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a b s t r a c t

A new formulation is proposed to study the influence of deterministic heterogeneity on the propagation

of thin two-dimensional gravity currents in a porous medium above a horizontal impervious boundary.

Heterogeneity is conceptualized as a monotonic power-law variation of medium permeability transverse

or parallel to the direction of propagation. Considering the injection of a constant or time-variable

volume of fluid, the nonlinear differential problem admits a similarity solution which describes the shape

and rate of propagation of the current. The bounds on parameters necessary to respect model

assumptions are derived asymptotically and for finite time, to clarify the range of applicability of the

proposed models. An application to the migration of a contaminant gravity current in the subsurface is

then discussed, showing the impact of permeability variations on extension and shape of the intrusion.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The understanding of gravity-driven flows in porous media is

motivated by several environmental and geophysical applications,

such as carbon dioxide sequestration, oil and gas reservoir exploi-

tation, seawater intrusion, subsurface contamination and remedia-

tion of contaminated soils.

A variety of different models were proposed to conceptualize the

configuration of possible natural settings of gravity driven flows in

porous media [1]. Earlier works modeled plane or radial currents

flowing in a homogeneous medium and driven by the free-surface

gradient on a horizontal or inclined plane [2–4]. Later, additional

details in the geometric description were provided by including the

effect of impermeable confining boundaries [5], drainage by an

underlying medium [6] or localized sink(s) (e.g. [7], and references

therein), and varying topography [8]. Non-Newtonian power-law

fluid rheology was also considered [9,10].

The subsurface environment exhibits spatial variation of the

governing parameters on a multiplicity of scales; in turn, heterogene-

ity influences the propagation of gravity currents in several situations,

such as long-term storage of carbon dioxide in geologic formations

[11]. The ubiquitous presence of heterogeneity in natural media

prompted the development of models of horizontal gravity currents

considering deterministic variations of permeability and porosity in

the vertical direction [2,12,13]; such trends may be positive or

negative with distance from the surface, the latter being a more

common case [14,15]. Likewise, permeability variations in the flow

direction can affect the propagation behavior of gravity currents. Such

horizontal spatial variations were considered in a number of ground-

water problems, where a linear [16] or exponential [17] decrease in

hydraulic conductivity with radial distance from a pumping well

was conjectured to analyze steady-state tests. To describe the head

response to fluid injection in a heterogeneous anticline reservoir, Yeh

and Kuo [18] approximated the upper reservoir boundary with an

abrupt change in thickness and hydraulic conductivity.

In this paper, we assess the influence of permeability varying

transverse or parallel to the flow direction on the spreading of

plane porous gravity currents driven by the instantaneous or

maintained injection of a volume of fluid. Monotonic power-law

variations with elevation or distance from the injection point

provide a simplified description of heterogeneity. This formulation

renders the problem amenable to a closed-form self-similar

solution and generalizes results obtained for constant permeabil-

ity by Huppert and Woods [2].

After formulating and solving the problem in dimensionless

form for a vertical permeability variation, we discuss the limits

placed on problem parameters by model assumptions (Section 2).

A similar solution and analysis is presented in Section 3 for a

horizontal permeability variation. An application involving the

migration of a contaminant plume in a subsurface domain is

included (Section 4), demonstrating the impact of permeability

variations on the extension and shape of the intrusion. A set of

conclusions (Section 5) closes the paper.
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2. Vertical permeability variation

2.1. Theoretical developments

A gravity current of a fluid of density ρþ Δρ propagates under

the action of gravity into a semi-infinite porous medium saturated

with fluid of density ρ and confined by a lower horizontal

impermeable boundary as depicted in Fig. 1. The volume (per unit

width) of the intruding fluid increases with time as qtα, q and α

being both constant; α¼ 0 corresponds to the release of a constant

volume, α¼ 1 to a constant flux. The permeability of the porous

layer is assumed to vary vertically according to

kðzÞ ¼ k0ðz=xnÞω�1; ð1Þ

k0 being the permeability at a reference length scale xn and ω a

numerical factor [19]; thus ω41 and ωo1 represent respectively

permeability increasing and decreasing with distance from the

horizontal lower boundary; a porous medium with constant

permeability k0 corresponds to ω¼ 1, a case treated, among

others, in Ref. [2]. We further set ω4ω1 � 0, thus limiting the

possible permeability rate of decrease with elevation.

The current height hðx; tÞ describing the sharp interface

between the intruding and ambient fluid varies with time t and

distance x from the release point. In the following developments,

we assume the typical current depth is much smaller than both its

length and the depth of the reservoir h0, thus allowing to neglect

the motion of the ambient fluid and vertical velocities in the

intruding fluid. With the further assumption that effects due to

surface tension are negligible, the pressure distribution can then

be taken to be hydrostatic.

Under these premises, Darcy's law yields in the horizontal

direction vðx; tÞ ¼�ðk=μÞ∂p=∂x, v being the Darcy velocity, p the

pressure, μ the dynamic viscosity, and k the intrinsic permeability

coefficient. The pressure within the incoming current is given by

pðx; z; tÞ ¼ p0 þ Δρgðhðx; tÞ�zÞ þ ρgðh0�zÞ, where p0 ¼ pðz¼ h0Þ is a

constant. Thus ∂p=∂x¼Δρgð∂h=∂xÞ and coupling Darcy's law with

(1) yields

vðx; z; tÞ ¼ �ðΔρgk0=μÞðz=xnÞω�1∂h=∂x ð2Þ

For one dimensional transient flow, the local continuity condition

takes the form [2]

∂

∂x

Z h

0

v dz

 !

¼�ϕ
∂h

∂t
; ð3Þ

ϕ being the porosity. Substituting Eq. (2) into Eq. (3), the equation

governing the evolution of the current height h x; tð Þ is obtained as

1

ω

vn

ðxnÞω�1

∂

∂x
hω ∂h

∂x

� �

¼ ∂h

∂t
; ð4Þ

where vn ¼Δρgk0=ϕμ is the characteristic velocity.

The boundary condition at the current front xNðtÞ and the global

conservation of mass read respectively as

hðxNðtÞ; tÞ ¼ 0; ð5Þ

ϕ

Z xN ðtÞ

0

hðx; tÞdx¼ qtα: ð6Þ

The previous equations can be rendered non-dimensional by

setting, for αa2, ðx; xN ; z; t;h; vÞ ¼ ðxnX; xnXN ; x
nZ; tnT ; xnH; vnVÞ,

with capital letters representing the dimensionless variables and

temporal, spatial and velocity scales given by tn ¼ ðq=ðϕvn2ÞÞ1=ð2�αÞ,

xn ¼ vntn, and vn [10].

The non-dimensional versions of (4)–(6) then become

1

ω

∂

∂X
Hω ∂H

∂X

� �

¼ ∂H

∂T
; HðXNðTÞ; TÞ ¼ 0; ð7a;bÞ

Z XN

0

H dX ¼ Tα: ð8Þ

Inspection of (7a,b) and (8) suggests the scalings Hω � X2=T and

HX � Tα; eliminating H yields the scale of the current length as

X � Ta, while eliminating X gives H � Tb, with

a¼ αωþ 1

ωþ 2
; b¼ 2α�1

ωþ 2
ð9a;bÞ

Guided by these scalings, a suitable similarity variable is defined

as (the prefactor ωc is inserted to render subsequent expressions

simpler)

η¼ ωcX=Ta; c¼ 1

ωþ 2
ð10a;bÞ

and a similarity solution is sought in the form HðX; TÞ ¼ωcTbf ðηÞ,
where the constant ηNðα;ωÞ denotes the value of η at the current

front. Rescaling η as ζ¼ η=ηN and f ðηÞ as f ðηÞ ¼ ηdNΨ ðζÞ, where

d¼ 2=ω; ð11Þ

the similarity solution of Eqs. (7a,b) and (8) is of the form

HðX; TÞ ¼ωcηdNT
b
Ψ ðζÞ: ð12Þ

Fig. 1. Flow domain.
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Substituting these expressions in governing dimensionless

equations yields the following expressions:

d

dζ
Ψω dΨ

dζ

� �

þ aζ
dΨ

dζ
�bΨ ¼ 0; Ψ ð1Þ ¼ 0; ð13a;bÞ

ηN ¼
Z 1

0

Ψ ðζÞdζ
 !�ω=ðωþ2Þ

: ð14Þ

Solution of (13a,b) yields the shape function Ψ ðζÞ, while (14)

provides the prefactor ηNðα;ωÞ. Once Ψ ðζÞ and ηN are determined,

the length of the gravity current and the velocity field are given by

XNðTÞ ¼
ηN

ωc
Ta; ð15Þ

VðZ; T ; ζÞ ¼�ϕω2cη
ð2�ωÞ=ω
N Zω�1T ½αð2�ωÞ�2�=ðωþ2Þ dΨ

dζ
: ð16Þ

For ω¼ 1, governing equations and results reduce to their

simpler counterparts derived in dimensional form by Huppert

and Woods [2] for horizontal flow in a homogeneous medium;

numerical factors defined earlier reduce to a¼ ðαþ 1Þ=3, b¼
ð2α�1Þ=3, c¼ 1=3, d¼ 2.

For α¼ 0 the solution of (13a,b) and (14) can be obtained

analytically as

Ψ ðζÞ ¼ ω

2ðωþ 2Þð1�ζ2Þ
� �1=ω

; ð17Þ

ηN ¼ 2ðωþ 2Þ
ω

� � 1=ðωþ2Þ ðωþ 2Þ
ffiffiffi

π
p

Γ ωþ2
2ω

� �

Γ 1
ω

� �

" #ω=ðωþ2Þ

: ð18Þ

For the constant permeability case ω¼ 1, Eqs. (17) and (18) reduce

to Ψ ðζÞ ¼ ð1�ζ2Þ=6 and ηN ¼ ð9Þ 1=3 as first derived by Pattle [20].

The behavior of the solution to Eq. (13a,b) near the current

front ζ� 1 is given by the expressions (see Appendix for a detailed

derivation)

dΨ

dζ
ðζ� 1Þ ¼ �1

ω

αω2 þ ω

ωþ 2

� �1=ω

ð1�ζÞ1=ω�1; ð19Þ

Ψ ðζ� 1Þ ¼ αω2 þ ω

ωþ 2

� �1=ω

ð1�ζÞ1=ω: ð20Þ

Shape factors Ψ ðζÞ resulting from numerical integration of

Eq. (13a) with boundary conditions (13b) and (19) with Wolfram

Mathematicas 7 are depicted in Fig. 2a,b respectively for α¼ 0 and

1 and different values of ω. For α¼ 0, numerical results reproduce

the analytical solution (17).

It is seen that the shape factor decidedly increases as ω

increases from values below to values above unity, implying a

positive rather than negative trend of the permeability with

elevation. For a given permeability variation with elevation (fixed

ω), the shape factor increases with α, i.e. the fluid volume released

into the domain; this is so also for values of α41 (not shown).

In Fig. 2c a graph of ηN , evaluated via Eq. (14), is depicted as a

function of α for different values of ω. This pre-multiplicative factor

is seen to decrease as α and ω increase; the dependence of ηN on

the value of ω is more marked for ωo1.

For α¼ 2, the dimensionless formulation adopted breaks down

for lack of the time scale tn, while a second velocity scale ðq=ϕÞ1=2
arises. This case can be treated introducing new hatted dimen-

sionless variables [10] as ðx; xN ; z; t;h; vÞ ¼ ðx̂nX̂; x̂nX̂N ; x̂
n

Ẑ; t̂
n

T̂ ;

x̂
n

Ĥ;VnV̂ Þ, where an arbitrary time scale t̂
n

is adopted, and the

new spatial scale is x̂
n ¼ ðq=ϕÞ1=2 t̂n. This leads to Eqs. (7a,b) and (8)

being replaced by

δ

ω

∂

∂X̂
Ĥ

ω ∂Ĥ

∂X̂

" #

¼ ∂Ĥ

∂T̂
;

Z X̂N

0

Ĥ dX̂ ¼ T̂
2
; ĤðX̂NðT̂Þ; T̂Þ ¼ 0; ð21a;b; cÞ

where δ¼ vn=ðq=ϕÞ1=2 is the ratio between the two velocity scales

in the problem.

The self-similar variable is defined as η¼ βcX̂=T̂
a
, with a¼

ð2ωþ 1Þ=ðωþ 2Þ, c¼ 1=ðωþ 2Þ. Performing the same mathematical

manipulations as in the general case, the current height becomes

ĤðX̂; T̂Þ ¼ωcηdNT
b
Ψ ðζÞ, where ζ¼ η=ηN , b¼ 3=ðωþ 2Þ, d¼ 2=ω, and

the shape factor Ψ is obtained solving

δ
d

dζ
Ψω dΨ

dζ

� �

þ aζ
dΨ

dζ
�bΨ ¼ 0; ð22Þ

with boundary condition (21c), while (14) remains unchanged.

Fig. 2. Solution of (13a,b) and (14) for different values of ω: (a) shape factor for instantaneous injection (α¼ 0); (b) shape factor for constant injection (α¼ 1); (c) prefactor

ηN α;ωð Þ.
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2.2. Discussion and limits of validity

In this sub-section we analyze the physical limits of validity of

the solutions previously derived for vertically varying permeabil-

ity. We first note that given the initial limit imposed on the

permeability variation ω4ω1 � 0, it follows that a40, i.e. the

expression (15) of the distance of propagation XNðTÞ retains its

physical meaning. Hence the front velocity is proportional to

Ta�1 ¼ T ½ωðα�1Þ�1�=ðωþ2Þ, i.e. the current decelerates or accelerates

depending whether 0oαoαc or α4αc , with αc ¼ ðωþ 1Þ=ω. For
homogeneous media (ω¼ 1), the value αc ¼ 2 is recovered; for a

very rapid permeability increase (ω-1), αc tends to unity.

Conversely, for given α41, the current can be accelerated only

for ω4ωc ¼ 1=ðα�1Þ.
Upon examining Eq. (12), it is seen that the current height

increases or decreases with respect to time depending on whether

b40 or bo0; in the former case, the assumption of a thin current

with respect to the ambient porous medium (h⪡h0) is eventually

violated, and flow of the ambient fluid must be taken into account.

Hence 0oαoα1 � 1=2 is required for the solution to be asympto-

tically valid [5].

Furthermore, as the free-surface gradient is given by

∂h=∂x¼ ∂H=∂X ¼ω2cηd�1
N Tb�adΨ ðζÞ=dζ; ð23Þ

the condition b�a¼ ½ð2�ωÞα�2�=ðωþ 2Þo0 must be satisfied for

the requirement of modest surface curvature ∂h=∂x⪡1 to hold

asymptotically, with the further assumption that the gradient of

the shape function is limited. In turn, given that ω4ω1 � 0, this

condition implies αoα2 � 2=ð2�ωÞ, but this constraint is less

stringent than αoα1 � 1=2. It is noted that the physical limitation

α40 is satisfied for ωoω2 � 2, i.e., for permeability decreasing

(ωo1), or increasing less than linearly (ωo2), along the vertical;

this constitutes an upper bound ω2 to the value of ω.

Finally, the ratio between current height and overall length

yields hðx; tÞ=xNðtÞ ¼HðX; TÞ=XNðTÞ ¼ ω2cηd�1
N Tb�a

Ψ ðζÞ, hence the

thin current approximation h=xN⪡1 requires asymptotically the

same bounds derived earlier from Eq. (23), with the further

assumption that the shape function is limited. The previous limits

on parameters are summarized in Fig. 3; it is seen that only

decelerated currents with αo1=2 in porous media with 0oωo2

satisfy all model assumptions.

A more realistic analysis requires the evaluation of the limits at

finite times. We exemplify our approach by requiring that

∂h=∂x¼ ε⪡1 at time T. The necessary conditions can be reformu-

lated introducing in Eq. (23) the average gradient of the shape

function at a given time, equal to ðdΨ=dζÞavg ¼ 2Tα=X2
N �

2ω2=ðωþ2ÞTα�2a=η2N; hence

∂h=∂x¼ ∂H=∂X ¼ 2ω4=ðωþ2Þη
ð2�3ωÞ=ω
N T ½αð4�2ωÞ�4�=ðωþ2Þ; ð24Þ

and

αoα2 þ
ωþ 2

4�2ω
ln

εη
ð3ω�2Þ=ω
N

2ω4=ðωþ2Þ

 !

=lnT : ð25Þ

Fig. 4 shows the limit curves given by Eq. (25), computed

numerically for T¼10, 100, 1000, 10,000 and ε¼0.1.

The bounds for finite times allow both accelerated and deceler-

ated currents satisfying the condition on the gradient. For ωo2,

larger values of α are allowed as time T increases, with the upper

limit value α2 asymptotically reached for T-1, even though the

limit α1 becomes soon dominant. The reverse is true for ω42;

asymptotically, the latter case does not satisfy the condition on the

gradient. Note that different curves could be obtained assuming a

different criterion to evaluate the gradient of the shape function (e.

g. a threshold value valid for at least 80% of the current length could

be chosen instead of the average gradient herein adopted) and/or a

different value of ε, but the scenario is qualitatively similar.

The limits to be imposed on parameters/time to satisfy the

requirement h⪡h0 are best considered for a given value of h0 in a

specific application (see Section 4); if the ambient fluid is air, h0 is

virtually infinite.

3. Horizontal permeability variation

3.1. Theoretical developments

In the following a horizontal (e.g. in the direction of propaga-

tion) permeability variation is assumed to occur according to

kðxÞ ¼ k0ðx=xnÞβ; ð26Þ

k0 again being the permeability at a reference length scale xn and β

a numerical factor; thus β40 and βo0 represent respectively

permeability increasing and decreasing with horizontal distance

from the source, the latter being a more common case [16,17]; the

case β¼ 0 represents a homogeneous medium. A similar approach

was adopted in Ref. [21] for the analysis of viscous gravity currents

in channels of given shape, allowing the parameter associated

with the channel width to vary with a power-law dependence on

distance from the source.

Under the same assumptions of the vertical variability case, the

equation governing the evolution of the current height, taking

Fig. 3. Asymptotic limits of validity of the analysis for a vertical variation of

permeability. The cross-hatched area represents the domain of variability of

parameters satisfying all model assumptions.

Fig. 4. Time dependent limits of validity of the analysis for a vertical variation of

permeability to satisfy ∂h=∂x¼ ε⪡1, ε¼0.1. The hatched area represents the domain

of variability of parameters satisfying all model assumptions at T¼10.
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Darcy's law into account, is

vn
∂

∂x

x

xn

	 
β

h
∂h

∂x

� �

¼ ∂h

∂t
; ð27Þ

with boundary condition (5), together with the global continuity

Eq. (6). Switching to the dimensionless variables defined earlier

yields, for αa2,

∂

∂X
XβH

∂H

∂X

� �

¼ ∂H

∂T
ð28Þ

and two equations identical to Eqs. (7a,b) and (8). In this case the

appropriate scalings for the current length and height are X � Ta

and H� Tb, with

a¼ α þ 1

3�β
; b¼ αð2�βÞ�1

3�β
ð29a;bÞ

The similarity variable is defined as η¼ X=Ta, and a similarity

solution is sought in the form XNðTÞ ¼ ηNT
a, HðX; TÞ ¼ Tbf ðηÞ, where

ηNðα; βÞ is the value of η at the current front. Rescaling of η as

ζ¼ η=ηN and of f ðηÞ as f ðηÞ ¼ ηdNΨ ðζÞ, where d¼ 2�β, gives the

similarity solution in terms of current height as

HðX; TÞ ¼ ηdNT
b
Ψ ðζÞ: ð30Þ

Thus the differential problem transforms into

d

dζ
ζβΨ

dΨ

dζ

� �

þ aζ
dΨ

dζ
�bΨ ¼ 0; Ψ ð1Þ ¼ 0; ð31a;bÞ

ηN ¼
Z 1

0

Ψ ðζÞdζ
 !�1=ð3�βÞ

: ð32Þ

Once Ψ ðζÞ and ηN are determined, dimensionless velocity is given

by VðX; T ; ζÞ ¼ �ϕη
1�β

N XβT ½αð1�βÞ�2�=ð3�βÞðdΨ=dζÞ.
For β¼ 0, earlier results for a homogeneous medium are

recovered. A closed-form solution to Eq. (31a,b) and (32) is readily

available for α¼ 0 as

Ψ ðζÞ ¼ 1

ð3�βÞð2�βÞð1�ζ2�βÞ; ð33Þ

ηN ¼ ð3�βÞ2= ð3�βÞ ð34Þ

which holds for βo2. For a homogeneous medium (β¼ 0),

Eqs. (33) and (34) again reduce to Ψ ðζÞ ¼ ð1�ζ2Þ=6 and ηN ¼ ð9Þ1=3.
Near ζ ¼ 1 the following approximate expressions can be

derived

dΨ

dζ
ðζ � 1Þ ¼�αþ 1

3�β
ζ1�β; ð35Þ

Ψ ðζ� 1Þ ¼ αþ 1

ð2�βÞð3�βÞð1�ζ2�βÞ: ð36Þ

Shape factors Ψ ðζÞ resulting from numerical integration of

Eq. (31a) with boundary conditions (31b) and (35) are depicted

in Fig. 5a and b respectively for α¼ 0 and 1 and different values of

β. For α¼ 0, numerical results reproduce the analytical solution

(33) and (34). Shape factors increase as β increases, doing so more

rapidly near the injection point for β40; for a constant injection

rate (α¼ 1) and permeability increasing in space, the profiles are

concave rather than convex. For a given permeability variation, the

shape factor increases with α, i.e. the fluid volume released into

the domain. The prefactor ηN , calculated via Eq. (32), is depicted in

Fig. 5c as a function of α for different values of β. This pre-

multiplicative factor is seen to decrease as α increases, more so for

β40 than for βo0; the dependence of ηN on the value of β is more

marked for permeability increasing than decreasing with distance.

For α¼ 2, a different dimensionless formulation is needed,

identical to that described earlier for a vertical permeability varia-

tion. The corresponding governing equations are

δ
∂

∂X̂
X̂
β
Ĥ
∂H

∂X

� �

¼ ∂Ĥ

∂T̂
; ð37Þ

and (21b,c). The self-similar variable and current height are given by

η¼ X̂=T̂
a
, ĤðX̂; T̂Þ ¼ ηdN T̂

b
Ψ ðζÞ, with a¼ 3=ð3�βÞ, b¼ ð3�2βÞ=ð3�βÞ,

d¼ 2�β, while the shape factor Ψ is derived solving

δ
d

dζ
ζβΨ

dΨ

dζ

� �

þ aζ
dΨ

dζ
�bΨ ¼ 0: ð38Þ

Fig. 5. Solution of (31a,b) and (32) for different values of β: (a) shape factor for instantaneous injection (α¼ 0); (b) shape factor for constant injection (α¼ 1); (c) prefactor

ηNðα; βÞ.
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3.2. Discussion and limits of validity

Following our earlier analysis for currents in media with

vertically varying permeability, we observe that for the expression

of the distance of propagation XNðTÞ to retain its physical meaning,

it must be a40, whence it follows that βoβ1 � 3, i.e. there is an

upper limit to the increase of the permeability in the horizontal

direction. If this condition is respected, the velocity of the front is

proportional to ta�1 ¼ t αþβ�2ð Þ= 3�βð Þ, i.e. the current decelerates or

accelerates depending whether 0oαoαc or α4αc , with αc ¼ 2�β.

Conversely, for given α, the current accelerates or decelerates for

βoβc or βcoβoβ1, with βc ¼ 2�α.

As earlier noted, asymptotic validity of the thin current

assumption requires bo0, implying the condition 0oαoα1 �
1=ð2�βÞ, or, conversely, 2�1=αoβoβ1; for β¼ 0, this reduces to

αo1=2. The physical constraint α40 is satisfied for βoβ2 � 2.

Moreover, limitations on the gradient ∂h=∂x¼ ∂H=∂X ¼ ηd�1
N Tb�a

dΨ ðζÞ=dζ require b�a¼ ½ð1�βÞα�2�=ð3�βÞo0. In turn, given the

previous limit βoβ1 � 3, this is equivalent to αoα2 � 2=ð1�βÞ;
this constraint is less stringent than αoα1 � 1=ð2�βÞ. It is noted

that the physical limitation α40 is satisfied for βoβ3 � 1, i.e., for

permeability decreasing (βo0), or increasing less than linearly,

along the x axis; this third upper bound β3 to the value of β is more

stringent than β1 and β2. The greater the value of β below β3, the

larger the value of α1; when the permeability increases moderately

(0oβoβ3 � 1) α1 can reach the maximum value 1. For spatially

decreasing permeability (βo0), the fluid is progressively slowed,

and the current can remain thin only when αoα1o1=2; e.g.

α1 ¼ 1=3 for β¼�1. Conversely, for a given rate α of increase of

fluid volume with time, it must be ð2α�1Þ=αoβoβ3. For an

instantaneous injection (α¼ 0), β has no lower bound (however

there is an upper one βoβ3 � 1), while for an injection with a

constant flow rate (α¼ 1) only the single value β¼ β3 � 1 is

allowed to satisfy the multiple constraints.

These asymptotic limits are summarized in Fig. 6; only decel-

erated currents in media with βo1 and release rate αo1=ð2�βÞ
satisfy all model assumptions.

Conducting the analysis at a finite time T along the previous

lines yields for the condition on the free surface curvature

∂h=∂x¼ ∂H=∂X ¼ 2η�1�β

N T ½2αð1�βÞ�4�=ð3�βÞ
oε; ð39Þ

giving in turn the bound

αoα2 þ
3�β

2�2β
ln

εη
1þβ

N

2

 !

=lnT : ð40Þ

Fig. 7 shows the limit curves given by (40), computed numeri-

cally for T¼10, 100, 1000, 10,000 and ε¼0.1.

The bounds for finite times indicate that a limit more stringent

than the asymptotic one can arise with respect to α1 and α2. For

βo1, larger values of α are allowed as time T increases, with the

upper limit value α2 asymptotically reached for T- 1. For β41

lower values of α and β are allowed as time T increases, with the

limit β¼1 reached asymptotically. Hence accelerated currents with

a permeability increasing horizontally more than linearly are

admitted at short times.

4. An example application

In the following the derived models are applied to illustrate the

impact of vertical or horizontal permeability variations in a hypothe-

tical application involving contaminant spreading in a subsurface

environment. Assume that at t¼0 a spill of gasoline initiates with

constant flow rate from a large tank near the upper portion of a

confined sandy aquifer h0¼20 m thick and saturated with water.

Thus the situation represented in Fig. 1 is reversed (see Figs. 8–10)

and the buoyant gasoline plume propagates on top of the water,

flowing below the impermeable aquifer roof; ωo1 and ω41 here

imply respectively permeability decreasing and increasing with

depth. We assume as problem parameters a gasoline density

ρ¼870 kg/m3 [22], and viscosity μ¼6�10–4 Pa s; a water density ρ

+Δρ¼1000 kg/m3; an aquifer porosity ϕ¼0.3; a characteristic per-

meability k0¼10–11 m2; a constant rate of injection (α¼1) under an

impervious layer; a release rate q¼1 m3/m/dayffi1.16�10–5 m2/s.

The propagation of the gasoline plume in a subsurface setting having

Fig. 6. Asymptotic limits of validity of the analysis for an horizontal variation of

permeability. The cross-hatched area represents the domain of variability of

parameters satisfying all model assumptions.

Fig. 7. Time dependent limits of validity of the analysis for an horizontal variation

of permeability to satisfy ∂h=∂x¼ ε⪡1, ε¼0.1. The hatched area represents the

domain of variability of parameters satisfying all model assumptions at T¼10.

Fig. 8. Current profiles at t¼10, 30, 50 and 100 days for problem parameters as in

Section 4, constant permeability.
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constant permeability k0 (reference case 0) is then compared with

that resulting from a permeability variation described by (1), with ω

taken to be either 0.50 (case a) or 1.50 (case b), to represent a

decrease or increase of permeability with depth. For the parameters

listed above, the velocity, length and time scales are respectively

equal to v
n¼7.26�10–5 m/s, xn¼0.54 m, tn¼0.09 days, implying,

according to Eq. (1), permeability variations over the aquifer thick-

ness within one order of magnitude from k0.

Figs. 8 and 9a–b depict the height profiles as a function of time

respectively for the reference case (0) and cases (a)–(b), for times

t1¼10 days, t2¼30 days, t3¼50 days, t4¼100 days. It is noted that

for short times the current advances farthest for ωo1 and slowest

for ω41: after 10 days xNa(t1)¼26.3 m, xN0(t1)¼18.8 m, xNb(t1)¼
17.5 m, with a relative difference of E+40% and E�7% for cases

(a) and (b) with respect to case (0). This difference is due to the

different values of permeability encountered by the current front

in the top portion of the aquifer, which are respectively larger and

smaller than the reference permeability. However as the intruding

current grows in size, it reaches lower portions of the aquifer

having permeability values smaller than k0 for ωo1 and higher for

ω41. This brings about an increase in the current velocity for

ω41, and a decrease for ωo1: after 100 days xNa(t4)¼104.8 m,

xN0(t4)¼87.3 m, xNc(t1)¼90.7 m, i.e. the current within the homo-

geneous aquifer is the slowest. For much larger values of time, the

situation is reversed, and currents propagating in media with

permeability increasing with depth (case b) become faster than for

cases (0) and (a).

Correspondingly, heterogeneity significantly modifies the shape

of the intruding current. Profiles for case (a) have a moderately

larger depth in the origin than those for cases (0) and (b), but affect

a smaller portion of the domain near the front due to their shape. It

is noted that around t4¼100 days, the average current depth

reaches values comparable in magnitude with the aquifer's, requir-

ing consideration of motion in the ambient fluid.

Fig. 10a, b illustrates the propagation of a gravity current under

the same assumptions of the previous example, except that a

horizontal permeability trend is considered according to (26), with

β taken to be either �0.25 (case a) or 0.25 (case b), to represent

Fig. 9. Current profiles as in Fig. 8 but with vertical permeability variation: (a) ω¼ 0:50; (b) ω¼ 1:50.

Fig. 10. Current profiles as in Fig. 8 but with horizontal permeability variation: (a) β¼�0:25; (b) β¼ 0:25.
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decreasing or increasing permeability along the direction of propa-

gation. Currents in media with decreasing or increasing perme-

ability are respectively slower and faster than in the homogeneous

case; the positions reached by the front at 100 days are xNa(t4)¼
62.1 m and xNb(t4)¼129.4 m, with a relative difference of E�29%

and E49% for cases (a) and (b) with respect to case (0). At these

distances from the injection point, the permeability in cases (a) and

(b) is k(xNa)¼3.03�10-12 m2, k(xNb)¼3.93�10–11 m2, with a rela-

tive variation of E�69% and E292% with respect to k0. These

variations are still realistic; for larger scales, the positive trend in

permeability is not physically plausible.

The shape of intruding currents is significantly affected also for

horizontally varying permeability. Profiles are steeper and with a

larger average depth for permeability decreasing with distance

from the injection point than for constant or increasing perme-

ability; correspondingly, their average depth reaches sooner values

comparable in magnitude with the aquifer thickness.

5. Conclusions

A general analytical formulation to describe the spreading of plane

viscous gravity currents in porous media is derived under conditions

of permeability varying transverse or parallel to the direction of

propagation. The description of heterogeneity via a monotonic power-

law variation may represent a suitable idealization of real situations,

and allows derivation of the rate of spreading and the current profile

in self-similar form, generalizing results valid for constant perme-

ability. Limitations on parameters necessary to respect rigorously

model assumptions are included to complete the formulation and

clarify its range of practical applicability. Results are firstly discussed

in a general dimensionless framework and then analyzed in dimen-

sional form to assess model applicability to groundwater contamina-

tion by an intruding plume. In this way we verify how heterogeneity

can decidedly alter the rate of spreading of horizontal gravity currents,

as demonstrated by Silin et al. [23] for vertical CO2 migration. Spatial

variations in permeability influence also the current profile, steepness

and average height. Their assessment is relevant when the overall

extent and shape of the domain affected by the advancing current

needs to be determined, e.g. for CO2 or contaminant spreading, in-situ

soil remediation, saltwater intrusion.

Appendix

The aim of this Appendix is to derive an asymptotic solution to

(13a,b) near the current tip (ζ ¼ 1) in the form of a series

expansion of the shape factor, to be used as a second boundary

condition in its numerical integration. Upon introducing the

variable χ ¼ 1�ζ, Eq. (13a,b) transforms into

d

dχ
ΨωdΨ

dχ

� �

�að1�χÞdΨ
dχ

�bΨ ¼ 0; Ψ ðχ-0Þ ¼ 0: ðA:1a;bÞ

An approximate solution to (A.1a) satisfying (A.1b) is sought in

the form of a Frobenius series with indicial exponent r

Ψ ðχÞ ¼ ∑
1

k ¼ 0

akχ
kþr : ðA:2Þ

The derivative and the ωth power of (A.2) are respectively equal to

dΨ

dχ
¼ ∑

1

k ¼ 0

akðkþ rÞχkþr�1 ðA:3Þ

Ψω ¼ ∑
m0 ;m1 ;:::mk

ω

m0;m1; :::;mk

 !

ða0χrÞm0
U ½a1χrþ1�m1

U U U ½akχkþr �mk

¼ aω0χ
rω þ ::: ðA:4Þ

where the summation is taken over all sequences of indices

m0 through mk, such that the sum of all mk is equal to ω.

The multinomial coefficients can be computed as

ω

m0;m1; :::;mk

 !

¼ ω!

m0!m1!U U Umk!
ðA:5Þ

Substituting (A.3)–(A.4) in Eq. (A.1a) the following expression is

obtained:

aωþ1
0 r rðωþ 1Þ�1½ �χrðωþ1Þ�2 þ :::�a ∑

1

k ¼ 0

akðr þ kÞχrþk�1

þ a ∑
1

k ¼ 0

akðr þ kÞχrþk�b ∑
1

k ¼ 0

akχ
ðrþkÞ ¼ 0; ðA:6Þ

writing in explicit form only the first term in the expansion of Ψω.

Equating the lowest powers of χ (for k¼ 0) we find the indicial

exponent to be r ¼ 1=ω; equating the coefficients of the different

powers of χ to zero, all the coefficients ak are derived. In particular,

the first coefficient is

a0 ¼ ðaωÞ1=ω: ðA:7Þ

Eqs. (19) and (20) are easily derived from (A.7).
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