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Fiber-reinforced materials have widespread applications, which prompt the study of the effect of fiber reinforcement. Research
studies have indicated that thermal conductivity cannot be considered as a constant, which is closely related to temperature
change. Based on those studies, we investigate the fiber-reinforced generalized thermoelasticity problem under thermal stress,
with the consideration of the effect of temperature-dependent variable thermal conductivity.0e problem is assessed according to
the L-S theory. A fiber-reinforced anisotropic half-space is selected as the researchmodel, and a region of its surface is subjected to
a transient thermal shock. 0e time-domain finite element method is applied to analyze the nonlinear problem and derives the
governing equations. 0e nondimensional displacement, stress, and temperature of the material are obtained and illustrated
graphically. 0e numerical results reveal that the variable conductivity significantly influences the distribution of the field
quantities under the fiber-reinforced effect. And also, the boundary point of thermal shock is the most affected. 0e obtained
results in this paper can be applied to design the fiber-reinforced anisotropic composites under thermal load to satisfy some
particular engineering requirements.

1. Introduction

Fiber reinforcement is an inherent property of materials that
is considered an effect rather than a form of inclusion in it
[1]. In an elastic state, the components of fiber-reinforced
composites act as a single anisotropic unit without relative
displacement [2–6]. Fiber-reinforced material produces
higher specific strength and a larger specific modulus in the
direction of fiber reinforcement. 0e material performance
of fiber-reinforced composites is designable, and its cor-
rosion resistance and durability are good.0ose outstanding
features inherent in fiber-reinforced composites have led to
their widespread applications in aerospace, building engi-
neering, automotive industries, and so on [7, 8]. 0erefore,
the fiber-reinforced effect of materials should be considered
when studying mechanical behavior.

0e assumption of infinite propagation speed of the
thermal signal in classical thermoelasticity theory is

inconsistent with the real phenomenon. Several generalized
thermoelasticity theories have been developed to eliminate
this paradox [9–12], such as L-S theory. It firstly used the
Maxwell–Cattaneo law of heat conduction instead of the
conventional Fourier’s law and presented the generalized
thermoelastic theory with one relaxation time, which has
been proved to be well investigated and well established. For
fiber-reinforced generalized thermoelasticity problems,
Othman and Said [4] investigated the thermal shock of 2D
fiber-reinforced materials and found that the temperature,
displacement, and stress components change drastically at
the front of the heat wave. Othman and Lotfy [13] compared
coupling theory, G-L theory, and L-S theory to prove that the
fiber reinforcement and the magnetic field significantly
influenced the physical quantities, such as stress and strain.
And also, the results from the three theories are in accor-
dance with each other. Abouelregal and Zenkour [14] an-
alyzed the effects of the fractional parameter, reinforcement,
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and rotation on the variations of different field quantities
inside the elastic medium and found that fiber reinforcement
plays an important role in the distributions of the field
quantities. Abbas [15] investigated the generalized ther-
moelastic interaction of an infinite fiber-reinforced aniso-
tropic plate containing a circular hole and found that field
quantities are significantly varied in the presence and ab-
sence of reinforcement.

0ermal conductivity is an important parameter of a
material which is typically considered constant. However,
several experimental and theoretical studies have indicated
that thermal conductivity is closely related to temperature
change [16–22]. Xiong and Guo [23] validated the effects of
variable temperature-dependent properties on field quan-
tities based on a one-dimensional generalized magneto-
thermoelastic problem. Wang et al. [24] studied generalized
thermoelasticity with variable thermal material properties
and found that variable thermal material properties sig-
nificantly affect the thermoelastic behaviors, particularly the
magnitude of thermoelastic response. Ezzat and El-Bary [25]
examined the effects of variable thermal conductivity in a
problem of a thermo-viscoelastic infinitely long hollow
cylinder and discovered that all functions for the generalized
theory with a variable thermal conductivity distinctly differ
from those obtained for the generalized theory with a
constant thermal conductivity. Abo-Dahab and Abbas [26]
evaluated the thermal shock problem of generalized mag-
neto-thermoelasticity and concluded that as the variable
thermal conductivity increases, the temperature increases,
whereas the radial and hoop stresses decrease. 0ese studies
demonstrated that variable thermal conductivity signifi-
cantly influences the material properties and the distribution
of field quantities [27]. Instantaneous changes of tempera-
ture can markedly change the thermal conductivity of a
material. 0erefore, the influence of temperature-dependent
variable thermal conductivity must be considered in solving
fiber-reinforced generalized thermoelasticity problems suf-
fered from thermal stress.

Normal mode analysis is applicable only for solving the
steady state problem, whereas integral transformation and
time-domain finite element method are suitable for solving
dynamic problems. Integral transforms, such as Fourier and
Laplace transforms, have been widely used for processing the
related generalized thermoelastic problems [28–30]. In
considering the effect of temperature-dependent variable
conductivity in the fiber-reinforced generalized thermo-
elasticity problem, the governing equation has a nonlinear
form. Given that the governing equations contain higher-
order terms and nonlinear coupling terms, integral trans-
formation is difficult to perform, and inverse transformation
is needed. 0is process inevitably produces truncation and
discrete errors [31–33]. 0e governing equations can be
directly solved in the time domain by using the finite ele-
ment method, thereby avoiding the tedious processes in
integral transformation. 0is method may be more efficient
and may have higher precision. Furthermore, the time
history of variables in constitutive relations can be reflected.
Tian et al. [34] solved 2D generalized thermoelasticity
problems by using a direct finite element method, which

decreases the solving difficulty in the 2D model due to
integral transformation. Li et al. [35] analyzed the nonlinear
transient response under the generalized thermal diffusion
theory based on the time-domain finite element method and
obtained a good effect.

0is paper investigates the transient thermal shock
problem for fiber-reinforced materials with a time-de-
pendent variable thermal conductivity according to the L-S
theory. Time-domain finite element method is applied to
derive the nonlinear governing equations. Numerical
examples are presented to clarify the transient thermal
shock response on a half-space. Field quantities are ob-
tained for different thermal conductivities and illustrated
graphically.

2. Governing Equations

Belfield et al. [5] proposed a constitutive equation for a fiber-
reinforced linearly thermoelastic anisotropic medium in
studying the deformation of fiber-reinforced composites.
Given the reinforced direction a ≡ (a1, a2, a3),
a 2
1 + a

2
2 + a

2
3 � 1, and with consideration of variable ther-

mal conductivity, the constitutive equations can be
expressed as

σij � λekkδij + 2μTeij + α akamekmδij + aiajekk􏼐 􏼑
+ 2 μL − μT( 􏼁 aiakekj + ajakeki􏼐 􏼑
+ βakamekmaiaj − cθδij,

(1)

ρS � cekk +
ρCE
T0

θ, (2)

where σij is the stress tensor; δij is the Kronecker delta; eij is
the strain tensor; α, β, (μL − μT), and c are reinforcement
parameters, with c � (3λ + 2μ)αt, in which λ and μ are Lame
constants; αt is the coefficient of linear thermal expansion;
T0 is the reference temperature; θ � T − T0, in which θ is the
temperature difference; S is the entropy density; ρ is the mass
density; CE is the specific heat at constant strain; and
ekk � u,x + v,y.

0e equation of motion (in the context of L-S theory) is

σij,j � ρ€ui, (3)

where ui is the displacement vector.
0e equation of energy conservation is

qi,i � − ρT0
_S, (4)

where qi is the heat flux vector.
0e geometrical equation is

eij �
1

2
ui,j + uj,i􏼐 􏼑. (5)

0e fiber-reinforced direction is defined as
a ≡ (1, 0, 0), (z/zz) ≡ 0, and w � 0. 0us, equation (1) can
be written as
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σxx � A11u,x + A12v,y − cθ,

σyy � A12u,x + A22v,y − cθ,

σxy � μL u,y + v,x􏼐 􏼑,
(6)

σxz � σyz � 0, (7)

where

A11 � λ + 2 α + μT( 􏼁 + 4 μL − μT( 􏼁 + β,

A12 � λ + α,

A22 � λ + 2μT.

(8)

From equations (5) and (7), equation (3) yields

ρ
z2u

zt2
� A11

z2u

zx2
+ C2

z2v

zxzy
+ C1

z2u

zy2
− c

zθ

zx
,

ρ
z2v

zt2
� A22

z2v

zy2
+ C2

z2u

zxzy
+ C1

z2v

zx2
− c

zθ

zy
,

(9)

where

C1 � μL,

C2 � α + λ + μL.
(10)

0e equation of heat conduction is

qi + τ0 _qi � − Kθ,i, (11)

where τ0 is the relaxation time.
0e thermal conductivity K is temperature dependent

and assumed to have the following linear form:

K � K(θ) � K0 1 +K1θ( 􏼁, (12)

where K0 is the initial thermal conductivity and K1 is the
small quantity for measuring the influence of temperature
on thermal conductivity.

From equations (2) and (4), equation (11) then yields

Kθ,i􏼐 􏼑
,i
�

z

zt
1 + τ0

z

zt
􏼠 􏼡 ρCEθ + T0cekk( 􏼁. (13)

3. Finite Element Formulations

0e finite element method is an approximate method for
solving differential equations. 0e first step in solving the
problem is to establish the governing equations, followed by
defining the boundary conditions based on the specific
problems and then performing the the structural discrete,
unit analysis and overall analysis to obtain the numerical
solutions. For nonlinear problems, the finite element ex-
pression is obtained using the finite element method, which
can eliminate the influence of truncation errors and avoid
the tediousness of integral transformation. In addition, the
time history of the variables in the constitutive relation can
be determined to better reflect the wavefront characteristics.
FlexPDE is a useful tool for solving partial differential
equations, which can form Galerkin finite element integrals,

derivatives, and dependencies aiming at the problem de-
scription and then build a coupling matrix and solve it.
0erefore, FlexPDE is employed to deal with the related
partial differential equations generated by the finite element
method. For convenience, the constitutive equations of
equations (1) and (2) can be expressed in the matrix form as
follows:

σ{ } � Ce􏼂 􏼃 e{ } − c􏼈 􏼉θ,
ρS � c􏼈 􏼉T e{ } + ρCE

T0

θ.
(14)

0e heat conduction equation of equation (11) can be
written as

q􏼈 􏼉 + τ0 _q􏼈 􏼉 � − [K] θ′􏼈 􏼉. (15)

0e basic variables in this study include displacement
and temperature. After the elements are divided, the vari-
ables are represented by shape functions in each element as
follows:

u{ } � Ne
1􏼂 􏼃 ue􏼈 􏼉,

θ{ } � Ne
2􏼂 􏼃T θe􏼈 􏼉, (16)

where ue{ } and θe{ } are the nodal displacement and tem-
perature, respectively. [Ne

1] and [N
e
2]

T are shape functions:

Ne
1􏼂 􏼃 � N1 0 N2 0 . . . Nn 0

0 N1 0 N2 . . . 0 Nn

􏼢 􏼣,
Ne

2􏼂 􏼃T � N1 N2 . . . Nn􏼂 􏼃,
(17)

where n denotes the number of nodes in the grid.
According to equation (5) and given θ′ � θ,i, equation

(15) yields

e{ } � B1􏼂 􏼃 ue􏼈 􏼉,
θ′􏼈 􏼉 � B2􏼂 􏼃 θe􏼈 􏼉, (18)

where [B1] and [B2] are the first-order derivative of the
components in [Ne

1] and [N
e
2] with respect to the material

coordinates, respectively.
0en, the variational forms of equation (5) are

δ e{ } � B1􏼂 􏼃δ ue􏼈 􏼉,
δ θ′􏼈 􏼉 � B2􏼂 􏼃δ θe􏼈 􏼉. (19)

According to virtual displacement principles, the fiber-
reinforced generalized thermoelasticity problem with vari-
able thermal conductivity can be formulated as

􏽚
V

δ e{ }
T σ{ } + δ θ′􏼈 􏼉T q􏼈 􏼉 + τ0 _q􏼈 􏼉( 􏼁 − ρT0δ θ{ }

T _S􏽮 􏽯 + τ0 €S􏽮 􏽯􏼐 􏼑􏼔 􏼕
dV � − 􏽚

V
δ u{ }

Tρ €u{ }dV + 􏽚
Aσ

δ u{ }
T F􏼈 􏼉dA + 􏽚

Aq

δ θ{ }
Tq dA,

(20)
where F􏼈 􏼉 is the traction vector.

According to equations (13)–(15), and (19), equation
(20) yields
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􏽚
V
δ e{ }

T σ{ }dV � δ ue􏼈 􏼉T( Ke
mm􏼂 􏼃 ue􏼈 􏼉

− Ke
mθ􏼂 􏼃 θe􏼈 􏼉􏼁,

􏽚
V
δ θ′􏼈 􏼉T q􏼈 􏼉 + τ0 _q􏼈 􏼉( 􏼁dV � − δ θe􏼈 􏼉T Ke

θθ􏼂 􏼃 θe􏼈 􏼉,
− 􏽚

V
ρT0δ θ{ }

T 􏼈 _S􏼉 + τ0􏼈€S􏼉)dV � − δ θe􏼈 􏼉T􏼒 Ceθm􏼂 􏼃 _ue􏼈 􏼉􏼒
+ Ceθθ􏼂 􏼃􏼈 _θ􏼉 + Me

θm􏼂 􏼃 €ue􏼈 􏼉
+ Me

θθ􏼂 􏼃􏼈€θ􏼉􏼓,
− 􏽚

V
δ u{ }

Tρ􏼈€u􏼉dV � − δ ue􏼈 􏼉T Me
mm􏼂 􏼃 €ue􏼈 􏼉,

􏽚
Aσ

δ u{ }
T F􏼈 􏼉dA � δ ue􏼈 􏼉T Fem􏼂 􏼃,

􏽚
Aq

δ θ{ }
Tθq dA � δ θe􏼈 􏼉T Teθ􏼈 􏼉. (21)

0ese expressions can be summed as the following
matrix form:

Me
mm 0

Me
θm Me

θθ

􏼢 􏼣 €ue

€θe
􏼨 􏼩 + 0 0

Ceθm Ceθθ
􏼢 􏼣 _ue

_θ
e􏼨 􏼩

+
Ke
mm − Ke

mθ

0 Ke
θθ

􏼢 􏼣 ue

θe
􏼨 􏼩 � Fem

− Teθ
􏼨 􏼩,

(22)

where

Ke
mm􏼂 􏼃 � 􏽚

V
B1􏼂 􏼃T Ce􏼈 􏼉 B1􏼂 􏼃dV,

Ke
mθ􏼂 􏼃 � 􏽚

V
B1􏼂 􏼃T c􏼈 􏼉 Ne

2􏼂 􏼃TdV,
Ke

θθ􏼂 􏼃 � 􏽚
V
B2􏼂 􏼃T[K] B2􏼂 􏼃dV,

Ceθm􏼂 􏼃 � 􏽚
V
T0 N

e
2􏼂 􏼃 c􏼈 􏼉T B1􏼂 􏼃dV,

Ceθθ􏼂 􏼃 � 􏽚
V
T0 N

e
2􏼂 􏼃 ρCE
T0

Ne
2􏼂 􏼃TdV,

Me
θm􏼂 􏼃 � 􏽚

V
T0 N

e
2􏼂 􏼃τ0 c􏼈 􏼉T B1􏼂 􏼃dV,

Me
θθ􏼂 􏼃 � 􏽚

V
T0 N

e
2􏼂 􏼃τ0ρCET0

Ne
2􏼂 􏼃TdV,

Me
mm􏼂 􏼃 � 􏽚

V
Ne

1􏼂 􏼃Tρ Ne
1􏼂 􏼃dV,

Fem􏼂 􏼃 � 􏽚
Aσ

Ne
1􏼂 􏼃T F􏼈 􏼉dA,

Teθ􏼈 􏼉 � 􏽚
Aq

Ne
2􏼂 􏼃q dA.

(23)

4. Numerical Results and Discussion

4.1. Verification. To check the validity of the proposed
method, reference [35] is chosen for comparison. Li et al.
[35] had investigated the generalized diffusion-thermo-
elasticity problems with variable thermal conductivity by
using the finite element method and had verified its effec-
tiveness. 0is comparison research is conducted without the
consideration of diffusion. In addition to this, the numerical
model, initial conditions, and boundary conditions are same
with reference [35]. 0e distribution of the temperature
profile at the dimensionless time t� 0.06 is shown graphi-
cally in Figure 1, from which a trend consistency can be
observed. 0is guarantees the validity and accuracy of the
present method.

4.2. Results andDiscussion. Consider the problem of a fiber-
reinforced anisotropic elastic half-space (x≥ 0) with variable
thermal conductivity. As shown in Figure 2(a), the boundary
surface is assumed to be without traction, and the banded
area on x � 0 is subjected to a time-dependent transient
thermal shock.

Initial conditions:

u(x, y, 0) � υ(x, y, 0) � θ(x, y, 0) � 0,

zu(x, y, 0)

zt
�
zυ(x, y, 0)

zt
�
zθ(x, y, 0)

zt
� 0.

(24)

Boundary conditions:

σxx(0, y, t) � σxy(0, y, t) � 0, (25)

θ(0, y, t) � H(t)H(L − |y|), (26)

Ref. [35] 

This paper
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Figure 1: Distribution of temperature along the x-axis at t� 0.06.
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where H(·) is the Heaviside unit step function.
Under the given conditions, the half-space model can be

simplified as a xy plane model, as shown in Figure 2(b). 0e
components of displacement and temperature can be sim-
plified as follows:

ux � u(x, y, t),

uy � υ(x, y, t),

uz � 0,

θ � θ(x, y, t).

(27)

Copper material is selected for numerical evaluation, and
the parameters are presented in Table 1 [36].

For convenience, the following nondimensional quan-
tities are introduced:

x∗, y∗, u∗, v∗( 􏼁 � c1η(x, y, u, v),
t∗ � c21ηt,

τ∗0 � c
2
1ητ0,

θ∗ �
c

λ + 2μT
θ,

K∗1 �
λ + 2μT

c
K1, i, j � 1, 2,

σij
∗
�

σij

λ + 2μT
,

η �
ρCE
K0

,

c21 �
λ + 2μT

ρ
.

(28)

According to equation (28), equations (7), (9), and (12)
can be written as follows (the asterisk is removed for
brevity):

σxx � h11
zu

zx
+ h12

zv

zy
− θ,

σyy � h22
zv

zy
+ h12

zu

zx
− θ,

σxy �
μL

λ + 2μT

zu

zy
+
zv

zx
􏼠 􏼡,

(29)

z2u

zt2
� h11

z2u

zx2
+ h2

z2v

zxzy
+ h1

z2u

zy2
−
zθ

zx
,

z2v

zt2
� h22

z2v

zy2
+ h2

z2u

zxzy
+ h1

z2v

zx2
−
zθ

zy
,

(30)

z

zt
1 + τ0

z

zt
􏼠 􏼡 ε

zu

zx
+
zυ

zy
􏼠 􏼡 + θ􏼢 􏼣 � 1 +K1θ( 􏼁 z2θ

zx2
+
z2θ

zy2
􏼠 􏼡

+K1

zθ

zx
􏼠 􏼡2

+
zθ

zy
􏼠 􏼡2⎡⎣ ⎤⎦,

(31)
where

h11, h22, h12, h1, h2( 􏼁 � A11, A22, A12, C1, C2( 􏼁
λ + 2μT

,

ε �
c2T0

ρCE λ + 2μT( 􏼁,
(32)

Under the given conditions of equations (24)–(27), the
nonlinear governing equations (29)–(31) can be solved di-
rectly in the time domain. Under the given conditions, the
research model is symmetrical about the x-axis. 0us, the

2L

y

z

x

O

(a)

2L

O

y

x

Thermal loading
C

D

A

B

(b)

Figure 2: (a) Diagram of a half-space under thermal shock. (b) Simplified xy plane diagram of the half-space.
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rectangular area OABD is used for the subsequent analysis
for simplification.

0e dimensionless distributions of temperature, dis-
placement, and stress are illustrated graphically in
Figures 3–8.0eK1 value is expressed in four cases to discuss
the effects of variable thermal conductivity as follows:

(1) Case 1: K1� − 0.6

(2) Case 2: K1� − 0.3

(3) Case 3: K1� 0.

Figures 3 and 4 show the distributions of non-
dimensional temperature along OA and OD. 0e di-
mensionless temperature is equal to 1 at x � 0 and
0≤y≤ 0.2 region, which agrees with the boundary condi-
tions that were previously assigned. As the thermal con-
ductivity increases, the temperatures along OA and OD
increase. 0is result indicates that the coefficient of thermal
conductivity is positively correlated with the temperature
change, and that variable thermal conductivity significantly
affects the temperature distribution. Moreover, the wave-
front effect is more pronounced as the thermal conductivity
increases. 0ere is a diverse trend at x � 0.5 in Figure 3,
which is mainly caused by the effect of wavefront and the
calculation errors.

Given that the research model is symmetrical about the
x-axis, the vertical displacement along uy− OA is zero and
need not be considered. Figure 5 depicts the distribution of
the nondimensional horizontal displacement ux− OA, which
shows that the closest section to the origin undergoes ex-
pansion, the next undergoes compression, and the rest away

from the origin is undisturbed. Figure 5 demonstrates that
variable thermal conductivity is positively correlated with
the distribution of the horizontal displacement along OA.

Figures 6 and 7 show the distribution of the non-
dimensional horizontal displacement ux− OD and the vertical
displacement uy− OD, respectively. As shown, the variable
thermal conductivity obviously affected the distribution of
displacement. In addition, y � 0.2 is the most affected

Table 1: Material parameters of the copper material.

λ � 7.76 × 1010 N/m2 αt � 1.78 × 10− 5 · K− 1 η � 8886.73 s/m2 CE � 383.1 J/(kgK)
ρ � 8954 kg/m3 K0 � 386W/(mK) T0 � 293K α � − 1.28 × 1010 N/m2

β � 0.32 × 1010 N/m2 μL � 2.45 × 1010 N/m2 μT � 1.89 × 1010 N/m2

k1 = –0.6

k1 = –0.3

k1 = 0
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Figure 3: Distribution of nondimensional temperature along OA.
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Figure 4: Distribution of nondimensional temperature along OD.
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Figure 5: Distribution of nondimensional horizontal displacement
along OA.
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thermal shock boundary point. 0e negative value in
Figure 6 indicates that the particles tend to move toward
the unconstrained direction.

Figure 8 shows the distribution of the nondimensional
stress σyy− OD. 0e stress values show a violent oscillation in
the 0<y< 0.2 zone, and variable thermal conductivity ob-
viously affects the distribution of stress along OD, partic-
ularly in the 0.2<y< 0.8 zone.

5. Concluding Remarks

It is well known that instantaneous changes of temperature
can markedly change the thermal conductivity of a material.

0erefore, this article investigated the effect of temperature-
dependent variable thermal conductivity on a fiber-rein-
forced generalized thermoelastic half-space. Given the
reinforced direction a � (1, 0, 0), a region of its surface is
subjected to a transient thermal shock. 0e problem is
studied in the context of L-S theory. 0e time-domain finite
element method is proposed to analyze the nonlinear
response.

Based on the simulation, we can draw that the time-finite
element method is very effective for analyzing nonlinear
problems with given initial and boundary conditions, and by
which we can capture a pronounced wavefront effect. In
consideration of the fiber-reinforced effect, variable thermal
conductivity positively affects the distributions of temper-
ature, displacement, and stress. In addition, the boundary
point of thermal shock is affected the most.

Nomenclature

σij: Components of stress tensor
δij: Kronecker delta
eij: Components of strain tensor
α, β, and
μL − μT:

Reinforcement parameters

λ, μ: Lame constants
αt: Coefficient of linear thermal expansion
c: (3λ + 2μ)αt
T0: Reference temperature
θ: Temperature difference
S: Entropy density
ρ: Mass density
CE: Specific heat at constant strain
ui: Displacement vector
ekk: u,x + v,y
qi: Heat flux vector
τ0: Relaxation time
K0: Initial thermal conductivity
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Figure 6: Distribution of the nondimensional horizontal dis-
placement along OD.
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Figure 7: Distribution of the nondimensional vertical displace-
ment along OD.
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Figure 8: Distribution of the nondimensional stress σyy along OD.
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K1: Small quantity for measuring the influence of
temperature on thermal conductivity

n: Number of nodes in the grid
H(·): Heaviside unit step function
[Ne

1] and
[Ne

2]
T:

Shape functions

[B1] and
[B2]:

First-order derivative of [Ne
1] and [N

e
2] with

respect to the material coordinates
F􏼈 􏼉: Traction vector.
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