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ABSTRACT 24 

Landscape anthropization replaces natural areas with agricultural or urban covers, 25 

leading to land-use intensification. This worldwide phenomenon affects biodiversity, 26 

but little is known about the effects on the intraspecific variation of functional traits 27 

related to ecosystem services. By combining field data collection, remote sensing and 28 

land cover analysis we investigated how land use intensification affects functional 29 

traits in two bumblebee species. Namely, the impact of different land use cover (i.e., 30 

semi-natural, urban, and agricultural) and of multiple biotic and abiotic stressors (i.e., 31 

temperature, resource availability, and air pollutants) was investigated. Along a 32 

gradient of landscape anthropization, we sampled populations of two European 33 

bumblebee species (Bombus terrestris and B. pascuorum) at 37 sites in Northern Italy. 34 

Through geometric morphometrics we investigated the variation of morphological 35 

traits related to flight performance (i.e., wing centroid size and shape and size 36 

fluctuating asymmetry FA), previously used as indicators of stress during insect 37 

development. Our results point out an idiosyncratic response of the two species to 38 

landscape anthropization. Smaller individuals of B. pascuorum were observed in 39 

response to increased impervious cover and temperature. No similar patterns were 40 

noticed in B. terrestris, which was characterized by larger individuals in response to 41 

floral resource availability. Wing size FA was positively associated with warmer 42 

temperatures and increased levels of NO2 only in B. terrestris. Overall, this study 43 

found taxon-specific functional trait variation at the intraspecific level in syntopic 44 

organisms, expanding our understanding about the effects of land-use intensification 45 

on the ecological activity of pollinator model species. 46 
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 50 

INTRODUCTION 51 

 52 

Widespread phenomena, such as the progressive expansion of agricultural and 53 

urban lands are driving deep changes on ecosystems, among which the replacement of 54 

natural areas and the creation of novel ecosystem conditions Plants and animals 55 

respond to these marked environmental variations by shifting their distribution (Colla 56 

et al., 2012) and phenology (Huchler et al., 2020), and/or shaping some morphological 57 

traits considered “functional”, i.e., relevant for their ecology, fitness and behaviour 58 

(Alberti et al., 2017; Eggenberger et al., 2019; Nooten & Rehan, 2020). Trait variation 59 

due to environmental alteration is particularly relevant in those organisms responsible 60 

for ecosystem services, such as pollinators, since changes in their traits could 61 

jeopardize the service provided (Buchholz & Egerer, 2020). For instance, land-use 62 

intensification and degradation (i.e., the growing proportion of anthropized or 63 

productive surfaces across landscapes) could lead to limited floral resource 64 

availability to pollinators (Steffan-Dewenter et al., 2001). This scenario, in turn, could 65 

impose changes in pollinator functional traits, such as body size decline due to less 66 

food supplied to larvae. Furthermore, anthropization of landscapes changes the local 67 

microclimate, thus determining an alteration of pollinator insects ecology, 68 

development and activities (Radmacher & Strohm, 2010). Specifically, higher degrees 69 
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of impervious land cover are often associated with increasing temperatures (Chun & 70 

Guldmann, 2018), a phenomenon known as “heat island effect”, that characterizes 71 

both urban and suburban areas. Observations from previous studies have strengthened 72 

the hypothesis that pollinator insects could face a shift towards smaller body size as an 73 

adaptation to reduce risk of overheating in presence of warmer conditions (Peters et 74 

al., 2016; Gérard et al., 2018a). Considering that the steady growth of the human 75 

population is driving a dramatic increase in the area allocated to intensive agriculture 76 

and urban expansion worldwide, new insights in the study of pollinator response are 77 

necessary to predict which scenarios would likely occur for urban biodiversity and its 78 

mediated services. 79 

Previous studies investigated the morphological responses of pollinators to 80 

anthropogenic pressures, mainly focusing on key functional traits, such as body size 81 

(e.g., Chown & Gaston, 2010; Eggenberger et al., 2019; Theodorou et al., 2020). In 82 

bees, this character responds rapidly to environmental changes (Chown & Gaston, 83 

2010), it shows little heritability and its variation mainly depends on the amount of 84 

food received during the larval development (Couvillon et al., 2010). Bee size directly 85 

influences their mobility and so their foraging range (Greenleaf et al., 2007), but also 86 

determines the metabolism rate and resource needs of adult imagos, with larger bees 87 

having higher metabolism rate (Kelemen et al., 2019) and thus potentially being more 88 

susceptible to variation in floral resource availability leading to starvation (Couvillon 89 

& Dornhaus, 2010). However, to date, the investigation of pollinator body size 90 

variation in anthropogenic habitats yielded heterogeneous results. A recent study on 91 

bumblebees found bigger workers in cities (Theodorou et al., 2020). This pattern has 92 
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been interpreted as an adaptation to longer flights for collecting resources, due to 93 

severe habitat fragmentation and dispersion caused by land use intensification 94 

(Greenleaf et al., 2007). Conversely, a study by Eggenberger et al. (2019) found 95 

smaller bumblebee foragers in cities, interpreted as an effect of both limited local 96 

resource availability and warmer temperature in urban areas.   97 

A promising research field in the study of morphological traits is to identify 98 

possible stress biomarkers of habitat quality and population health status (Adams et 99 

al., 2001). The advantage of using trait variation to measure stress resides in the fact 100 

that changes of phenotypes are detectable before a decrease in population viability 101 

occurs (Hoffmann et al., 2005). Therefore, quantifying traits variation could become 102 

an essential practice when evaluating local- and landscape-level stressors. A metric 103 

that has grown in popularity is the fluctuating asymmetry (FA) (Klingenberg, 2001; 104 

Beasley et al., 2013; Alves-Silva et al., 2018), defined as the presence of small, 105 

randomly placed deviations from perfect bilateral symmetry due to the occurrence of 106 

developmental instability, driven by exogenous environmental conditions 107 

(Klingenberg, 2015). FA differs from another type of bilateral asymmetry, the 108 

directional asymmetry (DA), that occurs when one specific side tends to be steadily 109 

larger than the other. While DA have a genetic basis and therefore could be less 110 

impacted by the environment (Palmer & Strobeck, 2003), the FA is considered a valid 111 

proxy of stress exposure to conditions that typically occur in anthropized 112 

environments (e.g., temperature, air pollutants, and pesticides) (Beasley et al., 2013). 113 

For instance, laboratory-based studies have demonstrated that CO2 or low temperature 114 

leads to wing FA, supporting the possible role of traffic pollutant in determining 115 
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developmental instability (Klingenberg et al., 2001; Hoffmann et al., 2002). 116 

Interesting, however, these studies also indicated how wing shape and wing size 117 

asymmetries had different responses to the same stressor type. This aspect is 118 

ecologically very relevant. Both wing size and shape are important functional traits in 119 

pollinators. This is because wing size is believed to be related to flight length and it 120 

influences metabolic costs (Fernandez et al., 2017; Soule et al., 2020), while shape is 121 

considered as important for flight maneuverability (Kolliker et al., 2003, Grilli et al., 122 

2017). Thus, their asymmetry could reduce flight performance ability and thus could 123 

reduce fitness and even impact on species interactions and pollination efficiency. 124 

In order to characterize the effects of landscape anthropization and related 125 

pressures on pollinator insects, we quantified the morphological variation in two 126 

species of bumblebee (i.e., Bombus pascuorum and B. terrestris), by investigating 127 

different populations across a gradient of growing land-use alteration, from semi-128 

natural areas to rural sites and urban places. Specifically, we chose the region 129 

surrounding Milan (Northern Italy). This is one of the major European cities and lies 130 

on a territory that experienced a strong anthropogenic footprint and ongoing efforts 131 

are trying to mitigate it. We expected to find quantitative variation in bumblebee 132 

functional traits (i.e.body size and wing FA) in response to increased land-use 133 

intensification. Our hypothesis was that in anthropized areas, pressures eliciting a 134 

decrease in body size (e.g., high temperature and low floral resource availability) 135 

would be prevailing and would lead to smaller foragers in urbanized and agricultural 136 

habitats. We also expected to find increased wing size and shape FA in response to 137 

higher levels of biotic and abiotic stressors (e.g., floral resources abundance, 138 
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temperature, and air pollutants). Hence, our ultimate goal was to determine which type 139 

of response prevails and the putative pressures that are determining it to better 140 

understand the impact of landscape anthropization on the ecology of pollinator insects. 141 

 142 

MATERIALS AND METHODS 143 

 144 

Study species 145 

 146 

This study was focused on two co-occurring species of bumblebee: Bombus 147 

terrestris (Linnaeus 1758) and B. pascuorum (Scopoli 1763). Both species are 148 

efficient pollinators, common in Europe, and can be found in different habitats from 149 

the natural to the agricultural and urban ones (Polce et al., 2018). Given these 150 

characteristics, these species are reliable models to investigate responses by 151 

pollinating insects to landscape anthropization (Eggenberger et al., 2019; Theodorou 152 

et al., 2020). The two selected species have slightly different foraging ranges, with 153 

estimated maximum dispersal range of 449 and 758 m for B. pascuorum and B. 154 

terrestris, respectively (Knight et al., 2005). Nesting habits are also dissimilar as B. 155 

terrestris builds its nest in subterranean holes, while B. pascuorum on top of or 156 

slightly beneath the soil surface (Goulson, 2010). Another important difference is 157 

represented by their dietary regimes with the B. pascuorum usually having a narrower 158 

trophic niche and a preference for deep-corolla flowers (Harder, 1985).  159 

 160 

Study design and sampling  161 
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 162 

Samplings were conducted at 37 sites (Fig. 1), mainly lying within the 163 

metropolitan area of Milan in July 2019, only on days with sunny and not windy 164 

weather conditions.  165 

The study sites were distributed in an area of about 1800 km2 covering four 166 

administrative provinces, Milano, Monza e della Brianza, Lecco and Como.  A 167 

minimum distance between sites of 1 km was imposed to avoid the non-independence 168 

of sites (Phillips et al., 2019) since it is above the mean foraging range observed for 169 

the two species (Knight et al., 2005). A Moran test was also applied to confirm the 170 

absence of spatial auto-correlation within sites (P>0.05).  171 

Study sites spread along a gradient of landscape anthropization, ranging from areas 172 

dominated by semi-natural hay meadows close to forest, to agriculture dominated 173 

landscapes (i.e., sites at the edges of crop fields of mainly large monoculture) and sites 174 

characterized by a high degree of impervious surface (i.e., concrete, building, asphalt). 175 

For each species, five to six specimens, excluding queens and males, were captured in 176 

a plot of about 50 m x 50 m at each site using an entomological net. After collection, 177 

the insects were stored at -80 °C until further analysis.  178 

 179 

Landscape and environmental variables 180 

 181 

In order to assess landscape anthropization, land-use data were obtained from 182 

the latest version of land cover database provided by Lombardy region (2018-DUSAF 183 

6.0; https://www.dati.lombardia.it/Territorio/DUSAF-6-0-Uso-del-suolo-184 
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2018/7rae198 fng6). Using QGIS 3.10.11, a 1 km radius buffer area was created 185 

around each site where landscape composition was evaluated arranging DUSAF 186 

original level and sub-level of land-use classification into three macro categories: 187 

impervious (i.e., buildings, infrastructures, roads, and cemented surface), agricultural 188 

(i.e., arable land devoted to crop production) and semi-natural land (i.e., meadows, 189 

forest and urban green spaces) (Online resource 1 for a list of DUSAF codes assigned 190 

to each grouping). For each site, the ratio between impervious and semi-natural land 191 

(Impervious / Natural) as well as the ratio between agricultural and semi-natural land 192 

(Agricultural / Natural) was computed to describe the urbanization and agricultural 193 

intensification processes, respectively. Habitat fragmentation was quantified by 194 

computing the edge density (ED), as the ratio of edge length of green and semi-natural 195 

patches over their total area (Wang et al., 2014). 196 

Other environmental biotic and abiotic features were considered to test for their 197 

potential effects on altering body size and wing size/shape FA.Specifically, land 198 

surface temperature was calculated as the mean value in the period June-July using 199 

data retrieved through remote sensing imaging spectroradiometer (MODIS) 200 

MOD11A2 from the NASA database 201 

(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php) with a resolution of 1 km. The 202 

choice of considering temperature for these two months was dictated from the 203 

supposition that our sampled specimens developed during that period, according to the 204 

biology of two selected species (Goulson, 2010). Air pollution was estimated as the 205 

mean of daily concentrations of NO2 over two months (June and July) registered by 206 

Regional agency for environmental protection (ARPA) through monitoring stations 207 
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located nearby our sampling sites (https://www.arpalombardia.it/Pages/Aria/qualita-208 

aria.aspx). 209 

Floral resources at each site (i.e., the total number of flowers) was estimated in 210 

sampling plots by using six randomly placed quadrats 1 m x 1 m (covering a 211 

proportion of sampling area similar to that reported in Fisher et al., 2017) and 212 

summing the number of flowers found within each quadrat. 213 

 214 

Specimens imaging and wings measurement  215 

 216 

The forewings of all individuals were detached at the base and scanned at high 217 

resolution. The obtained images were converted into TPS files using tps-UTIL 1.74 218 

and digitised using the tps-Dig 2.31 software (Rohlf, 2015), with two-dimensional 219 

cartesian coordinates of 15 landmarks positioned at wing vein junction (Fig. 2) (as in 220 

Aytekin et al., 2007; Klingenberg et al., 2001). Bumblebees with damaged or badly 221 

worn wings were excluded from further analyses. 222 

The analysis of landmark configuration was conducted in MorphoJ 1.07 software 223 

(Klingenberg, 2011). To remove all differences unrelated to shape (i.e., rotation, 224 

translation, and scale) a generalized least square Procrustes superimposition was 225 

applied (Klingenberg, 2011). The output of this procedure is a new set of 226 

superimposed landmark coordinates, called ‘Procrustes shape coordinates’, that 227 

contains all the shape information. Wing size was estimated as the centroid size (i.e., 228 

the square root of the sum of squared distances from the centroid of each landmark 229 

configuration) and used as a proxy of body size (hereafter “body size”, as in 230 
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Outomuro & Johansson, 2011 and Dellicour et al., 2017). Wing size asymmetry was 231 

computed by dividing the absolute difference between left and right centroid sizes by 232 

the mean centroid size and multiplying by 100 (Leonard et al., 2018). To estimate 233 

wing shape variation, Procrustes distances were computed for each individual 234 

(Klingenberg, 2015). These represent the measure of an individual's overall 235 

asymmetry (i.e., sum of DA and FA components), obtained by taking the square root 236 

of the sum of squared distances between corresponding right and left Procrustes’ 237 

coordinates. 238 

 239 

Statistical analysis 240 

 241 

Since the levels of asymmetry in bilateral traits are subtle, we estimated the 242 

measurement error, which could possibly cause considerable variation in the 243 

assessment of asymmetry levels, by double-scanning wings and digitizing their 244 

landmarks for a subset of 50 specimens, in MorphoJ with the Procrustes ANOVA 245 

(Klingenberg, 2001), in order to evaluate if measurement error was negligible. The 246 

presence of directional asymmetry (DA) was also tested with the same approach, and 247 

if DA occurred, the total asymmetry measures were corrected subtracting the mean 248 

DA from the overall individual asymmetry, thus isolating the FA component as in 249 

Costa et al. (2015).  250 

To investigate the relationship between morphological traits and covariates (i.e., ratio 251 

between impervious and natural cover, ratio between agricultural and natural cover, 252 

edge density, temperature, NO2, and floral resources) a series of linear mixed models 253 
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were used. In order to improve the fit between the predictors and the response 254 

variable, mathematical transformations were applied on the covariates as reported in 255 

Table 1.  The goodness of these transformations was assessed through the AIC 256 

criterion. (Δ AIC > 2). 257 

The response of the two species was assessed separately, furthermore different models 258 

were used to evaluate the effects of highly correlated variables (r>0.7).  Specifically, 259 

the response of centroid size was tested in two different models to account for 260 

covariates collinearity. The first one (Table 1, model id A) tested the effect of i) edge 261 

density of green areas, ii) ratio between impervious and semi-natural land cover, iii) 262 

ratio between agricultural and semi-natural land-cover, and iv) floral resources. 263 

Conversely, the second model (Table 1, model id B) evaluated separately the impact 264 

of temperature because of its correlation with the ratio between impervious and semi-265 

natural land cover. Regarding FA, the effects of covariates known to influence the 266 

developmental stability as temperature (Table 1, model id C), and NO2 (Table 1, 267 

model id D) were tested individually both for wing size FA and wing shape FA 268 

because of their correlation. In all models, the sampling site was included as the 269 

random effect. For all models we applied a stepwise model selection based on AIC 270 

values removing variables that did not improve the model fit (Zuur et al., 2009). 271 

Statistical analyses were conducted using MorphoJ 1.07 and JMP 14.2.0 (© SAS 272 

Institute Inc. Cary, North Carolina, US).  273 

 274 

RESULTS 275 
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Overall, the sampling dataset was similar in the two bumblebee species, 276 

encompassing a total of 179 B. pascuorum (mean per site = 4.8±0.4) and 169 B. 277 

terrestris (mean per site = 4.5±0.3) that were considered for morphometric analyses.  278 

The measurement error was negligible because not significant for wing size (df = 79, 279 

F = 2.67 p = 0.4578) and shape (df = 2054, F = 0.51, p = 0.9976). Different patterns of 280 

size variation were found in the two bumblebee species. B. pascuorum decreased its 281 

body size in response to both the increasing temperature (Fig. 3a; Table 1: model id B) 282 

and the higher ratio of impervious on semi-natural land cover (Online resource 2 - Fig. 283 

S1 ; Table 1: model id A). Conversely, no significant effect of these two predictor 284 

variables was found on B. terrestris, that increased body size in response to the 285 

availability of floral resources (Fig. 3b; Table 1: model id A). 286 

 Concerning wing asymmetry, both species showed a significant level of shape DA (B. 287 

pascuorum df = 26, F = 4.66; p < 0.0001; B. terrestris df = 26, F = 5.60; p < 0.0001), 288 

while size DA was statistically significant only in B. pascuorum (df = 1, F = 29.77; p 289 

< 0.0001; in B. terrestris df = 1, F = 0.51; p = 0.4779). Measures of FA were then 290 

obtained correcting for directional components.  291 

 B. terrestris size FA was positively correlated to temperature (Fig. 4; Table 1: model 292 

id C) and concentration of NO2 (Online resource2 - Fig. S2; Table 1: model id D), but 293 

no similar response was observed in B. pascuorum. None of the predictor variables 294 

(i.e., temperature, NO2, resource abundance) showed any significant effect on wing 295 

shape asymmetry in both bumblebee species. 296 

 297 

 298 

 299 
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 300 

 301 

 302 

 303 

 304 

Table 1: Results of the regression analysis of centroid size and fluctuating size asymmetry as a function of 305 

landscape and biotic and abiotic covariates. Only final models selected through AIC criterion with significant 306 

covariates are reported. βi: regression coefficient; F: F-value; P: p-values. Models and results of size FA for B. 307 

pascuorum and of shape FA for both species are not reported in the table as they were inconsistent.  308 

Response 

variable 

Model ID Covariates Bi Df; F P > F 

B. pascuorum 

Centroid size 

A Impervious/Natural (Log) -0.00869 1; 4.2661 0.0462* 

      

B Temperature -0.00341 1; 7.7271 0.0088* 

      

B. terrestris 

Centroid size 

A Floral resources (Log) 0.0725 1; 11.0222 0.0026* 

    

      

B. terrestris 

Fluctuating size 

asymmetry 

C Temperature 0.05259 1; 11.5565 0.0019* 

     

D NO2 0.01433 1; 7.2304 0.0118* 

 309 

 310 

 311 

 312 

 313 

 314 
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 315 

 316 

 317 

 318 

 319 

DISCUSSION 320 

 321 

In this study, we quantified the spatial intraspecific variation of functional traits 322 

that can shape the ecology of two common bumblebee species, possibly altering their 323 

dispersion ability, and pollination efficiency. We focused on their variation along the 324 

main trajectories of land use alteration, namely urbanization and agriculture 325 

intensification of landscapes, by relating variation of body size and wing asymmetry 326 

with landscape features and environmental stressors. 327 

Landscape anthropization was found to be associated with intraspecific 328 

variation of body size (i.e., estimated as wing centroid size) across bumblebees 329 

populations. Specifically, foragers of one of the two investigated species, B. 330 

pascuorum, showed a shift toward smaller body size in response to increasing 331 

proportion of impervious surfaces and temperature, two conditions that characterize 332 

urban landscapes and emerged as highly correlated from our analysis. A similar 333 

pattern of body size reduction in urban bumblebees was reported by Eggenberger et al. 334 

(2019) and it agrees with observations showing a general decrease of body size in 335 

urban insect communities (Merckx et al., 2018). These works suggest that a potential 336 

driver of size reduction in bumblebees is represented by the diminished, and spatially 337 

dispersed, availability of floral resources that is often associated with higher 338 
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impervious cover (Eggenberger et al., 2019). However, in our study, neither the 339 

estimation of floral resources, nor the fragmentation of green areas (i.e., the edge 340 

density), correlated with size variation in B. pascuorum, the species that responded to 341 

urbanization. Hence, a more reliable driver of urban-induced size shrinkage could be 342 

warmer temperatures linked to the urban “heat island effect” (Merckx et al., 2018), 343 

and this is also supported by the results of our study. Indeed, temperature has a strong 344 

effect on insect body size, with multiple historical series collections-based and 345 

experimental studies that revealed how higher environmental temperatures represent a 346 

driver of body size reduction in different species of bees (e.g., Nooten & Rehan, 2020; 347 

Theodorou et al., 2020). Higher temperature accelerates larval development, which 348 

likely result in smaller adults (Sibly & Atkinson, 1994). Furthermore, smaller sizes in 349 

warmer areas could also be a strategy for reducing overheating risks while foraging, 350 

due to an increased convective heat loss in smaller bees (de Farias-Silva & Freitas, 351 

2020). Functionally, smaller foragers could travel shorter foraging distances 352 

(Greenleaf et al., 2007) and could also load less pollen and nectar (Goulson et al., 353 

2002). As a consequence, the shift towards smaller body size in B. pascuorum in more 354 

urbanized environments could imply that it will pollinate less plants or handle flowers 355 

less efficiently (Földesi et al., 2020), a concerning aspect in view of colony provision 356 

and pollination.  357 

In our study B. terrestris body size was found to respond only to the abundance of 358 

flower resources, with larger individuals observed where potentially more food is 359 

available. This is in accordance with the observation that adult size is strictly 360 

correlated with the amount of food received during larval development (Couvillon & 361 
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Dornhaus 2009). However, this trend seems to be not clearly confirmed by B. 362 

pascuorum probably due to the higher specialization of this species (Harder, 1985) 363 

that may prevent it from benefiting from higher availability of flowers, since this not 364 

necessarily results in higher possibility to exploit adequate resources for their diet. 365 

Despite B. pascuorum and B. terrestris belong to the same genus, the responses 366 

of these two species were not equal. Similarly, idiosyncratic responses were also 367 

observed in other bumblebee species, where if the body size of some decreased over 368 

warming decades, others responded in the opposite way (Gérard et al., 2020).  In our 369 

study the invariant size of B. terrestris in warmer conditions could be explained by the 370 

high heat tolerance of this species (Martinet et al., 2020). In addition, B. terrestris 371 

nests further underground compared to the other bumblebee, and might be less 372 

exposed to warm, urban air temperatures during larval stages. These aspects 373 

strengthen the hypothesis that temperature is a major determinant of pollinator size 374 

reduction in cities because they affected the body size of the more temperature-375 

sensitive species, but not the heat-tolerant one. These species-level, idiosyncratic 376 

responses are very relevant for our understanding of the potential mechanism of 377 

intraspecific trait variation associated with landscape anthropization. This supports the 378 

need to consider a wider panel of species when investigating the impact of landscape 379 

anthropization on functional biodiversity.  380 

Flight performance does not only depend on body size, but it is also affected by 381 

asymmetries in shape and size between wings (Grilli et al., 2017; Soule et al., 2020). 382 

Here, we found that wing size FA was positively correlated with environmental 383 

stressors such as increased temperatures and NO2 concentration in B. terrestris. The 384 
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absence of variations in shape asymmetry registered for both the bumblebee species 385 

could confirm the results from other studies that have indicated shape variation as less 386 

susceptible to stressors than size asymmetry (e.g., Gérard et al., 2018b). Variation in 387 

wing asymmetry was observed in other insect taxa; the effect of temperature was 388 

previously investigated under controlled laboratory conditions (Mpho et al., 2002) 389 

while the role of pollutants was discussed interpreting the results of  a field 390 

experiment evaluating the impact of  road traffic exposure (Leonard et al., 2018). 391 

Studies associated the increased wing FA to environmental stressors, indicating that 392 

impairment of developmental processes might take place (e.g., Klingenberg et al., 393 

2001; Kerr et al., 2013). Concerning pollutants, Klingenberg et al. (2001) 394 

hypothesized that they could alter development through mechanisms related to gas 395 

exchange. Trait variation does not only show developmental instability, but it also has 396 

ecological implications. Wing size FA impacts the management of lengthy flights 397 

(Fernandez et al., 2017, Soule et al., 2020), compared to wing shape which is often 398 

associated with flight maneuverability. Thus, size asymmetry could specifically 399 

impact flight performance, flight length in time and space, and even affect bumblebee 400 

interactions with plants, the provisioning of larvae with food and their pollination rate.  401 

 402 

CONCLUSIONS 403 

 404 

Overall, the experimental results obtained in this study suggest that landscape 405 

anthropization could affect different functional traits, and it occurs heterogeneously in 406 

different pollinator species. Eventually, these responses could bring to the alarming 407 
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outcome of decreased pollination efficiency, because the studied traits are often 408 

involved in flying abilities. Temperature emerged as one of the main drivers of these 409 

phenotypic variations, affecting the two species in a different manner. The multiple 410 

responses to the same stressor, observed for the two species, underline the necessity 411 

for future studies to consider a wider panel of taxa instead of single model species.   412 

From a conservation perspective, the comprehension of how pollinators cope with the 413 

challenging conditions occurring in novel anthropogenic habitats, plays a key role in 414 

informing suitable policy efforts to conserve their biodiversity and the ecosystem 415 

service they provide. In the future, cities are predicted to expand constantly and thus 416 

designing of urban landscapes will become a fundamental step for achieving 417 

sustainability outcomes. The creation and the wise management of urban green spaces 418 

will allow not only to create conditions that could support pollinators species 419 

abundance and diversity but also sustain the biological interactions that are the basis 420 

of a correct ecosystem functioning. At the same time, urban forestry and greenery 421 

practices (e.g., plantation of street and residential trees and the creation of urban 422 

greenbelts or greenways) could represent a valid solution to mitigate stressful 423 

conditions related to the urban environment, such as the “heat island effect” (Chun & 424 

Guldmann, 2018) and the high level of air pollution (Ottosen & Kumar, 2020) that 425 

here were found to influence functional diversity issues.  426 

 427 
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 656 

 657 

FIGURE LEGENDS 658 

Fig.1: Map showing the distribution of the sampling sites and the border of the different provinces included in 659 

the study area.  660 

Fig.2: Right forewing of B. terrestris with landmark locations 661 

Fig. 3: Regression analysis of centroid size as a function of (a) temperature, and (b)  floral resources . B. 662 

pascuorum is represented by black dots and lines, B. terrestris is represented by grey triangles and lines. 663 

Continuous lines indicate the significant relationships while dashed lines represent the non-significant ones. 664 

Dots and triangles represent observed values. The two species were tested in separate models but represented 665 

together to facilitate the comparison. 666 

Fig. 4: Regression analysis of fluctuating size asymmetry as a function temperature . B. pascuorum is 667 

represented by black dots and lines, B. terrestris is represented by grey triangles and lines. Continuous lines 668 

indicate the significant relationships, while dashed lines represent the non-significant ones. 669 
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