parasitaemia >2500/μL

0.376 No Not applicable

Kilifi Kenya [4] Ngerenya cohort, monitored between
1 January 2003 and 31 December 2015

3659 Temperature >37.5 °C and
parasitaemia >2500/μL

0.043 No Not applicable

Kilifi Kenya [25] Ganze cross-sectional surveys of
asymptomatic parasitaemia and a study
cohort monitored for clinical episodes
in 2012 and 2013

2532
1518a

Temperature >37.5 °C and
parasitaemia >2500/μL

0.053 Yes 1.25

Kilifi Kenya [5] Pingilikani Dispensary Surveillance;
monitoring was conducted from 1
January 2009 to 31 December 2014.
Each year’s data were analysed
separately to capture temporal trend
in transmission intensity

22,595 Temperature >37.5 °C and
parasitaemia >2500/μL

0.243 No Not applicable

Kilifi Kenya [17] Kilifi County Hospital Surveillance;
monitoring conducted from 1
January 2009 to 31 December 2014.
Each year’s data were analysed
separately to capture temporal trends
in transmission intensity

8707 Any slide positive test result
among acute admissions

0.171 No Not applicable

Kilifi, Kenya [37] Junju cross-sectional bleeds between
2011 and 2015, each year’s data were
analysed separately to capture temporal
trends in transmission intensity

1925 Not applicable – Yes 16.05

Nandi, western
Kenya [8]

10-week active case surveillance study
undertaken in three schools in Nandi
District, Western Kenya during a malaria
outbreak May to July 2002

520 Temperature >37.5 °C and
parasitaemia >2500/μL

0.242 No Not applicable

Western Kenya
[7]

Hospital surveillance study conducted
between 2001 and 2004

599 Temperature >37.5 °C and
parasitaemia >2500/μL

0.084 No Not applicable

Asembo, Western
Kenya [41]

In late 1996, villages in Asembo were
randomized into intervention and
control villages. Cross-sectional surveys
were conducted between 1996 and 2001.
Data from symptomatic and asymptomatic
individuals were analysed separately and
by year of enrolment.

3614
3047a

Measured axillary temperature
>37.5 °C and parasitaemia
>2500/μL

0.659 Yes 61.9

Rural Afigya-
Sekyere, Ghana
[14]

Cohort of infants monitored by monthly
active case detection and passive case
detection. Enrolled at 3 months (±4 weeks)
of age between January 2003 and September
2005. Treatment and placebo arms were
analysed separately

2721 Temperature >37.5 °C and
parasitaemia >500/μL

0.413 No Not applicable

Mulanda, eastern
Uganda [42]

Cross-sectional study conducted in four
contiguous villages in Mulanda, sub-county
in Tororo, eastern Uganda between July and
December 2008.

985 Not applicable – Yes 53.7

Uganda [33] Cohort study of three Uganda sub-counties
(Nagongera, Walukuba and Kihihi) between
2011 and 2014

3239 Temperature >37.5 °C and
parasitaemia >2500/μL

0.331 No Not applicable

The Gambia [43] Cohort study of four Gambian villages
(Keneba, Manduar, Jali and Kantong Kunda)
between 2009 and 2012

3117 Temperature >37.5 °C and
parasitaemia >2500/μL

0.024 No Not applicable

Mali [44] Cross-sectional surveys were conducted
during the wet and dry seasons and passive

1867
1128a

Temperature >37.5 °C and
parasitaemia >2500/μL

0.424 Yes 15.61
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Symptomatic malaria cases and asymptomatic parasit-

aemia were examined separately. For each dataset, pa-

rameters from the local cluster detection and from the

D function analyses were assessed against the overall

transmission intensity, measured by the MPF for data-

sets on symptomatic malaria or parasite prevalence for

datasets on asymptomatic parasitaemia.

The multiple fractional polynomial algorithm was used

as previously described [30, 31]. Briefly, a list of fractional

polynomial (FP) powers (–2, –1, –0.5, 0, 0.5, 1, 2, 3) were

examined for possible inclusion in the model using an al-

gorithm that combines a backward elimination procedure

with a search for an FP function that best predicts the out-

come variable. The deviance difference test statistic is

computed for significance testing to determine the final

parsimonious model. The multiple polynomial is retained

only where log likelihood ratio testing of the nested model

shows a statistically significant improvement over the lin-

ear model [32]. We used multiple FPs to assess nonlinear

fits of MPF or parasite prevalence on the hotspots param-

eters (i.e. number of hotspots, RRs and p values) in the re-

gression models adjusted for potential confounders (i.e.

study design, sample size and overall mean age of study

participants included in each study).

Temporal stability of hotspots analysis

There were few datasets with repeated sampling of over-

lapping homesteads, and therefore stability of spatial

heterogeneity could only be tested in four datasets from

western Kenya [24], Ghana [14], Burkina Faso [26] and

Uganda [33]. MPFs and/or parasite prevalence were

computed by grids (2 × 2 km square) and by year (or

time points for cross-sectional surveys). We assessed

stability of the spatial heterogeneity by examining correl-

ation between MPFs or parasite prevalence within grids

separated in time.

The average age of children with malaria was com-

puted as the geometric mean age of children presenting

with symptomatic malaria. The correlation between the

average age of children with symptomatic malaria and

MPF at predefined square grid sizes (i.e. 1 km2, 2 km2

and 4 km2) was calculated using the Spearman’s rank

correlation coefficient. Variable grid sizes were used

for sensitivity analysis and were calculated using lon-

gitude and latitude coordinates. Pooled correlations

for the predefined grid size were estimated in a fixed

effect meta-analysis; however, if heterogeneity (I2) be-

tween studies was large (>50%), a random-effect

meta-analysis was conducted. Global spatial autocor-

relation for age of symptomatic malaria at homestead

level within sites was assessed using Moran’s I statis-

tic and the significance determined using the Monte

Carlo simulations.

SaTScan was executed from R using the rsatscan pack-

age, which allows SaTScan to be executed in the back-

ground from R’s command line. The K function and the

Moran’s I statistics were executed in R version 3.3.1, and

graphs, meta-analyses, multiple FP procedure and other

analyses were conducted in Stata version 12 (StataCorp,

College Station, TX, USA).

Table 1 Study characteristics (Continued)

case detection in two villages in Mali was
conducted between May (Kolle) or July
(Sotuba) and December 2009

Mali [45] Longitudinal study conducted between
May and December 2006. Analysis was
restricted to children aged 2-15 years

695
695a

Temperature >37.5 °C and
parasitaemia >2500/μL

0.51 Yes 21.75

Tanzania [46] Cross-sectional survey conducted between
August and November 2010 in northern
Tanzania. Analysis was restricted to children
<15 years

328 Not applicable – Yes 52.23

Northern
Tanzania [47]

The study was conducted between July
2004 and July 2007. Infants aged 2-4
months randomized to treatment regimens.
Treatment and placebo arms were analysed
separately

2300 Temperature >37.5 °C and
parasitaemia >2500/μL

0.161 No Not applicable

Saponé district,
Burkina Faso [26]

Cluster-randomized study with treatment
and control arms. Four cross-sectional
surveys were conducted between January
2011 and January 2012: (1) before randomization,
(2) at 1 month, (3) at 2 months and (4) at 12
months. Monitoring for symptomatic malaria
was conducted passively at local health care
facilities during the same study period.
Treatment and placebo arms were analysed
separately

4045
11,932a

Temperature >37.5 °C and
parasitaemia >2500/μL

0.707 Yes 31.32

aShows sample size for asymptomatic parasitaemia studies when both symptomatic and asymptomatic datasets were available for analysis
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Results
Malaria morbidity in the study sites

We had access to data from 19 studies conducted be-

tween 1996 and 2015 in seven countries (Fig. 1). The

characteristics of each study population are presented in

Table 1 with references to previously published work.

Hotspots and clustering of malaria cases

The median number of significant hotspots for the data-

sets was 1, and there was no clear trend according to

transmission intensity (Fig. 2a). However, the RRs for

primary hotspots were highest at low MPFs (Fig. 2b) and

decreased with increasing MPF. The statistical signifi-

cance of hotspots was lower at very low MPFs; it then

increased with increasing MPF to a peak at an MPF of

~0.3 and then gradually decreased with increasing MPF

after MPF >0.3 (Fig. 2c). Although average age of chil-

dren in the dataset was significantly associated with the

RR and p values (Additional file 1: Figure S1), analyses

adjusted for average age of children in the dataset

(Fig. 2a, b and c) and analyses stratified by study design

(i.e. passive vs active case detection) showed a similar

trend in variation of RR over transmission intensity

(Additional file 2: Figure S2). While there were fewer

studies that included data on asymptomatic parasitaemia,

a similar trend for RRs with increasing parasite prevalence

was observed, but without a clear trend for p values

(Additional file 3: Figure S3). FP transformations signifi-

cantly improved model fits (Additional file 4: Table S1).

Using the modelled relationship between Plasmodium

falciparum parasite rate (PfPR) and R0 reported by

Smith et al. [34], we determined the ratios of R0 inside

to outside the hotspot, and plotted these against PfPR

(Additional file 5: Figure S4). The ratio of R0 inside to R0

outside rose steeply below a parasite prevalence of 10%,

suggesting that the potential to interrupt transmission

by targeting hotspots increases below this prevalence.

Spatial autocorrelation

Ripley’s difference in K function (i.e. the D function) indi-

cated significant spatial structure in many but not all sites

(Fig. 3). As seen with hotspots, the proportion of sites that

had significant spatial structure increased from the lowest

MPFs to a peak at MPFs of 0.15– 0.45, and then declined

at higher MPFs. This trend was consistent at various

spatial scales examined (Fig. 3). The magnitude of the D

function decreased with increasing MPF and was consist-

ent at various spatial scales (Additional file 6: Figure S5).

Temporal trends

Overall, the spatial distribution of asymptomatic parasit-

aemia showed modest temporal stability in Asembo and

Burkina Faso sites (Table 2). On the other hand, the

spatial distribution of febrile malaria was predictive of

febrile malaria over 1 and 2 years in Uganda, but not in

the other sites.

Average age of symptomatic malaria episodes and

correlations with MPF

Spearman’s rank correlation coefficients of MPF against

average age of symptomatic children with malaria at

various spatial scales (i.e. 1 km2, 2 km2 and 4 km2 grids)

were negative in most study datasets. This suggests that

patches of greater exposure to malaria (i.e. high MPF)

were associated with younger children presenting with

malaria parasites in their blood and vice versa (Fig. 4).

These negative associations tended to be more marked

where the average MPF at the site was low, and this

Fig. 2 Hotspots of symptomatic parasitaemia. a displays a scatter plot of the number of significant hotspots per study area against malaria

positive fraction, b shows the log risk ratios of malaria within the primary hotspot against the malaria positive fraction and c shows the –log

(p values) of the primary hotspots against malaria positive fraction. The blue lines in a, b and c show the fitted multiple fractional polynomial

model predictions after adjusting for study design and the overall age of study participants. Shaded areas in a, b and c represent 95% confidence

intervals (CIs)
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Table 2 Association between distribution of MPF within grids (size = 2 × 2 km2) over time interval (Asembo Bay, Kenya [24], sub-

counties of Uganda [33] and Afigya-Sekyere Ghana [14]) in years and over consecutive cross-sectional surveys conducted over a span

of 1 year (Saponé district, Burkina Faso [26])

Study Site Interval between cluster (year) Febrile Malaria Asymptomatic Parasitaemia

Correlation (95%CI) P-value Correlation (95%CI) P-value

Asembo Bay 1 –0.09 (–0.26 to 0.09) 0.3072 0.23 (0.08 to 0.36) 0.003

2 0.14 (–0.04 to 0.31) 0.1245 0.16 (0.01 to 0.31) 0.0433

3 0.16 (–0.08 to 0.38) 0.1873 0.02 (–0.18 to 0.22) 0.8512

4 0.45 (0.11 to 0.70) 0.0124 0.21 (–0.12 to 0.49) 0.2041

5 0.06 (–0.32 to 0.43) 0.7726 0.45 (–0.13 to 0.80) 0.1226

Burkina Faso Interval between clusters (surveys)

1 –0.07 (–0.21 to 0.08) 0.3667 0.24 (0.10 to 0.36) <0.001

2 0.06 (–0.13 to 0.24) 0.5359 –0.09 (–0.25 to 0.08) 0.293

3 0.27 (0.01 to 0.50) 0.0457 0.34 (0.11 to 0.53) 0.0043

Uganda Interval between clusters (years)

1 0.39 (0.27 to 0.50) <0.001 – –

2 0.29 (0.13 to 0.44) 0.001 – –

3 0.19 (–0.06 to 0.41) 0.1332 – –

Ghana Interval between clusters (years)

1 0.26 (–0.03 to- 0.51) 0.0756 – –

2 0.30 (–0.14 to 0.64) 0.1757 – –

Fig. 3 Clustering of malaria transmission. a, b, c, d, e, f, g and h show the proportion of datasets with significant clustering at homestead level,

0.5, 1, 1.5, 2, 3, 4 and 5 km level respectively, against malaria positive fraction
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trend was significant when the correlations were mea-

sured using 2 km2 grids (i.e. p = 0.04) but not at 1 km2

or 4 km2 grids (Fig. 4). The pooled correlation between

MPF and slide positive age for 1 × 1, 2 × 2 and 4 × 4 kilo-

meter spatial resolution was –0.07 (95% confidence

interval (CI) –0.14 to 0.00), –0.21 (95% CI –0.31 to –

0.11) and –0.27 (95% CI –0.37 to –0.18) respectively and

in the same direction. The test of heterogeneity between

studies was I2 = 55.9%, p = 0.002; I2 = 53.5%, p = 0.005;

and I2 = 31.6%, p = 0.104 respectively.

Furthermore, we observed significant spatial autocor-

relation for the age of symptomatic malaria episodes at

most sites (Additional file 7: Figure S6), suggesting that

there are focal areas where older individuals tend to be

seen with symptomatic malaria, and conversely focal

areas where younger individuals tend to be seen with

symptomatic malaria.

Discussion

This study describes fine-scale spatial heterogeneity of P.

falciparum malaria cases from studies conducted at 19

different study sites experiencing varying transmission

intensities in seven sub-Saharan African countries

(Fig. 1). The RR of the primary hotspots increased with

falling MPF. The strength of evidence (p values) in-

creased from low MPFs to moderate MPFs and then de-

clined towards high MPFs. Taking these findings on

variation in degree of heterogeneity and on statistical

significance of heterogeneity together, we conclude that

spatial heterogeneity becomes gradually more marked as

transmission intensity falls, albeit with statistical signifi-

cance becoming weaker at very low transmission inten-

sity because of reduced power resulting from small

numbers of malaria cases. It may therefore be appropri-

ate for malaria control programmes to target hotspots at

low transmission intensity despite apparently modest

statistical significance. The decline in the degree of

spatial heterogeneity towards high MPF may be due to

either more even distribution of transmission intensity

per se, or to saturation in the metric used to quantify

malaria exposure (i.e. the MPF).

Similar findings were seen for generalized measures of

spatial autocorrelation where the degree of spatial auto-

correlation (D functions) is shown to increase as MPF

falls (Additional file 6: Figure S5) with significance test-

ing showing a peak when MPF is within 0.15–0.45 range

(Fig. 3).

Hotspots of stable asymptomatic parasitaemia have

previously been described in Kilifi, Kenya [4]. We could

quantify the temporal stability of the spatial distribution

in four datasets outside Kilifi (where these studies have

previously been conducted [14, 24, 26]). The results

showed temporal instability; however, with four datasets

we were unable to examine trends in stability across

sites. An indirect approach to examining temporal sta-

bility is to look for evidence of spatial variation in clin-

ical immunity. Micro-variation of malaria transmission

is likely to lead to variations in the rate and degree of ac-

quisition of clinical immunity if the micro-variation is

sufficiently stable. Children acquire immunity against

symptomatic malaria following repeated exposure. At

high transmission intensity, children acquire immunity

rapidly due to intense exposure when they are young

and hence do not present with symptomatic malaria

when they are older. On the other hand, at low trans-

mission, children acquire immunity slowly and are more

likely to present with symptomatic malaria when they

are older [35]. As might therefore be predicted, we ob-

served a negative correlation between MPF and age of

symptomatic malaria in keeping with previously reported

Fig. 4 Fine-scale geographical correlation of mean age (months) against malaria positive fraction (MPF) for each study dataset plotted against

overall study MPFs (as a proxy for transmission intensity). a, b and c show 1 × 1, 2 × 2, and 4 × 4 km2 grids respectively. The test of heterogeneity

between studies was I2 = 55.9%, p = 0.002; I2 = 53.5%, p = 0.005; and I2 = 31.6%, p = 0.104 respectively
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findings [5, 17], and we took this to imply that immunity

is acquired more rapidly with greater exposure to mal-

aria, leading to a lower age of symptomatic malaria epi-

sodes. Furthermore, there were positive autocorrelations

(i.e. significant values of Moran’s I) in the age of children

with symptomatic malaria, again suggesting that micro-

variation of transmission intensity may have led to vari-

ation in the degree of acquisition of clinical immunity.

In the four datasets with longitudinal data, the tem-

poral stability of the distribution of clinical malaria was

lower than that seen in previous analyses in Kilifi and

the highlands of western Kenya [4, 7]. Furthermore, we

identified substantial heterogeneity in the correlations

between MPF and age of symptomatic malaria. Taking

these findings together, we conclude that temporal sta-

bility of hotspots is not a reproducible feature of malaria

transmission. We did not identify a strong trend of

greater spatial stability at any range of MPF (Fig. 4).

Mathematical models suggest that targeting control in-

terventions on hotspots results in a more marked de-

cline in malaria compared to untargeted interventions

with an equal amount of resources [2]. To implement

such a strategy requires the accurate identification of

hotspots, and our data suggest that hotspots may not be

temporally stable and may be more difficult to accurately

identify at high transmission. A previous attempt on tar-

geting hotspots of malaria transmission in Rachuonyo —

an area of moderate transmission intensity in western

Kenya — achieved modest reductions in transmission in-

side the targeted hotspots but no lasting reductions out-

side the targeted hotspots in a cluster-randomized

control trial [9]. The authors suggested that the limited

impact was at least partly explained by challenges in de-

fining the geographical boundaries of transmission hot-

spots [9]; our findings on temporal instability of

hotspots would confirm difficulties in defining hotspots.

Study limitations include the use of data collected using

microscopy, which is of limited sensitivity for parasit-

aemia. Polymerase chain reaction has been shown to be

more sensitive for parasitaemia, particularly in low trans-

mission regions [36]. This is unlikely to bias studies based

on febrile malaria episodes since symptomatic malaria in-

dividuals usually have parasite densities well above the de-

tection threshold. However, sub-microscopic infections

among studies of asymptomatic parasitaemia may influ-

ence the stability of hotspots. Most studies included ap-

plied a threshold parasitaemia to define febrile malaria.

The threshold reduces the likelihood that cases of asymp-

tomatic parasitaemia with co-incident fever are non-

specifically included in febrile malaria cases [37, 38].

The modifiable areal unit problem may lead to bias

when an arbitrary grid size is used to aggregate data. We

mitigate this problem by conducting a sensitivity analysis

using grids with varying sizes (i.e. 1-km, 2-km and 4-km

squares). A further limitation is that detection of febrile

malaria is influenced by study design, sample size and

targeted age group, which was not standardized between

studies. However, we showed similar results even after

adjusting for these potential confounders (Fig. 2), and

we identified similar results for studies of febrile malaria

and of asymptomatic parasitaemia.

Most studies included were conducted in relatively

high to moderate transmission settings or in low trans-

mission settings following recent reductions in transmis-

sion. Areas that have historically experienced low

transmission may not be represented. Furthermore,

study sites were grouped in west and east Africa without

representation of central and southern Africa.

Conclusions

We found geographical micro-variation in malaria trans-

mission within sites from across sub-Saharan Africa at a

variety of transmission intensities. Micro-variation was

greater in low transmission settings, albeit with less statis-

tical power to detect it where cases of malaria are few.

The temporal instability of hotspots and the difficulties in

defining hotspots (especially in higher transmission set-

tings) will be a challenge to targeted control. However,

given the predictability with which hotspots occur as

transmission intensity falls, malaria control programmes

should have a low threshold (PfPR <10%) for responding

to apparent clustering of cases. Many sub-Saharan African

countries currently contend with high malaria transmis-

sion and, based on recent evidence [9], are unlikely to

benefit significantly from targeted control. However, some

countries have witnessed substantial declines (such as

Zanzibar [39] and Swaziland [40] among others) that war-

rant the implementation of targeted control to achieve

elimination. Our data predict that hotspots will be a

marked feature of transmission in such settings.

Additional files

Additional file 1: Figure S1. Trends in parameters of primary hotspots

over mean age of study participants. Panel A shows a scatter plot of log-

transformed risk ratios against overall mean age. Panel B shows a scatter

plot of log-transformed p values against overall mean age. The green line

presents multiple fractional polynomial fits of age on malaria positive

fraction (MPF) adjusted for the study design. Shaded areas in panels A

and B represent 95% CIs. (TIFF 573 kb)

Additional file 2: Figure S2. Summary of malaria hotspots from

symptomatic parasitaemia among passive (blue) and active (red)

surveillance studies. Panel A shows a scatter plot of the number of

significant hotspots against malaria positive fraction, panel B presents the

log risk ratios of malaria within the primary hotspot against the malaria

positive fraction and panel C presents the –log p values of the primary

hotspots against malaria positive fraction. The blue and red lines in panels

A, B and C show the fitted multiple fractional polynomial model

predictions for passive and active case detection studies respectively.

Shaded areas in panels A, B and C represent 95% CIs. (TIFF 821 kb)
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Additional file 3: Figure S3. Hotspots of asymptomatic parasitaemia.

Panel A displays a scatter plot of the number of significant hotspots in

each study dataset against parasite prevalence, panel B presents the log

risk ratios of malaria within the primary hotspot against the parasite

prevalence and panel C displays the –log (p values) of the primary

hotspots against parasite prevalence. The blue lines in panels A, B and C

show the fitted multiple fractional polynomial model predictions. Shaded

areas in panels A, B and C represent 95% CIs. (TIFF 767 kb)

Additional file 4: Table S1. Comparison between linear and the

multiple fractional polynomial model fit. The p value shown derives from

the log likelihood ratio test for a nested model with a fractional

polynomial over the linear fit. (DOCX 12 kb)

Additional file 5: Figure S4. Scatter plot of the ratio of log-

transformed R0 inside to outside the hotspot plotted against parasite

prevalence. The blue line shows the fitted multiple fractional polynomial

model predictions, and the shaded area represents 95% CIs. (TIF 1338 kb)

Additional file 6: Figure S5. Difference in K functions for cases and

controls (D function) against malaria positive fraction. Panels A, B, C, D, E,

F, G and H show the D function at homestead level, 0.5, 1, 1.5, 2, 3, 4 and

5 km distances for each dataset. The blue dots represent symptomatic

parasitaemia datasets, while red dots represent asymptomatic

parasitaemia datasets. (TIF 216 kb)

Additional file 7: Figure S6. Homestead level spatial autocorrelation of

age in months for symptomatic individuals for the various studies. Red

dots show significant autocorrelation, while blue dots show non-

significant spatial autocorrelation. (TIF 90 kb)

Abbreviations

FP: Fractional polynomial; km: Kilometer; MPF: Malaria positive fraction;

PfPR: Plasmodium falciparum parasite rate; RR: Risk ratio
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