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Abstract: In this work, the precipitates in Ti−Mo−V steel were systematically characterized by
high-resolution transmission electron microscopy (HRTEM). The thermodynamics and kinetics of
precipitates in Ti−Mo and Ti−Mo−V steels were theoretically analyzed, and the effect of vanadium
on the precipitation behavior was clarified. The results showed that the precipitation volume fraction
of the Ti−Mo−V steel was significantly higher than that of Ti−Mo steel. The randomly dispersed
precipitation and interphase precipitation (Ti, Mo, V)C particles coexisted in the Ti−Mo−V steel.
When the temperature was higher than 872 ◦C, the addition of vanadium could increase the driving
force for (Ti, Mo, V)C precipitation in austenite, resulting in an increased nucleation rate and shortened
incubation period, promoting the (Ti, Mo, V)C precipitation. When the temperature was lower than
872 ◦C, the driving force for (Ti, Mo, V)C precipitation in austenite was lower than that for (Ti, Mo)C
precipitation, and the incubation period of (Ti, Mo, V)C precipitation was increased. Moreover, it was
also found that the precipitated-time-temperature curve of (Ti, Mo, V)C precipitated in the ferrite
region was “C” shaped, but that of (Ti, Mo)C was “ε” shaped, and the incubation period of (Ti, Mo,
V)C was significantly shorter than that of (Ti, Mo)C.

Keywords: high-strength ferritic steel; Ti−Mo−V complex microalloying; thermodynamics of
precipitation; kinetics for precipitation; precipitation behavior

1. Introduction

With the development of industry, microalloyed high-strength steels have been widely
used in transportation, automobile, construction, bridge and other engineering applications
due to their excellent mechanical properties [1,2]. Microalloy and carbon atoms form nano-
sized particles, which effectively hinder the movement of dislocations, thereby improving
the strength of hot-rolled ferritic steels [3–5]. Among them, (Ti, Mo)C particles have a
smaller size and higher coarsening resistance. Therefore, it is generally believed that Ti−Mo
composite microalloying is more obvious to improve the properties of hot-rolled ferritic
steels [6–8]. For instance, Funakawa et al. [9] indicated that the contribution of (Ti, Mo)C
particles to yield strength was estimated to be over 300 MPa, and the yield strength of steel
was significantly improved.

Recently, the literature [10–16] reported that adding Nb or V to Ti−Mo steel could fur-
ther optimize microstructures and improve mechanical properties. Cai et al. [10] improved
the yield strength of ultra-low carbon Ti−Mo steel to 680 MPa by adding Nb. Bu et al. [11]
reported that the interphase precipitation in Ti−Mo−Nb steel could provide precipitation
strengthening of ~320 MPa, resulting in its yield strength up to 747 MPa. Furthermore,
our previous studies [12,13] also indicated that the addition of Nb on Ti−Mo hot-rolled
ferritic steels could increase the contribution of precipitation strengthening. Meanwhile, the
addition of Nb could also refine ferrite grains and inhibit bainitic transformation, thus im-
proving the mechanical properties of hot-rolled ferritic steel. Compared to Nb, V could also
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inhibit bainitic transformation and has a stronger ability for precipitation strengthening [14].
Zhang et al. [15] reported that Ti−Mo−V composite microalloying could improve the yield
strength of ferritic steel to 900 MPa due to the contribution of nano-sized (Ti, Mo, V)C
particles. Fu et al. [16] found that the contribution of precipitation strengthening provided
by a large number of nano-sized spherical (Ti, Mo, V)C particles was up to ~40% of the
yield strength in ferritic steel. In conclusion, the precipitation strengthening provided by
nano-sized (Ti, Mo, V)C particles is a key factor to further improve the strength of the
Ti−Mo−V steel. However, the previous studies [10–16] of Ti−Mo−V steel mainly focused
on phase the microstructure and mechanical properties. The precipitation mechanism
of (Ti, Mo, V)C particles and the effect of V addition on precipitation behavior has not
been studied systematically yet. An in-depth study is needed. This is the innovation of
this paper.

Therefore, based on the previous work, this paper further provides the quantitative of
precipitation in Ti−Mo and Ti−Mo−V steels by means of electrolytically extracted phase
analysis, and the effect of V addition on the precipitation behavior was clarified through
theoretical analyses. The results will provide a theoretical basis for the development and
production of Ti−Mo−V high-strength steels.

2. Materials and Experimental Procedure

The chemical compositions of the experimental steels are presented in Table 1. In total,
50 kg ingots were melted in a vacuum melting furnace and then forged into
250 mm × 100 mm × 60 mm billets. As shown in Figure 1, the billets were austenitized
and homogenized at 1250 ◦C for 2 h and then hot-rolled to 3 mm in thickness via 7 passes
with the finish rolling temperature of 860 ◦C. Subsequently, the hot-rolled sheets were
cooled to 600 ◦C and held for 2 h to simulate the coiling process, followed by furnace
cooling to ambient temperature.

Table 1. Chemical compositions of experimental steels (wt.%).

Steel C Si Mn Ti Mo V Cr N Fe

Ti−Mo 0.06 0.07 1.44 0.097 0.28 - 0.21 0.0035 Bal.
Ti−Mo−V 0.08 0.14 1.48 0.10 0.30 0.24 0.22 0.0049 Bal.
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Figure 1. Schematic diagram of rolling process.

The morphology and size of precipitates were characterized by a JEM-2100 transmis-
sion electron microscope (TEM) equipped with an energy dispersive spectroscope (EDS).
The TEM samples were polished to less than 50 µm and punched into 3 mm discs. The
discs were twin-jet polished with an electrolyte solution containing 6% perchloric acid
and 94% ethyl alcohol. Subsequently, direction of the incident electron beam was adjusted
parallel to the axis of the interphase precipitates band to observe the morphology of the
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interphase precipitates. Meanwhile, more than 800 precipitated particles were measured in
the TEM images to obtain the average particle size and distribution. In addition, the mass
fraction of precipitates was determined by electrolytically extracted phase analysis, and the
test procedure was described in the reference [17].

The meanings and units of symbols in the thermodynamic and kinetic model are
shown in Table 2.

Table 2. Meanings and units of different symbols.

Symbol Meaning Unit

Mi Amount of microalloyed element in the steel wt.%
[Mi] Amount of solid solution of element Mi wt%
f v Volume fraction of precipitation %

ρFe, ρMC Density of Fe and MC precipitated particles kg/m3

K Temperature-independent constant -
t0da Temperature-independent parameter s

t0.05da
Start time of precipitation that corresponds to the

fraction precipitates 5% s

d* Size of critical nucleus in austenite nm
dd

* Size of critical nucleus in ferrite nm
A Core energy of an edge dislocation line per unit J/m
σ Interfacial energy J/m2

σMi

Specific interfacial energy between MiC and
matrix J/m2

∆GV Volume free energy J/m3

∆G* Critical nuclear power in austenite J
∆Gd

* Critical nuclear power in ferrite J
Vm Molar volume of precipitates m3/mol

A, B Constants of precipitates in the solubility
product formula -

n, x, y, z Stoichiometric coefficient -
η Shape factor -
Q Activation energy for atoms J/mol
k Boltzmann constant -

3. Results and Discussion
3.1. Quantitative Analysis of Precipitation in Ti-Mo and Ti−Mo−V Steels

In our previous works [13–16], it was found that the addition of V significantly im-
proved the yield strength and tensile strength of Ti−Mo steel by ~28% and ~30%, re-
spectively, mainly due to the increment of precipitation strengthening by (Ti, Mo, V)C
precipitates. To further confirm the quantitative results of precipitates in Ti−Mo and
Ti−Mo−V steels, electrolytically extracted phase analysis was carried out, and the results
are shown in Tables 3 and 4. It can be found that the Ti is almost completely precipitated
in the two experimental steels, and the precipitation of Mo in Ti−Mo and Ti−Mo−V steel
is similar. Nevertheless, the volume fraction of MC precipitates increases from 0.242% to
0.389% by addition of V. The precipitation of M3C is mainly controlled by the thermome-
chanical control process (TMCP) [14]. More C is consumed by forming MC particles in
Ti−Mo−V steel, resulting in the mass fraction of M3C in Ti−Mo−V steel, which is less
than that in Ti−Mo steel (0.391% vs. 0.416%).

Table 3. Quantitative analysis of MC precipitates of Ti−Mo and Ti−Mo−V steel.

Steel
Mass Fraction of Element in MC Phase/%

f v/%
Ti a Mo V C b ∑

Ti−Mo 0.082 0.085 - 0.031 0.212 0.242
Ti−Mo−V 0.077 0.087 0.086 0.050 0.300 0.389

a Mass fraction of Ti in TiN was deducted. b Carbon content was an estimated result according to MC formula.
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Table 4. Quantitative analysis of M3C precipitates of Ti−Mo and Ti−Mo−V steel.

Steel
Mass Fraction of Element in M3C Phase/%

Fe Mn Mo V C c ∑

Ti−Mo 0.323 0.033 0.026 - 0.027 0.416
Ti−Mo−V 0.299 0.018 0.031 0.01 0.025 0.391

c Carbon content was an estimated result according to M3C formula.

3.2. Precipitation Characterization

To clarify the morphology and position of precipitates in the matrix, the TEM obser-
vation of Ti−Mo−V steel is shown in Figure 2. The results show that a large number of
precipitates exist in the steel. Meanwhile, the coarse particles (over 50 nm) mainly present
two types, as shown in Figure 2a. The first type is large ellipsoidal particles (P1) that
precipitated in the ferrite grains, which is identified as Ti-enriched (Ti, Mo, V) C particles
(Figure 2c). The second type (P2) is verified as cementite mainly distributed in the grain
boundaries. According to the previous studies [18,19], these (Ti, Mo, V)C particles are
mainly precipitated during the soaking at high temperature.
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Figure 2. TEM and EDS images of particles in Ti−Mo−V steel. (a) TEM morphologies; (b) Interphase
precipitation morphologies; (c) EDS analysis result of P1; (d) EDS analysis result of P2.

In addition, nano-sized interphase precipitation is also observed in Figure 2b. It can
be found that the precipitation spacing and morphology of the interphase precipitates
change with the distance from the grain boundary. Yan et al. [20] pointed that the spacing
of interphase precipitation was mainly related to the movements of the γ/α interface
during the phase transformation. At the distance from the grain boundary, corresponding
to the early stage of ferrite transformation, the phase transformation driving force is
larger, resulting in faster movement of the γ/α interface. At this stage, the mechanism
of interphase precipitation is a bowing mechanism, which leads to the irregular and
larger particle spacing of interphase precipitation [20,21]. At the later stage of phase
transformation, the γ/α interface moves slowly due to the decrease of phase transformation
driving force, thereby changing to the quasi-step mechanism of interphase precipitation [22].
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Then, the morphology of interphase precipitation changes to regular particle spacing in
the (113) crystal planes of ferrite, and the interphase precipitation spacing decreases from
29.83 nm to 18.27 nm.

Another type of nano-sized particles is randomly dispersed precipitates. These car-
bides tend to precipitate at high energy sites, such as grain boundaries and dislocations.
The bright-field image, dark-field image and electronic diffraction pattern of precipitates
were observed by using the thin foil sample of experimental steel, as shown in Figure 3. The
results indicate that the orientation relationship between (Ti, Mo, V)C precipitates and the
ferrite matrix is clarified as (111)(Ti, Mo,V)C//

(
011
)
α−Fe and

[
011
]
(Ti, Mo,V)C//

[
111
]
α−Fe

which agrees with the K−S relationship [14], and its lattice constant is calculated to be
0.423 nm. It means that these (Ti, Mo, V)C particles are mainly precipitated in the austen-
ite during the rolling process. Meanwhile, the (Ti, Mo, V) C particles distributed in the
trigeminal grain boundary can inhibit the movement of grain boundaries and refine the
ferritic grains.
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Figure 3. The (a) bright-field image (b), dark-field image of precipitates and (c) diffraction pattern
of precipitates.

Figure 4 shows the Fourier transform of high-resolution image of precipitates with
the size below 10 nm. It can be found that their orientation relationship agrees with
the B−N relationship as (200)(Ti, Mo,V)C//(200)α−Fe and [011](Ti, Mo,V)C//[001]α−Fe This
indicates that these particles are precipitated in the ferrite, which can provide stronger
precipitation strengthening.
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3.3. Effect of V on the Precipitation Behavior in the Austenite of Ti−Mo Steel

According to the previous studies [23], the nano-sized carbides precipitated in the
austenite refined the microstructure and strengthened the matrix. In addition, the precipita-
tion behavior of carbides can be analyzed by thermodynamic and kinetic models [24]. It
should be noted that the Ti easily forms TiN precipitates with lower solubility at a higher
temperature. Additionally, the N in the experimental steel is an incidental element in
the smelting. Thus, in order to facilitate the calculations, the N in experimental steel is
assumed to be consumed completely, and the content of Ti in experimental steel is modified
according to the stoichiometry of TiN in the relevant calculation. Furthermore, the content
of the microalloying elements solid-solved in the austenite matrix at different temperatures
can be calculated according to the solid solubility product formulae of TiC, MoC and VC.

Its formulae are as follows [14,15,24]

lg{[Ti] · [C]}γ = 2.75− 7000/T (1)

lg{[Mo] · [C]}γ = 4.251− 3468/T (2)

lg{[V] · [C]}γ = 6.72− 9500/T (3)

fv = (∑ Mi −∑ [Mi] + C− [C])
ρFe

100ρMC
(4)

where the meanings and units of different symbols are shown in Table 2. The subscript γ
indicates that the formula is applicable to the austenite matrix. The TiC, MoC and VC in
the steel are all NaCl-type face-centered cubic structures, which can be mutually solved
with each other. Therefore, the chemical formulae of (Ti, Mo)C and (Ti, Mo, V)C can be
expressed as TixMoyC (x + y = 1) and TixMoyVzC (x + y + z = 1), respectively. Figure 5 shows
the effects of temperature on the stoichiometric coefficient of TixMoyC and TixMoyVzC. The
results show that the precipitates in Ti-Mo steel are mainly Ti-enriched (Ti, Mo)C, and the
proportion of Ti is above 99.5%. For Ti−Mo−V steel, the precipitate is Ti-enriched (Ti, Mo,
V)C at the higher temperature. However, with the decrease of temperature, the proportion
of Ti in the (Ti, Mo, V)C decreases obviously, but the proportion of V increases. Meanwhile,
the proportion of Mo is almost unchanged. This indicates that the Ti element has a high
precipitation temperature, and the Mo element is basically not precipitated in austenite at
high temperatures.
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According to the thermodynamics calculation, the precipitation volume fractions of (Ti,
Mo)C and (Ti, Mo, V)C as a function of temperature are obtained, as shown in Figure 6. The
volume fraction of (Ti, Mo, V)C is significantly higher than that of (Ti, Mo)C and both of them
increase with the decrease of temperature. When the temperature is lower than 900 ◦C, a
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large amount of V is precipitated and the volume fraction of (Ti, Mo, V)C increases rapidly,
resulting in a larger difference between the volume fractions of (Ti, Mo, V)C and (Ti, Mo)C.
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The kinetic model is based on the following assumptions: (1) MC particles nucleate on
the dislocation line, and the nucleation rate rapidly decays to zero; (2) the edge dislocation is
considered as the nucleation positions of precipitated particles; (3) the shape of precipitation
is considered to spheroid. Then, the interfacial energy and driving force of (Ti, Mo)C and
(Ti, Mo, V) can be expressed as [24–26]:

σ = ∑ n · σMi (5)

∆GV =
1

Vm

{
−19.1446B + 19.1446T

[
A− log

(
∏[Mi]

n[C]
)]}

(6)

where the meanings and units of different symbols are shown in Table 2. The nucleation
rate and precipitation start time of precipitates in different temperatures can be calculated
by Formulas (7) and (8), respectively [15,24–26].

I = K · d∗2 · exp(
∆G∗ + Q

kT
) (7)

lg(
t0.05da
t0da

) =

[
−1.28994− 2lgd∗(

1
ln 10

×
(1 + A∆GV

2πσ2 )∆G∗ + 5
3 Q

kT
)

]
(8)

where the meanings and units of different symbols are shown in Table 2.
The curves of interfacial energy, Gibbs free energy, nucleation rate-temperature (NrT)

and precipitated-time-temperature (PTT) of the precipitates in Ti−Mo and Ti−Mo−V steels
are shown in Figure 7. The results indicate that the interfacial energy and driving force
of (Ti, Mo)C and (Ti, Mo, V)C increases with the decrease of temperature. When the
temperature is higher than 902 ◦C, the interfacial energy of (Ti, Mo, V)C is similar to that of
(Ti, Mo)C, and the driving force of (Ti, Mo, V)C is higher than that of (Ti, Mo)C, resulting
in the NrT and PTT curves of (Ti, Mo, V)C shifting toward the top zone. Moreover, when
the temperature is lower than 902 ◦C, the driving force for (Ti, Mo, V)C is significantly
lower than that for (Ti, Mo)C, but the interfacial energy of (Ti, Mo, V)C/austenite is lower
than that of (Ti, Mo)C/austenite. Thus, combined with the influence of driving force and
interfacial energy on the precipitation, the precipitation of (Ti, Mo, V)C can be promoted
above 872 ◦C.
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3.4. Effect of V on the Precipitation Behavior in Ferrite of Ti−Mo Steel

It is well-known that the microalloying elements solubility in ferrite are significantly
lower than those in austenite. The supersaturated solute microalloying elements will
further precipitate in the ferrite during the coiling process. Compared to austenite, the
precipitation precipitated in ferrite is smaller in size, thereby producing stronger precip-
itation strengthening [18,19,26]. It should be noted that the contents of solid solution of
microalloying elements and carbon in the austenite at 860 ◦C are used as the initial content
in the ferrite calculation model. The solution product formulas of TiC, MoC and VC in
ferrite are as follows [18,19,27–29]:

lg{[Ti] · [C]}α = 4.4− 9575/T (9)

lg{[Mo] · [C]}α = 6.163− 7583/T (10)

lg{[V] · [C]}α = 4.55− 8300/T (11)

where the meanings and units of different symbols are shown in the Table 2. The subscript
α indicates that the formula is applicable to the ferrite matrix. Figure 8 shows the stoi-
chiometric coefficient of TixMoyC and TixMoyVzC as a function of temperature in ferrite.
The results show that as the temperature decreases, the proportion of Ti content decreases
rapidly, whereas the proportion of Mo content increases. The precipitates in ferrite are
Mo-enriched (Ti, Mo)C. For (Ti, Mo, V)C; with the decreases of temperature, the proportion
of V decreases, but the proportion of Mo increases, whereas the proportion of Ti is basically
unchanged. Meanwhile, the precipitation in the steel is mainly V-enriched (Ti, Mo, V)C
particles, and the proportion of V content was above 85%. This indicates that V is the
dominant element of (Ti, Mo, V)C in ferrite.
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Figure 8. The formula coefficient of (a) TixMoyC and (b) TixMoyVzC in ferrite as a function of temperature.

Figure 9 is the curve of the volume fraction of precipitation in ferrite with temperature.
The results indicate that the volume fraction of precipitates increases with the decrease of
temperature. The precipitation of V leads to the fact that the volume fraction of (Ti, Mo,
V)C in ferrite is significantly higher than that of (Ti, Mo)C.
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Figure 9. Volume fractions of precipitation in Ti−Mo and Ti−Mo−V steels as a function of tempera-
ture in ferrite.

Different from austenite, the precipitates in ferrite mainly present rod-like and disc-
like, and the orientation relationship between precipitation and ferritic matrix changes
from a K−S relationship to a B−N relationship. The kinetic model in ferrite needs to
introduce shape factors η, whereas d* and ∆G* are transformed into dd

* and ∆Gd
*. Therefore,

Equations (7) and (8) have been changed to Equations (12) and (13), respectively [24–26].

I = K · d∗d
2 · exp(

∆G∗e + Q
kT

) (12)

lg(
t0.05da
t0da

) =

[
−1.28994− 2lgd∗d(

1
ln 10

×
(1 + ηA∆GV

2πσ2 )∆G∗e +
5
3 Q

kT
)

]
(13)

where the meanings and units of different symbols are shown in Table 2.
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Figure 10 presents the interfacial energy, Gibbs free energy, NrT and PTT curves of (Ti,
Mo)C and (Ti, Mo, V)C precipitated in the ferrite. It is found that PTT curve of (Ti, Mo, V)C
precipitated in the ferrite region is “C” shaped, but that of (Ti, Mo)C is “ε” shaped. The
driving force for (Ti, Mo, V)C is higher than that for (Ti, Mo)C, and the interfacial energy of
(Ti, Mo, V)C/ferrite is lower than that of (Ti, Mo)C/ferrite, resulting in the nucleation rate
of (Ti, Mo, V)C in ferrite being significantly larger than that of (Ti, Mo)C. Consequently, the
precipitation of (Ti, Mo, V)C in ferrite is greatly promoted, and improved the precipitation
strengthening of Ti−Mo−V hot-rolled ferritic steel.
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4. Conclusions

In this study, the precipitates of Ti−Mo−V microalloyed high-strength steel were
characterized in detail. The effect of V addition on precipitation behavior in austenite and
ferrite was explored. The main conclusion could be summarized as follows:

1. The addition of V can significantly increase the volume fraction of the (Ti, Mo, V)C
precipitates in Ti−Mo−V steel (0.242% vs. 0.389%). The precipitation characteriza-
tion shows that the (Ti, Mo, V)C particles can be divided into three types: spherical
precipitates in austenite after deformation, interphase precipitates during γ→α trans-
formation and dispersive nano-sized precipitates in the supersaturated ferrite matrix.

2. The results of theoretical calculation indicate that when the temperature is higher
than 872 ◦C, the addition of vanadium can increase the driving force for (Ti, Mo, V)C
precipitation in austenite, resulting in an increased nucleation rate and shortened
incubation period, promoting the (Ti, Mo, V)C precipitation.

3. The PTT curve of (Ti, Mo, V)C precipitated in the ferrite region is “C” shaped, but that
of (Ti, Mo)C is “ε” shaped, and the incubation period of (Ti, Mo, V)C is significantly
shorter than that of (Ti, Mo)C.
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