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Abstract Inconsistencies in the research findings on F-test
robustness to variance heterogeneity could be related to the
lack of a standard criterion to assess robustness or to the dif-
ferent measures used to quantify heterogeneity. In the present
paper we use Monte Carlo simulation to systematically exam-
ine the Type I error rate of F-test under heterogeneity. One-
way, balanced, and unbalanced designs with monotonic pat-
terns of variance were considered. Variance ratio (VR) was
used as a measure of heterogeneity (1.5, 1.6, 1.7, 1.8, 2, 3,
5, and 9), the coefficient of sample size variation as a measure
of inequality between group sizes (0.16, 0.33, and 0.50), and
the correlation between variance and group size as an indica-
tor of the pairing between them (1, .50, 0, −.50, and −1).
Overall, the results suggest that in terms of Type I error a
VR above 1.5 may be established as a rule of thumb for con-
sidering a potential threat to F-test robustness under heteroge-
neity with unequal sample sizes.
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One-way analysis of variance (ANOVA) is one of the most
common statistical techniques to test the equality of three or
more means in educational and behavioral research

(Keselman et al., 1998; Kieffer, Reese, & Thompson, 2001),
although its use has decreased in recent years (Skidmore &
Thompson, 2010). The F-test assumes that the outcome vari-
able must be normally and independently distributed, and the
samples must come from a population with common vari-
ances. However, the empirical evidence involving real data
extracted from review of several scientific journals indicates
that these assumptions are not always met (Blanca, Arnau,
López-Montiel, Bono, & Bendayan, 2013; Micceri, 1989;
Ruscio & Roche, 2012).

Specifically, with regard to homogeneity of variance,
research reveals that group variances are often unequal
(Erceg-Hurn & Miroservich, 2008; Grissom, 2000;
Keselman et al., 1998; Ruscio & Roche, 2012; Wilcox,
1987). This inequality may be due to a priori differences
in groups that are naturally formed or to an effect of
experimental treatment that produces differences not only
in means but also in variances (Bryk & Raudenbush 1988;
Erceg-Hurn & Mirosevich, 2008; Grissom, 2000; Grissom
& Kim, 2001; Sawilowsky, 2002; Sawilowsky & Blair,
1992). Several indexes have been proposed to measure
the amount of heterogeneity, namely the coefficient of
variance variation (Box, 1954; Rogan, Keselman, &
Breen, 1977; Ruscio & Roche, 2012), the standardized
variance heterogeneity index (Ruscio & Roche, 2012),
and the variance ratio (Keselman et al., 1998; Ruscio &
Roche, 2012). The variance ratio, which is the simplest
measure of heterogeneity, is defined as the ratio of the
largest variance to the smallest variance of the groups.
This is the index most commonly used in Monte Carlo
studies (e.g., Box, 1954; Cribbie, Wilcox, Bewell, &
Keselman, 2007; Fan & Hancock, 2012; Hsu, 1938;
Kang, Harring, & Li, 2015; Mendes & Pala, 2004;
Mickelson, 2013; Moder, 2007, 2010; Scheffé, 1959;
Tomarken & Serl ing, 1986; Wilcox, Charl in, &
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Thompson, 1986; Zijlstra, 2004). With real data,
Keselman et al. (1998) found that the average value of
the variance ratio was 2.0 (SD = 2.6), with a median of
1.5 and a maximum ratio of 23.8. Recently, Ruscio and
Roche (2012) found variance heterogeneity in more than
50% of examined cases, with the mean variance ratio
being equal to 2.51 when there were two groups, 3.95
when there were three groups, and 8.84 when there were
four groups in the design.

As the abovementioned studies show, variance hetero-
geneity is frequently observed in real data. The question
that follows logically from this is how heterogeneity af-
fects the robustness of the F-test. Robustness, which has
been extensively addressed in the literature, refers to a
statistical test’s insensitivity under violations of its as-
sumptions, specifically in terms of its Type I error rates
(Box, 1953). Type I error is the probability of rejecting a
null hypothesis when it is actually true. The robustness of
a statistical test can be evaluated via Monte Carlo simu-
lation techniques, and in order to ensure the comparability
of results from Monte Carlo studies a standard criterion to
assess robustness must be established. Bradley’s (1978)
liberal criterion is considered the most appropriate (e.g.,
Keselman, Algina, Kowalchuk, & Wolfinger, 1999;
Kowalchuk, Keselman, Algina, & Wolfinger, 2004).
According to this criterion, a statistical test is considered
robust if the empirical Type I error rate is between .025
and .075 for a nominal alpha level of .05. When the rate is
above .075 the test is considered liberal, increasing the
risk of declaring mean differences that do not exist.
When the rate is below .025 the test is considered conser-
vative, such that the researcher is assuming an alpha level
below the nominal.

The first Monte Carlo studies that examined F-test robust-
ness to violations of its assumptions were carried out between
1930 and 1960 and were summarized by Glass, Peckham, and
Sanders (1972). With regard to variance heterogeneity, early
studies (Box, 1954; David & Johnson, 1951; Horsnell, 1953;
Norton, 1952, cit. Lindquist, 1953; Hsu, 1938; Scheffé, 1959)
suggest two main conclusions: (1) F-test is robust when the
groups have equal sample sizes and the group size is not very
small (e.g., greater than 7; Kohr & Games, 1974); and (2) F-
test tends not to be robust when the groups have unequal
sample sizes, in which case the effect of heterogeneity on
Type I error depends on the pairing of variance with group
size. F-test tends to be conservative when the pairing is pos-
itive, that is, when the group with the largest sample size also
has the largest variance and the group with the smallest sample
size has the smallest variance. Conversely, it tends to be liberal
when the pairing is negative, namely when the group with the
largest sample size has the smallest variance and the group
with the smallest sample size has the largest variance. Based
on these studies, many classical handbooks on research

methods in education and psychology recommend using equal
sample sizes as protection against the effect of heterogeneity
(e.g., Glass & Stanley, 1970; Hays, 1981; Keppel, 1991;
Maxwell & Delaney, 1990; Winner, 1971).

The issue ofF-test robustness to variance heterogeneity has
continued to be studied since 1970 until the present day (for a
review, see Harwell, Rubinstein, Hayes, & Olds, 1992; Lix,
Keselman, & Keselman, 1996). However, research to date
with equal sample sizes provides contradictory results, there
being both evidence that F-test is robust to variance heteroge-
neity (Lee & Ahn, 2003; Patrick, 2007; Yiǧit & Gökpinar,
2010) and evidence against this (Alexander & Govern,
1994; Büning, 1997; Harwell et al., 1992; Lix et al., 1996;
Moder, 2010; Rogan & Keselman, 1977; Tomarken &
Serling, 1986; Wilcox et al., 1986). This inconsistency in the
results may be due to several factors.

First, most of the cited studies did not use a standard crite-
rion to assess robustness. Results were usually interpreted
based on the comparison between empirical and nominal al-
pha without following any standard criterion: If the difference
was small, F-test was said to be robust. The problem here is
that the meaning of Bsmall^ is ambiguous and does not allow a
clear decision to be made. Indeed, expressions such as
Bmodest inflation^ (Harwell et al., 1992) or Bslightly
increase^ (Glass et al., 1972) are frequently used when refer-
ring to Type I error rates. Had Bradley’s criterion of robustness
been adopted, many of these results would have been
interpreted differently.

Second, the studies in question used different measures to
quantify variance heterogeneity, thus making it difficult to
draw general conclusions. Some studies used the coefficient
of variance variation (Lix et al., 1996; Rogan & Keselman,
1977), some used their own indexes (e.g., Patrick, 2007;
Ruscio & Roche, 2012), and others used the variance ratio
(e.g., Alexander & Govern, 1994; Box, 1954; Hsu, 1938;
Moder, 2010; Scheffé, 1959; Tomarken & Serling, 1986;
Wilcox et al., 1986; Zijlstra, 2004).

Third, the simulated conditions (e.g., variance values, num-
ber of groups, group sizes, pattern of variance, number of
replications, etc.) were so varied that it is almost impossible
to compare studies. In this context, the pattern of heterogene-
ity that is simulated appears to be the most relevant variable.
The pattern of heterogeneity refers to the way in which the
values of the group variances can be ordered. Thus, the group
variances can monotonically increase (e.g., σ2

1 > σ2
2 > σ2

3 ) or

decrease (e.g., σ2
1 < σ2

2 < σ2
3 ) or follow another arbitrary

pattern (e.g., σ2
1 ¼ σ2

2 > σ2
3 ). Research to date has included

a wide variety of these patterns. In general, some studies have
found that F-test is robust, according to Bradley’s liberal cri-
terion, with a monotonic pattern (Lee&Ahn, 2003; Tomarken
& Serling, 1986; Wilcox et al., 1986), whereas others have
found that it is liberal (Alexander & Govern, 1994; Büning,
1997). For example,Wilcox et al. (1986), who considered four
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groups with a variance ratio equal to 4 and a monotonic pat-
tern of variance of 1: 2: 3: 4 with equal sample sizes (n = 11),
found thatF-test was robust (Type I error rate = .068), whereas
Alexander and Govern (1994) found it to be liberal with a
pattern of 1: 2: 4: 6 (Type I error rate = .079). Büning
(1997) found that F-test was robust with group size equal to
10 and a pattern of 1: 2: 4 (Type I error rate = .062), but liberal
with a pattern of 1: 3: 7 (Type I error rate = .083). With
arbitrary patterns of heterogeneity involving a set of groups
with similar variances and one with extreme variance (e.g., 1:
1: 1: 6 and 1: 1: 30) the test has been found to be non-robust
(Alexander & Govern, 1994; Lee & Ahn, 2003; Moder, 2010;
Rogan & Keselman; 1977;Wilcox et al., 1986). Overall, these
findings suggest that F-test robustness with equal group sizes
is more affected by a pattern where the variance of one group
is very different to that of the other groups. However, F-test
robustness with monotonic patterns of variance is still unclear,
and further research is needed to determine under which types
of these patterns the test can be used.

The sensitivity of F-test to violations of the variance ho-
mogeneity assumption when sample sizes are unequal has
been reported more consistently (Gamage & Weerahandi,
1998; Kohr & Games, 1974; Lee & Ahn, 2003; Moder,
2010; Patrick, 2007; Tomarken & Serling, 1986; Yiǧit &
Gökpinar, 2010; Zijlstra, 2004). The empirical evidence indi-
cates that its robustness depends on the pairing of variance
with group size, as was found in early studies. However, de-
spite the large body of research the specific conditions under
which F-test is robust have yet to be established, and a number
of questions remained unanswered. For example, what values
of the variance ratio are associated with correct/invalid infer-
ences? Howmuch inequality of group sizes can be assumed in
order to ensure that F-test controls Type I error rate? What
other types of pairing between variance and group size can be
defined and how do they affect F-test robustness?

Regarding the first and second questions, some authors
have suggested several rules of thumb, namely that variance
homogeneity can probably be assumed when the variance
ratio is not greater than 3 (Dean & Voss, 1999; Keppel,
Saufley, & Tokunaga, 1992; Kirk, 2013), is less than 4 or 5
(Wuensch, 2017), or is even as high as 10 provided that the
ratio of the largest to smallest sample size does not exceed 4
(Tabachnick & Fidell, 2007; 2013).

Regarding the pairing between variance and group size,
previous Monte Carlo studies have usually included a perfect
pairing with monotonic patterns of variance. For example,
considering five groups with sample sizes equal to 32, 36,
40, 44, and 48 and variances equal to 1, 2, 3, 4, and 5, respec-
tively, the pairing between these variables is perfect and pos-
itive. If the variances were 5, 4, 3, 2, and 1, respectively, the
pairing would be perfect and negative. However, other types
of pairing are also possible. If the pairing is defined by the
correlation between group size and variance, then different

values of this variable can be obtained. For example, if the
same group sample sizes were associated with variance values
of 1, 4, 2, 5, and 3, respectively, the pairing would be equal to
.50, while for values of 3, 5, 2, 4, and 1 it would be equal to
−.50. Thus, different values of the pairing could be considered
inMonte Carlo studies in order to extend our understanding of
how F-test robustness is affected by the type of pairing. As
mentioned, previous research does not provide consistent re-
sults about the robustness of F-test with monotonic patterns,
and it does not consider other possible types of pairing.

In this context, the main aim of this study is to systemati-
cally examine the robustness ofF-test, in terms of Type I error,
to violations of variance heterogeneity, considering a wide
range of conditions representative of real data in educational
and psychological research (Golinski & Cribbie, 2009;
Keselman et al., 1998; Ruscio & Roche, 2012). To this end,
a series of Monte Carlo simulation studies are performed for a
one-way design with equal and unequal sample sizes and
monotonic patterns of variance. The variance ratio is used as
a measure of heterogeneity, the coefficient of sample size var-
iation as a measure of the amount of inequality in group size,
and the correlation between variance and group sample size as
an indicator of different values of pairing. Our goal, based on
the results of this study, is to offer a guideline to help applied
researchers decide whether they can use the F-test when their
data do not meet the variance homogeneity assumption under
certain conditions.

Method

With the aim of systematically examining the robustness of F-
test to violations of variance heterogeneity we conducted a series
of Monte Carlo simulation studies for a one-way design with
equal and unequal sample sizes and monotonic patterns of vari-
ance. Simulation studies use computer-intensive procedures to
assess the appropriateness and accuracy of a variety of statistical
methods in relation to the known truth (Angelis &Young, 1998),
and they are especially suitable for evaluating a test’s robustness
when the underlying assumptions are not fulfilled. For this rea-
son, they are widely used by researchers in the health and social
sciences (Burton, Altman, Royston, & Holder, 2006).

In order to examine the isolated effects of variance hetero-
geneity on F-test robustness, and considering a one-way de-
sign, data were assumed to be normally distributed. Normal
data were generated using a series of macros created ad hoc in
SAS 9.4 (SAS Institute, 2013). The group effect was set to
zero in the population model. The following variables were
manipulated:

1. Equal and unequal group sample sizes and number of
groups. Data analytic practices for ANOVA show that
unbalanced designs are more common than balanced
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designs (Golinski & Cribbie, 2009; Keselman et al.,
1998). We considered designs with three, four, five, and
six groups with balanced cells, and three and five groups
with unbalanced cells.

2. Group sample size and total sample size. Awide range of
group sample sizes which can be frequently found in real
research were considered, enabling us to study small, me-
dium, and large sample sizes. With balanced designs, the
group sizes were set to three, five, 10, 15, 20, 25, 30, 40, 50,
60, 70, 80, 90, and 100. With unbalanced designs, group
sizes were set between three and 170, with a mean group
size from five to 100. Total sample size ranged from nine to
600, depending on the number of groups considered, this
being the result of multiplying the number of groups by the
minimum and maximum group sample size (e.g., with five
groups the total sample size ranged from 15 to 500).

3. Coefficient of sample size variation (Δn), which represents
the amount of inequality in group sizes. This was computed
by dividing the standard deviation of the group sample size
by its mean. Different degrees of variation were considered
and were grouped as low, medium, and high. A low Δn
was fixed at approximately 0.16 (0.141–0.178), a medium
coefficient at 0.33 (0.316–0.334), and a high value at 0.50
(0.491–0.521). Keselman et al. (1998) showed that the ratio
of the largest to the smallest group size was greater than 3 in
43.5% of cases. WithΔn = 0.16 this ratio was equal to 1.5,
with Δn = 0.33 it was equal to either 2.3 or 2.5, and with
Δn = 0.50 it ranged from 3.3 to 5.7.

4. Ratio of the largest to the smallest variance. For one-way
designs Keselman et al. (1998) found that the average
value of the ratio of the largest to the smallest standard
deviation was 2.0 (SD = 2.6), with a median of 1.5 and a
maximum ratio of 23.8. Ruscio and Roche (2012), despite
the enormous range in variance ratio found, showed that
the ratio exceeded 3 in 23.18% of reviewed studies, with a
median of 1.64 and a range for the middle 50% of cases of
between 1.23 and 2.76. In addition, for three groups they
found a mean value of 3.95. Based on these findings, the
values of variance ratio selected for the present study were
1.5, 2, 3, 5, and 9 for balanced designs, and 1.5, 1.6, 1.7,
1.8, 2, 3, 5 and 9 for unbalanced designs.

5. Patterns of variance and pairing of variance with group
sample size. Monotonic patterns of variance were consid-
ered, and are presented in Table 1 for each variance ratio.
The type of pairing between variance and group size indi-
cates the relationship or association between the two.
Pairing is positive when the largest group size is associated
with the largest value of the variance and the smallest group
size is associated with the smallest value of variance.
Pairing is negative when the largest group size is associated
with the smallest value of variance, and vice-versa.
Unpairing occurs when there is no association between
group size and variance. This happens, for example, with

equal group sizes and/or equal variances, but it can also
appear with unequal group sizes. In order to consider con-
ditions of pairing which can represent real data (Keselman
et al., 1998; Ruscio & Roche, 2012), we calculated the
correlation between group sample size and variance value.
Correlations equal, approximately, to 1, .50, 0, −.50, and −1
were considered for unbalanced designs. The value of 0
was not included for three groups because it is a non-
possible value. These correlation values were obtained by
associating each group sample size with different values of
variance for the monotonic pattern. Thus, if the groups are
ordered as a function of their sample sizes, different values
of this correlation are obtained by changing the value of
their variance. Table 2 shows the order of variance associ-
ated with the group sample sizes, from the smallest sample
size to the largest one.

To ensure reliable results 10,000 replications of each com-
bination of the above conditions were performed at a signifi-
cance level of .05, recording the empirical Type I error rate

Table 1 Patterns of variance considered in relation to variance ratio and
number of groups

Variance ratio Number of groups Variance pattern

1.5 3 1: 1.25: 1.5

4 1: 1.17: 1.34: 1.5

5 1: 1.125: 1.25: 1.375: 1.5

6 1: 1.1: 1.2: 1.3: 1.4: 1.5

1.6 3 1: 1.3: 1.6

5 1: 1.15: 1.3: 1.45: 1.6

1.7 3 1: 1.35: 1.7

5 1: 1.175: 1.35: 1.525: 1.7

1.8 3 1: 1.4: 1.8

5 1: 1.2: 1.4: 1.6: 1.8

2 3 1: 1.5: 2

4 1: 1.33: 1.66: 2

5 1: 1.25: 1.5: 1.75: 2

6 1: 1.2: 1.4: 1.6: 1.8: 2

3 3 1: 1.5: 3

4 1: 1.66: 2.33: 3

5 1: 1.5: 2: 2.5: 3

6 1: 1.4: 1.8: 2.2: 2.6: 3

5 3 1: 3: 5

4 1: 2.33: 3.66: 5

5 1: 2: 3: 4: 5

6 1: 1.8: 2.6: 3.4: 4.2: 5

9 3 1: 5: 9

4 1: 3.66: 6.32: 9

5 1: 3: 5: 7: 9

6 1: 2.6: 4.2: 5.8: 7.4: 9
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(Bendayan, Arnau, Blanca, & Bono, 2014; Robey &
Barcikowski, 1992).

Results

The empirical Type I error rates associated with the F-test of the
group effect were analyzed for each combination. The results
for equal and unequal sample size are shown in Appendices 1
and 2, respectively. Bradley’s liberal criterion (1978) was used
to assess the robustness of the procedure. To summarize the
results, based on Bradley’s criterion the empirical Type I error
rates were dichotomized into a binary variable with two cate-
gories, robust (Type I error rate between .025 and .075) and not
robust (Type I error rate below .025 or above .075). Chi-square
tests were then performed to examine the association between
robustness and the variables of interest. Results are presented
according to equal and unequal sample sizes.

Equal sample sizes

As can be seen in Tables 11, 12, 13 and 14 (Appendix 1), all
Type I error rates were inside the boundary of Bradley’s liberal
criterion. Thus, the results show that F-test is robust for three,
four, five, and six groups in 100% of cases, regardless of the
total sample size and variance ratio.

Unequal sample sizes

Total sample size The association between total sample size
and categorical Type I error rate was not statistically significant
for any condition of variance ratio and number of groups, con-
sidering 13 categories of the first variable and two of the sec-
ond. Moreover, the association between group sample size
mean and categorical Type I error rate, collapsed across all
variance ratios, was not significant for either three groups,
χ2(12) = 1.47, p = .99, or five groups, χ2(12) = 0.38, p = .99.
The percentages of F-test robustness are shown in Table 3.

Variance ratio The relationship between variance ratio (eight
categories) and categorical Type I error rate was significant

both for three groups, χ2(7) = 283.59, p < .001, and for five
groups, χ2(7) = 288.57, p < .001. In general, the percentage of
robustness decreased as variance ratio increased, with F-test
being more robust with five groups. Table 4 shows the per-
centages of F-test robustness.

Pairing of variance with group size Overall, for both three
and five groups there was a significant association between cat-
egorical Type I error rate and pairing of variance with group size
for ratios higher than 1.5. Tables 5 and 6 show the percentage of
robustness according to variance ratio and pairing. With a ratio
of 1.5, F-test was robust in all conditions. With a ratio from 1.6
to 2 it was robust except when the pairing was equal to −1.With
a ratio of 3 or higher, F-test was robust with pairing equal to 0 or
.50 and non-robust with pairing equal to 1, −.5, and −1.
Negative pairing had more of an effect than did positive pairing,
with the percentage of robustness decreasing as the amount of

Table 3 Percentage ofF-test robustness according to group sample size
mean and number of groups

N/J J = 3 J = 5

5 77.5 85.0

10 79.2 85.0

15 78.1 85.8

20 81.3 85.8

25 81.3 85.8

30 80.2 84.2

40 82.3 84.2

50 79.2 85.0

60 80.2 85.0

70 80.2 85.0

80 82.3 85.0

90 80.2 85.8

100 79.2 85.0

Note. N/J = mean of the group sample size; J = number of groups

Table 2 Order of variance associated with the groups according to
pairing and number of groups

Pairing J = 3 J = 5

1 1, 2, 3 1, 2, 3, 4, 5

.50 1, 3, 2 1, 4, 2, 5, 3

0 - 1, 5, 4, 2, 3

-.50 2, 3, 1 3, 5, 2, 4, 1

-1 3, 2, 1 5, 4, 3, 2, 1

Note. J = number of groups

Table 4 Percentage ofF-test robustness according to variance ratio and
number of groups

Variance ratio J = 3 J = 5

1.5 100 100

1.6 97.4 99.0

1.7 92.2 95.4

1.8 92.2 94.4

2 88.3 92.3

3 69.5 77.4

5 54.5 64.6

9 46.8 57.9

Note. J = number of groups. Robustness: Type I error rate within range
[.025–.075]
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negative pairing increased; it even reached zero with pairing
equal to −1 and a variance ratio of 9. In addition, when F-test
was not robust with positive pairing it was always conservative,
whereas with negative pairing it was always liberal.

Coefficient of sample size variation For both three and five
groups there was a significant association between categorical
Type I error rate and the coefficient of sample size variation
(three categories) for each ratio higher than 1.5, with F-test
being less robust with the highest values of this coefficient.
Tables 7 and 8 show the percentage of robustness according to
this coefficient. For ratios of 2 or higher, the more inequality
between groups the less robust F-test was. The largest coeffi-
cient of sample size variation had an enormous effect on the
percentage of robustness when the variance ratio was 3 or
higher, decreasing it by as much as three-quarters (to 24%)
in the cases for three groups.

All studied conditions As can be seen in Tables 15 and 16
(Appendix 2) there was a similar pattern of Type I error
rates for three and five groups. The results are summa-
rized in Table 9. In general, it appears that robustness

depends on the variance ratio, the pairing of variance with
group size, and the coefficient of sample size variation,
with the procedure being more robust when variance ra-
tios were small, the pairing of variance was either zero or
positive, and the coefficient of sample size variation was
smaller. More specifically:

& Variance ratio of 1.5. As stated above, F-test was robust
for all the studied conditions, regardless of the pairing or
the coefficient of sample size variation.

& Variance ratio ranged from 1.6 to 1.8. F-test was robust
for all the considered conditions, except when the pairing
was equal to −1 and the coefficient of sample size varia-
tionwas equal to 0.50, in which case it tended to be liberal.

& Variance ratio of 2. F-test was robust for all the considered
conditions, except when the pairing was equal to −1 and
the coefficient of sample size variation was equal to 0.33
or 0.50; in both these cases it was liberal, and in the 0.50
condition it was liberal in 100% of cases.

& Variance ratio of 3. F-test was robust for all the considered
conditions, except when the pairing of variance with
group size was:

Table 5 Percentage of F-test robustness for three groups according to the pairing of variance with group size and the variance ratio

Pairing Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

1 a 100 100 100 100 100 74.4 64.1 59

.50 100 100 100 100 100 100 100 100

-.50b 100 100 100 100 100 71.1 47.4 28.9

-1b 100 89.7 69.2 69.2 53.8 33.3 7.7 0

χ2 12.11** 38.37** 38.37** 60.10** 41.20** 68.42** 84.70**

df 3 3 3 3 3 3 3

Note. ** p < .01. Robustness: Type I error rate within range [.025–.075]. When F-test is not robust: a Conservative; b Liberal

Table 6 Percentage of F-test robustness for five groups according to the pairing of variance with group size and the variance ratio

Pairing Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

1a 100 100 100 100 100 87.2 66.7 66.7

.50 100 100 100 100 100 100 100 100

0 100 100 100 100 100 100 100 100

-.50b 100 100 100 100 100 66.7 35.9 23.1

-1b 100 94.9 76.9 71.8 61.5 33.3 20.5 0

χ2 8.08 37.74** 46.63** 65.01** 70.85** 90.03** 131.02**

df 4 4 4 4 4 4 4

Note. ** p < .01. Robustness: Type I error rate within range [.025–.075]. When F-test is not robust: a Conservative; b Liberal
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– Equal to 1 and the coefficient of sample size variation was
equal to 0.50, in which case it tended to be conservative.

– Equal to −.5 and the coefficient of sample size variation
was equal to 0.50, in which case it was liberal in almost
100% of cases.

– Equal to −1 and the coefficient of sample size variation
was equal to 0.33 or 0.50, in which case it was liberal in
100% of the considered conditions.

& Variance ratios of 5 and 9. The pattern of results here was
similar to that for a variance ratio of 3, although robustness
decreased. Specifically, F-test was not robust when the
pairing of variance with group size was:

– Equal to 1 and the coefficient of sample size variation was
equal to 0.33 or 0.50, the test being conservative in the
latter condition in 100% of cases.

– Equal to −.5 and the coefficient of sample size variation
was equal to 0.33, in which case it was liberal in fewer
than 50% of cases for a variance ratio of 5 and in 100% of
them for a variance ratio of 9. When the coefficient of
sample size variation was equal to 0.50, F-test was liberal
in 100% of cases.

– Equal to −1 and the coefficient of sample size variation
was equal to 0.16, 0.33, or 0.50, the test being liberal in
the latter two conditions in 100% of cases.

Discussion

The aim of this paper was to present a systematic exam-
ination of F-test robustness, in terms of Type I error, to
violations of variance heterogeneity with monotonic pat-
terns of variance in one-way balanced and unbalanced
designs. We used the variance ratio as a measure of het-
erogeneity, the coefficient of sample size variation as a
measure of the amount of inequality in group size, and
the correlation between variance and group sample size as
an indicator of different values of pairing of variance with
group sizes. The studied variables cover a wide range of
conditions (2,972 conditions), our goal being to provide a
guideline that would help applied researchers decide
whether they can trust F-test results under heterogeneity.
Several main conclusions can be drawn from the results.

Table 7 Percentage of F-test robustness for three groups according to the coefficient of sample size variation and the variance ratio

Δn Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

0.16 100 100 100 100 100 100 78.8 71.2

0.33 100 100 100 100 90.4 75 59.6 44.2

0.50 100 92 76 76 74 32 24 24

χ2 8.54* 27.07** 27.07** 17.02** 56.71** 31.74** 22.96**

df 2 2 2 2 2 2 2

Note. Δn = Coefficient of sample size variation; * p < .05; ** p < .01. Robustness: Type I error rate within range [.025–.075]

Table 8 Percentage of F-test robustness for five groups according to the coefficient of sample size variation and the variance ratio

Δn Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

0.16 100 100 100 100 100 100 90.8 73.8

0.33 100 100 100 100 96.9 80 63.1 60

0.50 100 96.9 86.2 83.1 80 52.3 40 40

χ2 4.04 18.87** 23.32** 21.23** 42.67** 36.73** 15.48**

df 2 2 2 2 2 2 2

Note. Δn = Coefficient of sample size variation; ** p < .01. Robustness: Type I error rate within range [.025–.075]
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First, F-test is robust with monotonic patterns of variance
when the group sample sizes are equal, regardless of the number
of groups, of the ratio between the largest and smallest variance,
and of the total sample size.With a variance ratio as large as 9,F-
test can, at least for the number of groups and sample sizes
considered here, still be used without the Type I error rate being
affected by heterogeneity when the design is balanced.

Second, F-test is not robust with unequal sample sizes
under certain conditions. The results showed that, in gen-
eral, robustness depends on the variance ratio, the pairing

of variance with group size, and the coefficient of sample
size variation, with the procedure being more robust when
variance ratios are small, the pairing of variance is either
zero or positive, and the coefficient of sample size varia-
tion is smaller. These conditions can be specified as
follows:

1. The percentages of robustness tend to be lower for three
groups than for five groups. This may indicate that the
number of the groups is a variable that has to be consid-
ered: the smaller the number of groups, the greater the
effect on F-test.

2. The total sample size does not influence F-test robust-
ness under heterogeneity. The use of a large sample
size does not, therefore, protect against the effect of
heterogeneity.

3. When the pairing of variance with group size is equal
to 0 for three groups and equal to 0 or .5 for five
groups, F-test is not affected by heterogeneity under
any considered condition. However, F-test tends to be
conservative with positive pairing and liberal with
negative pairing, the latter being the most influential
variable. Consequently, researchers should pay partic-
ular attention when the pairing is negative in their
data.

4. The ratio of the largest to the smallest variance, which
represents the measure of heterogeneity, determines
F-test robustness. Its robustness decreases as the var-
iance ratio increases, in other words, robustness de-
creases as the homogeneity assumption is more vio-
lated. With a ratio of 1.5, F-test is robust in all studied
conditions.

5. For a ratio higher than 1.5 there are two variables that
have to be considered: The coefficient of sample size var-
iation and the pairing of variance with group size. In
general:

& The coefficient of sample size variation, which repre-
sents the amount of inequality in group sizes, affects
F-test robustness. In several cases its robustness de-
creases as the coefficient of variation increases, in
other words, robustness decreases as the group sizes
become more unequal.

& When pairing is equal to 1, F-test tends to be conser-
vative, whereas when pairing is negative (equal to −.5
or −1) the procedure tends to be liberal, depending on
the variance ratio and the coefficient of sample size
variation.

& With a ratio higher than 1.5 and lower than 2, F-test is
only affected by heterogeneity when pairing is equal

Table 9 Percentage of F-test robustness according to the coefficient of
sample size variation, the pairing of variance with group size, and the
variance ratio

Pairing Variance ratio

Δn 1.5 1.6 1.7 1.8 2 3 5 9

J = 3

1a 0.16 100 100 100 100 100 100 100 100

0.33 100 100 100 100 100 100 92.3 76.9

0.50 100 100 100 100 100 23.1 0 0

.50 0.16 100 100 100 100 100 100 100 100

0.33 100 100 100 100 100 100 100 100

0.50 100 100 100 100 100 100 100 100

-.50b 0.16 100 100 100 100 100 100 92.3 84.6

0.33 100 100 100 100 100 100 46.2 0

0.50 100 100 100 100 100 8.3 0 0

-1b 0.16 100 100 100 100 100 100 23.1 0

0.33 100 100 100 100 61.5 0 0 0

0.50 100 69.2 7.7 7.7 0 0 0 0

J = 5

1a 0.16 100 100 100 100 100 100 100 100

0.33 100 100 100 100 100 100 100 100

0.50 100 100 100 100 100 61.5 0 0

.50 0.16 100 100 100 100 100 100 100 100

0.33 100 100 100 100 100 100 100 100

0.50 100 100 100 100 100 100 100 100

0 0.16 100 100 100 100 100 100 100 100

0.33 100 100 100 100 100 100 100 100

0.50 100 100 100 100 100 100 100 100

-.50b 0.16 100 100 100 100 100 100 92.3 69.2

0.33 100 100 100 100 100 100 15.4 0

0.50 100 100 100 100 100 0 0 0

-1b 0.16 100 100 100 100 100 100 61.5 0

0.33 100 100 100 100 84.6 0 0 0

0.50 100 84.6 30.8 15.4 0 0 0 0

Note. Δn: Coefficient of sample size variation; J = number of groups;
Robustness: Type I error rate within range [.025–.075].When F-test is not
robust: a Conservative, b Liberal
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to −1 and the coefficient of sample size variation is
0.5.

& With a ratio equal to 2, F-test is only affected by het-
erogeneity when pairing is equal to −1 and the coeffi-
cient of sample size variation is as high as 0.33 or 0.5.

& With a ratio of 3 or higher, F-test tends to be conser-
vative with pairing equal to 1 and a coefficient of
sample size variation of 0.5. With a ratio of 5 or 9 it
is conservative in 100% of the studied conditions.
Likewise, F-test tends to be liberal with pairing equal
to −.5 or −1 under several conditions of sample size
variation. The more unequal the sample sizes, the less
robust the F-test is.

In general, the results regarding equal sample sizes are
consistent with early studies (e.g., Box, 1954; Glass et al.,
1972; Hsu, 1938; Scheffé, 1959), as well as with more recent
ones (Lee & Ahn, 2003; Patrick, 2007; Yiǧit & Gökpinar,
2010). Specifically, our findings are consistent with the early
research suggesting that balanced designs can be used as pro-
tection against the effect of variance heterogeneity. However,
the results of the present study go further, since they show that
this recommendation is accurate – even with small samples
and with a variance ratio as high as 9 – when there is a mono-
tonic pattern of variance in the groups, that is, when the values
of group variance increase or decrease monotonically so that
the groups can be ordered as a function of their respective
variances. Other researchers have found that F-test is not ro-
bust with a balanced design when the pattern of heterogeneity
involves a set of groups with similar variances and one with
extreme variance (e.g., Alexander & Govern, 1994; Lee &
Ahn, 2003; Moder, 2010; Rogan & Keselman, 1977; Wilcox
et al., 1986). This finding highlights the relevance of knowing
the pattern of variance in the data when performing F-test.

With regard to unequal sample sizes, our results appear to
be consistent with previous findings, showing that Type I error
rates vary depending on the degree of variance heterogeneity
and the pairing of variance with group sample size (Box,
1954; Gamage & Weerahandi, 1998; Harwell et al., 1992;
Horsnell, 1953; Hsu, 1938; Kohr & Games, 1974; Lee &
Ahn, 2003; Moder, 2010; Patrick, 2007; Scheffé, 1959;
Tomarken & Serling, 1986; Yiǧit & Gökpinar, 2010;
Zijlstra, 2004). Specifically, with positive pairing, F-test tends
to be conservative, with the empirical level of alpha being less
than the nominal. With negative pairing, F-test tends to be
liberal, with the empirical level of alpha being higher than
the nominal, such that the risk of declaring mean differences
that do not exist is increased. However, the present study
extends the findings of previous studies and provides further
information about F-test robustness under heterogeneity in a

wide range of conditions that applied researchers may encoun-
ter in their data, taking into account specific variables such as
different values of the pairing of variance with group size,
several ratios of variance, and different values of the coeffi-
cient of sample size variation.

Furthermore, the results of this study enable us to offer re-
searchers a specific guideline regarding whether or not F-test
will be sensitive to departures from the homogeneity assump-
tion that may be present in their data.When amonotonic pattern
of variance is found in the groups, as was the case here, there
are three steps that researchers can follow:

1. Calculate the variance ratio, dividing the value of the larg-
est variance of the groups by the smallest variance. If this
ratio is equal to or less than 1.5, F-test can be performed
with confidence. If this ratio is higher than 1.5, then con-
tinue with step 2.

2. Calculate the correlation between group sample size and
the values of variance in order to determine the amount of
pairing of variance with group sample size. If this corre-
lation is either 0 or 0.5, proceed with F-test. Otherwise,
continue with step 3.

3. Calculate the coefficient of sample size variation, dividing
the standard deviation of the group sample sizes by its
mean in order to determine the amount of inequality in
group sample sizes.

& If the pairing is equal to 1 and the coefficient of sam-
ple size variation is high (close to .50), it is not pos-
sible to trust the results of F-test for ratios higher than
2 because the actual Type I error may be much lower
than the nominal alpha of .05, even reaching .01.

Table 10 Conditions under which F-test is not robust, in terms of Type
I error, against violation of the homogeneity assumption, according to
variance ratio, the pairing of variance with group sample size, and the
coefficient of sample size variation

Variance ratio Pairing Coefficient of sample
size variation

Type I error rate

1.6, 1.7, 1.8 −−1 0.50 Liberal

2 −1 0.33; 0.50 Liberal

3 1 0.50 Conservative

−.50 0.50 Liberal

−1 0.33; 0.50 Liberal

5 & 9 1 0.50 Conservative

−.50 0.33; 0.50 Liberal

−1 0.16; 0.33; 0.50 Liberal
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Table 10 shows the specific conditions in whichF-test
is not robust.

& If the pairing is equal to −.50 and the coefficient of
sample size variation is close to 0.33 or higher, results
from F-test for ratios higher than 2 are not reliable
because the actual Type I error may be much higher
than the nominal alpha of .05. Thus, there is an in-
creased likelihood of declaring mean differences that
do not actually exist. The highest value of Type I error
found in this condition was .10.

& If the pairing is equal to −1, and in this case for the
majority of sample size coefficients for high variance
ratios, results from F-test are distorted because the
actual Type I error may be much higher than the nom-
inal alpha of .05, even reaching .20 (see Table 10 for
specific conditions).

One of the biggest advantages of following these steps is
that applied researchers do not need to use any traditional
homogeneity tests (e.g., Bartlett, 1937; Cochran, 1941;
Hartley, 1950; Levene, 1960), which are known to rely on
other assumptions that might not be met (Bhat, Badade, &
Aruna Rao, 2002; Conover, Johnson, & Johnson, 1981;
Harwell et al., 1992; Moder, 2007; Sharma & Kibria, 2013;
Zimmerman, 2004). Moreover, researchers can locate the spe-
cific variance conditions and characteristics of their data in the
tables provided and see directly if F-test is robust or not.

To sum up, this study has two main strengths. First,
its systematic approach covers the largest variety of con-
ditions simulated to date when exploring F-test robust-
ness to variance heterogeneity, including conditions rep-
resentative of real data in educational and psychological
research. Second, the results yield an easy guideline that
can be followed by applied researchers from any back-
ground, making it easier for them to decide whether F-
test can reliably be used when variances are not equal
between the groups. Moreover, the guideline provided
makes this process fast and straightforward, avoiding
the need for traditional homogeneity tests, which cannot
be used in a number of conditions. It should be noted,
however, that this study has only analyzed the effect of
monotonic patterns of variance on the Type I error rate
of F-test. Future studies should therefore aim to examine
power and other patterns of variance besides those con-
sidered here. A further potential limitation of this paper
is that it aimed to explore the isolated effect of hetero-
geneity on F-test, without considering other assumptions
such as normality. An interesting line of future research
would be to explore whether or not the violation of nor-
mality increases the effect of heterogeneity.

The results of this study suggest that the traditional
variance ratio should be used as a measure of the degree
of heterogeneity, and indicate that special attention
should be paid when the design is unbalanced, the
pairing is negative, and the ratio is higher than 1.5.
Furthermore, a variance ratio higher than 1.5 may be
established as a rule of thumb for considering a potential
threat to F-test robustness under heterogeneity with un-
equal sample sizes. This rule of thumb is much more
restrictive than the previously recommended maximums
of three (Dean & Voss, 1999; Keppel et al., 1992; Kirk,
2013), four or five (Wuensch, 2017), or 10 (Tabachnick
& Fidell, 2007, 2013). This paper shows that these
criteria may lead, under certain conditions, to incorrect
inferences.

The next problem to be tackled is how to address het-
erogeneity of variance when F-test is not robust. Although
a detailed analysis of this issue is beyond the scope of the
present study, we would like to offer some general recom-
mendations. A first, practical recommendation is that re-
searchers should, if possible, design their study with equal
group sample sizes, or, at least, with low sample size
variation. However, this is not always possible and there
may be disagreement over whether the study design or the
data collection procedure should be driven by the statisti-
cal analysis.

Some authors have also recommended using a more
stringent alpha level in the condition under which an in-
flated alpha is expected, for example, .025 instead of .05
(Keppel et al . , 1992; Keppel & Wickens, 2004;
Tabachnick & Fidell, 2007, 2013), or .01 with severe vi-
olation (Tabachnick & Fidell, 2007, 2013). This is the
simplest procedure for researchers since they may still
use F-test while maintaining control of Type I error. For
illustrative purposes, and in order to examine which alpha
level may be used, we conducted simulations under those
conditions for which F-test is liberal for three groups with
a nominal alpha of .05, and considering other more re-
stricted alpha levels (results are shown in Appendix 3).
Overall, a nominal alpha level of .025 controls the Type I
error rate within the bounds of Bradley’s criterion for .05
in the conditions associated with Type I error rates around
.10, while a nominal alpha level of .01 achieves this con-
trol in the conditions associated with Type I error rates
above .10. However, in some conditions with Type I error
rates above .15, the level of alpha has to be restricted to
.005 to maintain empirical Type I error rates within the
bounds of Bradley’s criterion for .05. Consequently, re-
searchers can adjust the nominal alpha level depending
on the specific characteristics of their data, bearing in
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mind that a severe violation of homogeneity requires a
more restricted level of alpha.

Another common recommendation for meeting the as-
sumption of variance homogeneity is to transform the
response variable (e.g., Montgomery, 1991; Tabachnick
& Fidell, 2007, 2013; Winer, Brown, & Michels,
1991). However, it is often difficult to determine which
transformation is appropriate for a specific set of data,
and results are usually difficult to interpret when data
transformations are adopted.

The comparison of means using alternative statistical
procedures which have been found to provide more robust
results has also been proposed (e.g., Alexander & Govern,
1994; Brown & Forsythe, 1974; Brunner, Dette, & Munk,
1997; Chen & Chen, 1998; James, 1951; Krishnamoorthy,
Lu, & Mathew, 2007; Kruskal & Wallis, 1952; Lee & Ahn,
2003; Li, Wang, & Liang, 2011; Lix & Keselman, 1998;
Weerahandi, 1995; Welch, 1951; Wilcox, 1995; Wilcox,
Keselman, & Kowalchuk, 1998). Below we focus on the
most common ones.

The non-parametric Kruskal-Wallis test (Kruskal &
Wallis, 1952) is one of the most widely recommended
tests in classic handbooks on methodology and statistics.
However, the Kruskal-Wallis test has several disadvan-
tages: (1) It converts quantitative continuous data into
rank-ordered data, with a consequent loss of information;
(2) its null hypothesis differs from that of F-test, unless
the distribution of groups has exactly the same shape
(see Maxwell & Delaney, 2004); and (3) some Monte
Carlo studies have shown that its Type I error is also
affected by variance heterogeneity, being liberal (rates
greater than .075) with negative pairing (Cribbie et al.,
2007; Tomarken & Serling, 1986).

Another common proposal has been to use parametric
modifications of F-test, such as Brown-Forsythe (1974)
and Welch (1951) tests. Both seem to provide better con-
trol over Type I error rates than does F-test under
heteroscedasticity. With variance patterns similar to those
used here, Tomarken and Serlin (1986) recommended
using the Welch test with normal populations, while
Clinch and Keselman (1982) recommended the Brown-
Forsythe test under both heterogeneity and non-normali-
ty. More recently, the results obtained by Parra-Frutos
(2014) suggested that both tests perform well with nor-
mal data, although the Brown-Forsythe test offers better
control of the Type I error rate under several non-
normality conditions. Another recently proposed alterna-
tive is to use the F-test, Brown-Forsythe or Welch tests
with bootstrapping in order to obtain distributions of the
statistics instead of using their theoretical distribution
(Krishnamoorthy et al., 2007; Parra-Frutos, 2014).
Parra-Frutos (2014) showed that the bootstrapped F-test
and the bootstrapped Brown-Forsythe test exhibit similar

and exceptionally good behavior under heteroscedasticity
and non-normality.

Finally, methods using robust estimators of location
and robust measures of scale have also been proposed
to compare trimmed means. For example, Lix and
Keselman (1998), Wilcox (1995), and Wilcox et al.
(1998) suggested that the best option was the Welch test
on trimmed means and Winsorized variance, although the
bootstrap procedure proposed by Krishnamoorthy et al.
(2007), used in conjunction with a robust approach, has
been shown to provide better control of Type I error
under heteroscedast ic i ty (Cribbie , Fiksenbaum,
Keselman, & Wilcox, 2012).

Whatever the case, we encourage researchers to analyze the
specific characteristics of their design and the data obtained
and, if their data do not meet the assumption of variance ho-
mogeneity, to choose the best alternative in order to obtain
valid results. To this end, the best approach is to perform a
simulation study involving the specific conditions of the real
data so as to determine whether or not F-test is robust in the
situation being considered. We are aware, however, that ap-
plied researchers are not usually familiarized with this
procedure.
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Glossary

Coefficient of sample
size variation

The amount of inequality in group
sizes, calculated by dividing the
standard deviation of the group
sample size by its mean.

Conservative Empirical Type I error rate below
.025.

Liberal Empirical Type I error rate above
.075

Pairing of variance with
group sample size

The correlation between the two.
Pairing is positive when the largest
group size is associated with the
largest value of variance, and vice-
versa. Pairing is negative when the
largest group size is associated with
the smallest variance, and vice-
versa.

Percentage of
robustness

Percentage of Type I error rate
within the bounds of Bradley’s
criterion [.025-.075].

Variance ratio Ratio of the largest to the smallest
variance.
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Table 11 Empirical Type I error for F-test with three groups and equal
sample sizes

N n Variance ratio

1.5 2 3 5 9

9 3 .0486 .0513 .0540 .0603 .0699

15 5 .0468 .0547 .0584 .0652 .0606

30 10 .0506 .0529 .0533 .0579 .0629

45 15 .0480 .0518 .0531 .0581 .0627

60 20 .0490 .0507 .0517 .0533 .0586

75 25 .0479 .0533 .0515 .0559 .0576

90 30 .0485 .0508 .0510 .0600 .0610

120 40 .0477 .0495 .0554 .0541 .0567

150 50 .0519 .0507 .0510 .0567 .0569

180 60 .0479 .0506 .0529 .0583 .0607

210 70 .0508 .0523 .0525 .0591 .0607

240 80 .0479 .0482 .0533 .0558 .0553

270 90 .0520 .0590 .0538 .0561 .0646

300 100 .0511 .0476 .0523 .0561 .0569

Appendix 1. Empirical Type I error rates for F-test and
equal sample sizes

Table 12 Empirical Type I error for F-test with four groups and equal
sample sizes

N n Variance ratio

1.5 2 3 5 9

12 3 .0481 .0580 .0564 .0605 .0749

20 5 .0526 .0535 .0579 .0616 .0642

40 10 .0525 .0560 .0574 .0611 .0590

60 15 .0510 .0546 .0558 .0581 .0610

80 20 .0534 .0561 .0604 .0605 .0602

100 25 .0499 .0515 .0504 .0613 .0594

120 30 .0501 .0531 .0520 .0614 .0580

160 40 .0547 .0514 .0568 .0591 .0606

200 50 .0508 .0518 .0568 .0572 .0611

240 60 .0488 .0497 .0547 .0577 .0630

280 70 .0489 .0563 .0525 .0541 .0627

320 80 .0531 .0535 .0574 .0544 .0599

360 90 .0534 .0472 .0480 .0610 .0613

400 100 .0551 .0453 .0577 .0569 .0619

Table 13 Empirical Type I error for F-test with five groups and equal
sample sizes

N n Variance ratio

1.5 2 3 5 9

15 3 .0540 .0544 .0563 .0608 .0721

25 5 .0529 .0546 .0552 .0632 .0689

50 10 .0509 .0514 .0574 .0586 .0622

75 15 .0521 .0513 .0544 .0595 .0667

100 20 .0480 .0501 .0512 .0612 .0670

125 25 .0479 .0536 .0521 .0555 .0608

150 30 .0530 .0477 .0534 .0570 .0640

200 40 .0487 .0528 .0583 .0574 .0629

250 50 .0486 .0572 .0563 .0587 .0598

300 60 .0476 .0498 .0529 .0599 .0600

350 70 .0513 .0502 .0517 .0551 .0626

400 80 .0485 .0486 .0551 .0587 .0607

450 90 .0461 .0513 .0556 .0561 .0614

500 100 .0486 .0533 .0584 .0565 .0633

Table 14 Empirical Type I error for F-test with six groups and equal
sample sizes

N n Variance ratio

1.5 2 3 5 9

25 5 .0521 .0523 .0543 .0585 .0632

50 10 .0523 .0506 .0532 .0619 .0624

75 15 .0522 .0517 .0543 .0639 .0658

100 20 .0497 .0497 .0568 .0616 .0670

125 25 .0499 .0492 .0534 .0585 .0616

150 30 .0494 .0516 .0522 .0603 .0675

200 40 .0489 .0489 .0545 .0573 .0639

250 50 .0542 .0560 .0574 .0621 .0630

300 60 .0507 .0487 .0541 .0604 .0630

350 70 .0469 .0518 .0577 .0608 .0596

400 80 .0517 .0556 .0508 .0605 .0607

450 90 .0468 .0547 .0492 .0581 .0602

500 100 .0493 .0550 .0548 .0592 .0622
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Table 15 Empirical Type I error for F-test with three groups

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

15 5 1.5 0.16 4, 5, 6 1 1, 2, 3 .0469 .0494 .0505 .0455 .0443 .0438 .0460 .0466
.50 1, 3, 2 .0487 .0448 .0450 .0446 .0529 .0489 .0510 .0544
−.50 2, 3, 1 .0552 .0521 .0558 .0586 .0538 .0644 .0787 .0864
−1 3, 2, 1 .0551 .0472 .0427 .0454 .0660 .0713 .0816 .0948

2.3 0.33 3, 5, 7 1 1, 2, 3 .0451 .0417 .0404 .0355 .0344 .0343 .0260 .0282
.50 1, 3, 2 .0478 .0415 .0386 .0393 .0487 .0445 .0428 .0441
−.50 2, 3, 1 .0549 .0633 .0683 .0652 .0506 .0677 .0873 .0977
−1 3, 2, 1 .0570 .0565 .0566 .0572 .0791 .0897 .1122 .1319

3 0.50 3, 3, 9 1 1, 2, 3 .0360 .0415 .0370 .0320 .0283 .0254 .0201 .0188
−1 3, 2, 1 .0688 .0719 .0760 .0786 .0794 .1171 .1624 .2077

30 10 1.5 0.16 8, 10, 12 1 1, 2, 3 .0436 .0483 .0470 .0448 .0448 .0449 .0414 .0400
.50 1, 3, 2 .0447 .0476 .0464 .0492 .0511 .0477 .0461 .0525
−.50 2, 3, 1 .0498 .0574 .0570 .0544 .0507 .0632 .0668 .0754
−1 3, 2, 1 .0581 .0607 .0577 .0626 .0601 .0708 .0788 .0867

2.3 0.33 6, 10, 14 1 1, 2, 3 .0428 .0408 .0408 .0351 .0371 .0331 .0292 .0260
.50 1, 3, 2 .0416 .0445 .0447 .0437 .0470 .0414 .0416 .0459
−.50 2, 3, 1 .0585 .0586 .0598 .0614 .0580 .0654 .0870 .0913
−1 3, 2, 1 .0628 .0698 .0625 .0673 .0734 .0863 .1128 .1245

4 0.50 4, 10, 16 1 1, 2, 3 .0385 .0362 .0364 .0324 .0320 .0260 .0209 .0201
.50 1, 3, 2 .0440 .0425 .0408 .0444 .0464 .0370 .0369 .0387
−.50 2, 3, 1 .0609 .0604 .0651 .0633 .0597 .0809 .0926 .1099
−1 3, 2, 1 .0725 .0761 .0757 .0761 .0881 .1185 .1486 .1788

45 15 1.5 0.16 12, 15, 18 1 1, 2, 3 .0444 .0442 .0407 .0445 .0430 .0425 .0417 .0396
.50 1, 3, 2 .0476 .0463 .0469 .0463 .0510 .0497 .0469 .0502
−.50 2, 3, 1 .0544 .0524 .0513 .0543 .0532 .0589 .0653 .0690
−1 3, 2, 1 .0599 .0592 .0614 .0589 .0614 .0699 .0807 .0861

2.3 0.33 9, 15, 21 1 1, 2, 3 .0404 .0396 .0370 .0377 .0339 .0310 .0282 .0245
.50 1, 3, 2 .0426 .0425 .0500 .0419 .0428 .0434 .0400 .0424
−.50 2, 3, 1 .0540 .0601 .0570 .0553 .0554 .0645 .0794 .0876
−1 3, 2, 1 .0607 .0621 .0651 .0631 .0761 .0921 .1074 .1302

4 0.50 6, 15, 24 1 1, 2, 3 .0342 .0373 .0345 .0317 .0270 .0231 .0174 .0178
.50 1, 3, 2 .0406 .0445 .0414 .0393 .0459 .0348 .0344 .0374
−.50 2, 3, 1 .0567 .0596 .0661 .0639 .0613 .0785 .0914 .1082
−1 3, 2, 1 .0727 .0747 .0788 .0803 .0916 .1132 .1497 .1737

60 20 1.5 0.16 16, 20, 24 1 1, 2, 3 .0476 .0444 .0454 .0440 .0423 .0407 .0399 .0399
.50 1, 3, 2 .0464 .0453 .0449 .0472 .0489 .0468 .0491 .0527
−.50 2, 3, 1 .0502 .0533 .0527 .0541 .0548 .0612 .0641 .0735
−1 3, 2, 1 .0599 .0611 .0597 .0579 .0637 .0697 .0761 .0905

2.3 0.33 12, 20, 28 1 1, 2, 3 .0409 .0433 .0393 .0382 .0344 .0300 .0286 .0270
.50 1, 3, 2 .0454 .0446 .0471 .0398 .0458 .0420 .0418 .0425
−.50 2, 3, 1 .0569 .0595 .0585 .0559 .0553 .0707 .0748 .0873
−1 3, 2, 1 .0601 .0626 .0647 .0672 .0765 .0949 .1072 .1208

4 0.50 8, 20, 32 1 1, 2, 3 .0399 .0320 .0325 .0352 .0292 .0248 .0191 .0182
.50 1, 3, 2 .0452 .0436 .0441 .0386 .0431 .0353 .0309 .0348
−.50 2, 3, 1 .0590 .0592 .0646 .0611 .0532 .0764 .0885 .0953
−1 3, 2, 1 .0646 .0710 .0733 .0767 .0911 .1137 .1452 .1739

75 25 1.5 0.16 20, 25, 30 1 1, 2, 3 .0450 .0448 .0447 .0463 .0409 .0440 .0378 .0391
.50 1, 3, 2 .0479 .0487 .0459 .0475 .0521 .0489 .0501 .0491
−.50 2, 3, 1 .0490 .0558 .0539 .0574 .0545 .0605 .0665 .0708
−1 3, 2, 1 .0560 .0581 .0601 .0615 .0616 .0712 .0748 .0885

2.3 0.33 15, 25, 35 1 1, 2, 3 .0433 .0390 .0392 .0397 .0366 .0287 .0281 .0264
.50 1, 3, 2 .0415 .0465 .0438 .0422 .0491 .0420 .0420 .0442
−.50 2, 3, 1 .0537 .0542 .0605 .0597 .0544 .0702 .0729 .0873
−1 3, 2, 1 .0565 .0669 .0670 .0679 .0738 .0829 .1069 .1224

4 0.50 10, 25, 40 1 1, 2, 3 .0366 .0323 .0315 .0326 .0270 .0236 .0197 .0186
.50 1, 3, 2 .0431 .0448 .0414 .0428 .0453 .0354 .0361 .0363
−.50 2, 3, 1 .0579 .0601 .0665 .0708 .0575 .0783 .0902 .1009
−1 3, 2, 1 .0691 .0759 .0764 .0806 .0900 .1101 .1420 .1737

90 30 1.5 0.16 24, 30, 36 1 1, 2, 3 .0419 .0421 .0421 .0441 .0395 .0397 .0395 .0427

Appendix 2. Empirical Type I error rates for F-test with unequal sample sizes
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Table 15 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

.50 1, 3, 2 .0454 .0476 .0508 .0403 .0515 .0475 .0488 .0510
−.50 2, 3, 1 .0553 .0563 .0557 .0577 .0560 .0577 .0664 .0695
−1 3, 2, 1 .0557 .0592 .0509 .0619 .0641 .0681 .0762 .0859

2.3 0.33 18, 30, 42 1 1, 2, 3 .0391 .0413 .0379 .0346 .0347 .0300 .0329 .0287
.50 1, 3, 2 .0453 .0432 .0424 .0411 .0435 .0405 .0422 .0427
−.50 2, 3, 1 .0549 .0556 .0591 .0602 .0573 .0719 .0755 .0812
−1 3, 2, 1 .0582 .0632 .0689 .0679 .0731 .0880 .1032 .1242

4 0.50 12, 30, 48 1 1, 2, 3 .0365 .0315 .0371 .0318 .0260 .0232 .0199 .0128
.50 1, 3, 2 .0403 .0444 .0416 .0403 .0432 .0381 .0351 .0328
−.50 2, 3, 1 .0577 .0632 .0640 .0677 .0601 .0755 .0890 .1041
−1 3, 2, 1 .0640 .0729 .0756 .0796 .0930 .1085 .1400 .1748

120 40 1.5 0.16 32, 40, 48 1 1, 2, 3 .0423 .0455 .0437 .0426 .0430 .0399 .0381 .0408
.50 1, 3, 2 .0494 .0469 .0479 .0448 .0492 .0445 .0524 .0541
−.50 2, 3, 1 .0556 .0543 .0534 .0519 .0539 .0566 .0653 .0697
−1 3, 2, 1 .0576 .0560 .0567 .0586 .0601 .0662 .0753 .0846

2.3 0.33 24, 40, 56 1 1, 2, 3 .0360 .0383 .0401 .0368 .0352 .0312 .0294 .0253
.50 1, 3, 2 .0415 .0450 .0453 .0439 .0453 .0426 .0415 .0457
−.50 2, 3, 1 .0576 .0541 .0559 .0589 .0589 .0726 .0779 .0840
−1 3, 2, 1 .0627 .0660 .0742 .0663 .0732 .0903 .1061 .1206

4 0.50 16, 40, 64 1 1, 2, 3 .0353 .0310 .0283 .0349 .0268 .0259 .0186 .0179
.50 1, 3, 2 .0423 .0416 .0400 .0422 .0482 .0368 .0340 .0413
−.50 2, 3, 1 .0643 .0620 .0662 .0649 .0552 .0774 .0933 .0967
−1 3, 2, 1 .0711 .0726 .0807 .0734 .0880 .1161 .1460 .1646

150 50 1.5 0.16 40, 50, 60 1 1, 2, 3 .0444 .0473 .0446 .0450 .0391 .0409 .0401 .0390
.50 1, 3, 2 .0464 .0459 .0452 .0445 .0494 .0464 .0453 .0490
−.50 2, 3, 1 .0522 .0515 .0538 .0535 .0527 .0602 .0603 .0699
−1 3, 2, 1 .0563 .0530 .0564 .0597 .0609 .0683 .0764 .0868

2.3 0.33 30, 50, 70 1 1, 2, 3 .0399 .0370 .0368 .0356 .0341 .0279 .0269 .0259
.50 1, 3, 2 .0458 .0449 .0459 .0440 .0476 .0417 .0450 .0398
−.50 2, 3, 1 .0540 .0589 .0596 .0593 .0521 .0673 .0803 .0772
−1 3, 2, 1 .0610 .0618 .0634 .0685 .0727 .0879 .1061 .1258

4 0.50 20, 50, 80 1 1, 2, 3 .0341 .0345 .0327 .0295 .0251 .0224 .0180 .0174
.50 1, 3, 2 .0455 .0387 .0444 .0414 .0437 .0367 .0375 .0343
−.50 2, 3, 1 .0614 .0582 .0598 .0660 .0557 .0793 .0881 .0987
−1 3, 2, 1 .0685 .0759 .0808 .0831 .0880 .1071 .1424 .1731

180 60 1.5 0.16 48, 60, 72 1 1, 2, 3 .0427 .0449 .0415 .0404 .0433 .0402 .0390 .0394
.50 1, 3, 2 .0444 .0499 .0451 .0468 .0453 .0475 .0452 .0488
−.50 2, 3, 1 .0529 .0540 .0534 .0613 .0512 .0582 .0650 .0705
−1 3, 2, 1 .0557 .0585 .0567 .0587 .0606 .0691 .0774 .0823

2.3 0.33 36, 60, 84 1 1, 2, 3 .0376 .0373 .0387 .0372 .0327 .0322 .0262 .0261
.50 1, 3, 2 .0426 .0436 .0448 .0465 .0420 .0394 .0404 .0445
−.50 2, 3, 1 .0561 .0592 .0554 .0623 .0563 .0690 .0748 .0834
−1 3, 2, 1 .0595 .0643 .0627 .0687 .0716 .0907 .1039 .1190

4 0.50 24, 60, 96 1 1, 2, 3 .0349 .0316 .0340 .0329 .0282 .0228 .0206 .0182
.50 1, 3, 2 .0410 .0424 .0435 .0399 .0421 .0351 .0409 .0347
−.50 2, 3, 1 .0573 .0638 .0624 .0613 .0548 .0762 .0888 .0991
−1 3, 2, 1 .0686 .0753 .0775 .0787 .0825 .1167 .1445 .1697

210 70 1.5 0.16 56, 70, 84 1 1, 2, 3 .0454 .0464 .0422 .0426 .0452 .0408 .0427 .0440
.50 1, 3, 2 .0478 .0451 .0449 .0497 .0496 .0502 .0475 .0520
−.50 2, 3, 1 .0530 .0565 .0561 .0552 .0548 .0584 .0630 .0699
−1 3, 2, 1 .0588 .0591 .0611 .0560 .0610 .0666 .0767 .0855

2.3 0.33 42, 70, 98 1 1, 2, 3 .0410 .0367 .0353 .0337 .0356 .0302 .0251 .0244
.50 1, 3, 2 .0442 .0451 .0457 .0454 .0438 .0407 .0380 .0417
−.50 2, 3, 1 .0550 .0571 .0584 .0599 .0562 .0665 .0750 .0759
−1 3, 2, 1 .0603 .0676 .0635 .0715 .0749 .0842 .1074 .1224

4 0.50 28, 70, 112 1 1, 2, 3 .0361 .0312 .0337 .0329 .0284 .0225 .0184 .0186
.50 1, 3, 2 .0406 .0400 .0436 .0384 .0395 .0340 .0370 .0373
−.50 2, 3, 1 .0592 .0579 .0604 .0603 .0570 .0764 .0866 .1019
−1 3, 2, 1 .0694 .0734 .0769 .0762 .0843 .1141 .1470 .1639

240 80 1.5 0.16 64, 80, 96 1 1, 2, 3 .0455 .0457 .0414 .0405 .0400 .0386 .0391 .0363
.50 1, 3, 2 .0464 .0470 .0457 .0485 .0465 .0422 .0456 .0532
−.50 2, 3, 1 .0490 .0527 .0528 .0569 .0522 .0601 .0629 .0671
−1 3, 2, 1 .0520 .0580 .0576 .0587 .0618 .0668 .0698 .0821
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Table 15 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

2.3 0.33 48, 80, 112 1 1, 2, 3 .0415 .0400 .0372 .0368 .0331 .0297 .0265 .0279
.50 1, 3, 2 .0470 .0477 .0439 .0459 .0532 .0418 .0406 .0440
−.50 2, 3, 1 .0566 .0573 .0571 .0599 .0560 .0686 .0742 .0866
−1 3, 2, 1 .0629 .0701 .0658 .0692 .0773 .0859 .1052 .1256

4 0.50 32, 80, 128 1 1, 2, 3 .0313 .0301 .0332 .0309 .0284 .0223 .0183 .0175
.50 1, 3, 2 .0413 .0409 .0452 .0395 .0437 .0361 .0333 .0367
−.50 2, 3, 1 .0567 .0632 .0619 .0610 .0568 .0741 .0880 .0960
−1 3, 2, 1 .0634 .0736 .0782 .0762 .0908 .1133 .1429 .1687

270 90 1.5 0.16 72, 90, 108 1 1, 2, 3 .0438 .0462 .0439 .0388 .0414 .0429 .0426 .0381
.50 1, 3, 2 .0460 .0425 .0438 .0457 .0451 .0412 .0468 .0458
−.50 2, 3, 1 .0522 .0554 .0552 .0571 .0534 .0608 .0634 .0703
−1 3, 2, 1 .0541 .0589 .0575 .0593 .0582 .0662 .0837 .0878

2.3 0.33 54, 90, 126 1 1, 2, 3 .0385 .0353 .0378 .0398 .0331 .0295 .0250 .0242
.50 1, 3, 2 .0479 .0439 .0481 .0448 .0447 .0428 .0417 .0424
−.50 2, 3, 1 .0543 .0579 .0587 .0597 .0532 .0429 .0741 .0827
−1 3, 2, 1 .0596 .0672 .0665 .0673 .0743 .0873 .1012 .1140

4 0.50 36, 90, 144 1 1, 2, 3 .0359 .0343 .0325 .0318 .0256 .0230 .0188 .0169
.50 1, 3, 2 .0362 .0424 .0411 .0401 .0440 .0334 .0363 .0373
−.50 2, 3, 1 .0569 .0599 .0589 .0666 .0548 .0782 .0863 .0995
−1 3, 2, 1 .0679 .0708 .0786 .0816 .0882 .1075 .1397 .1629

300 100 1.5 0.16 80, 100, 120 1 1, 2, 3 .0429 .0458 .0399 .0424 .0399 .0383 .0408 .0400
.50 1, 3, 2 .0496 .0442 .0482 .0475 .0489 .0462 .0454 .0510
−.50 2, 3, 1 .0530 .0550 .0541 .0528 .0513 .0581 .0659 .0621
−1 3, 2, 1 .0531 .0568 .0610 .0562 .0607 .0729 .0746 .0853

2.3 0.33 60, 100, 140 1 1, 2, 3 .0395 .0385 .0370 .0358 .0330 .0276 .0246 .0278
.50 1, 3, 2 .0430 .0441 .0420 .0408 .0493 .0431 .0442 .0426
−.50 2, 3, 1 .0579 .0571 .0585 .0592 .0587 .0696 .0752 .0867
−1 3, 2, 1 .0628 .0638 .0708 .0645 .0755 .0857 .1106 .1196

4 0.50 40, 100, 160 1 1, 2, 3 .0340 .0319 .0307 .0308 .0283 .0228 .0203 .0166
.50 1, 3, 2 .0432 .0444 .0380 .0383 .0454 .0343 .0358 .0366
−.50 2, 3, 1 .0599 .0616 .0677 .0667 .0572 .0781 .0866 .0981
−1 3, 2, 1 .0648 .0698 .0782 .0821 .0816 .1078 .1375 .1713

Note. N = total sample size; N/J = mean of group sample size; nLargest
nSmallest

= ratio of the largest to the smallest group sample size;Δn = coefficient of sample

size variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: < .025;
liberal: > .075)

Table 16 Empirical Type I error for F-test with five groups

N N/J nLargest
nSmallest

Δn n Pairing Order of variance Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

25 5 1.5 0.16 4, 4, 5, 6, 6 1 1, 2, 3, 4, 5 .0489 .0454 .0473 .0454 .0473 .0430 .0435 .0446

.50 1, 4, 2, 5, 3 .0506 .0475 .0516 .0525 .0448 .0469 .0507 .0522

0 1, 5, 3, 4, 2 .0492 .0531 .0534 .0529 .0551 .0528 .0592 .0654

−.50 3, 5, 2, 4, 1 .0529 .0518 .0552 .0544 .0565 .0634 .0764 .0829

−1 5, 4, 3, 2, 1 .0548 .0599 .0550 .0578 .0650 .0733 .0873 .0994

2.3 0.33 3, 3, 6, 6, 7 1 1, 2, 3, 4, 5 .0421 .0424 .0415 .0411 .0402 .0354 .0348 .0312

.50 1, 4, 2, 3, 5 .0444 .0439 .0436 .0439 .0467 .0409 .0469 .0478

0 1, 5, 4, 2, 3 .0483 .0463 .0520 .0525 .0480 .0528 .0601 .0622

−.50 5, 3, 2, 1, 4 .0550 .0584 .0558 .0598 .0585 .0675 .0799 .0861

−1 5, 4, 3, 2, 1 .0653 .0659 .0687 .0594 .0726 .0908 .1088 .1285

3.3 0.50 3, 3, 4, 5, 10 1 1, 2, 3, 4, 5 .0414 .0358 .0397 .0359 .0341 .0268 .0221 .0211

.50 1, 2, 5, 3, 4 .0441 .0441 .0458 .0500 .0309 .0373 .0363 .0331

0 1, 5, 4, 2, 3 .0551 .0557 .0610 .0605 .0546 .0557 .0622 .0659
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Table 16 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of variance Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

−.50 4, 2, 3, 5, 1 .0561 .0496 .0505 .0492 .0721 .0889 .1088 .1296

−1 5, 4, 3, 2, 1 .0669 .0733 .0749 .0712 .0791 .1103 .1511 .1810

50 10 1.5 0.16 8, 9, 10, 11, 12 1 1, 2, 3, 4, 5 .0471 .0458 .0483 .0441 .0414 .0454 .0416 .0466

.50 1, 4, 2, 5, 3 .0495 .0464 .0514 .0479 .0479 .0466 .0534 .0537

0 1, 5, 4, 2, 3 .0476 .0478 .0510 .0529 .0502 .0544 .0573 .0640

−.50 3, 5, 2, 4, 1 .0522 .0494 .0546 .0525 .0547 .0619 .0693 .0778

−1 5, 4, 3, 2, 1 .0549 .0534 .0570 .0576 .0609 .0702 .0803 .0855

2.5 0.33 6, 8, 9, 12, 15 1 1, 2, 3, 4, 5 .0432 .0387 .0388 .0393 .0372 .0349 .0315 .0295

.50 1, 4, 2, 5, 3 .0470 .0481 .0448 .0454 .0477 .0441 .0464 .0435

0 1, 5, 4, 2, 3 .0514 .0488 .0502 .0547 .0497 .0508 .0586 .0634

−.50 3, 5, 2, 4, 1 .0560 .0533 .0573 .0591 .0615 .0687 .0791 .0864

−1 5, 4, 3, 2, 1 .0599 .0660 .0685 .0707 .0722 .0872 .1088 .1309

5.7 0.50 3, 6, 10, 14, 17 1 1, 2, 3, 4, 5 .0358 .0371 .0316 .0315 .0317 .0252 .0228 .0206

.50 1, 4, 2, 5, 3 .0448 .0425 .0371 .0453 .0418 .0340 .0374 .0351

0 1, 5, 4, 2, 3 .0511 .0514 .0491 .0497 .0502 .0550 .0537 .0638

−.50 3, 5, 2, 4, 1 .0590 .0599 .0610 .0697 .0674 .0822 .0983 .1124

−1 5, 4, 3, 2, 1 .0700 .0711 .0740 .0801 .0852 .1148 .1511 .1918

75 15 1.5 0.16 12, 13, 15, 17, 18 1 1, 2, 3, 4, 5 .0481 .0484 .0435 .0447 .0465 .0472 .0415 .0464

.50 1, 4, 2, 5, 3 .0471 .0489 .0489 .0465 .0488 .0473 .0498 .0531

0 1, 5, 4, 2, 3 .0550 .0495 .0482 .0528 .0549 .0544 .0616 .0665

−.50 3, 5, 2, 4, 1 .0529 .0517 .0529 .0558 .0583 .0589 .0687 .0727

−1 5, 4, 3, 2, 1 .0580 .0582 .0529 .0611 .0604 .0692 .0746 .0867

2.5 0.33 9, 12, 13, 18, 23 1 1, 2, 3, 4, 5 .0405 .0422 .0385 .0410 .0365 .0360 .0332 .0304

.50 1, 4, 2, 5, 3 .0421 .0456 .0446 .0451 .0471 .0449 .0427 .0447

0 1, 5, 4, 2, 3 .0512 .0510 .0526 .0554 .0529 .0516 .0586 .0603

−.50 3, 5, 2, 4, 1 .0567 .0533 .0582 .0594 .0617 .0690 .0798 .0882

−1 5, 4, 3, 2, 1 .0640 .0653 .0686 .0680 .0693 .0875 .1059 .1277

5 0.50 5, 9, 15, 21, 25 1 1, 2, 3, 4, 5 .0341 .0375 .0336 .0309 .0308 .0252 .0204 .0193

.50 1, 4, 2, 5, 3 .0437 .0433 .0427 .0429 .0480 .0405 .0370 .0389

0 1, 5, 4, 2, 3 .0540 .0479 .0460 .0512 .0536 .0563 .0589 .0607

−.50 3, 5, 2, 4, 1 .0603 .0635 .0556 .0594 .0670 .0820 .0920 .1096

−1 5, 4, 3, 2, 1 .0670 .0711 .0778 .0834 .0848 .1117 .1462 .1759

100 20 1.5 0.16 16, 18, 20, 22, 24 1 1, 2, 3, 4, 5 .0484 .0457 .0438 .0467 .0467 .0483 .0442 .0466

.50 1, 4, 2, 5, 3 .0460 .0459 .0432 .0481 .0458 .0486 .0527 .0542

0 1, 5, 4, 2, 3 .0491 .0536 .0492 .0511 .0526 .0527 .0573 .0643

−.50 3, 5, 2, 4, 1 .0520 .0532 .0585 .0548 .0579 .0579 .0632 .0728

−1 5, 4, 3, 2, 1 .0577 .0586 .0585 .0548 .0611 .0688 .0714 .0824

2.5 0.33 12, 16, 18, 24, 30 1 1, 2, 3, 4, 5 .0413 .0421 .0388 .0402 .0364 .0350 .0331 .0339

.50 1, 4, 2, 5, 3 .0465 .0472 .0459 .0437 .0472 .0415 .0465 .0421

0 1, 5, 4, 2, 3 .0516 .0533 .0496 .0537 .0510 .0557 .0611 .0604

−.50 3, 5, 2, 4, 1 .0560 .0561 .0583 .0569 .0634 .0665 .0786 .0911

−1 5, 4, 3, 2, 1 .0622 .0597 .0661 .0664 .0704 .0900 .1059 .1235

5.7 0.50 6, 12, 20, 28, 34 1 1, 2, 3, 4, 5 .0319 .0349 .0329 .0333 .0300 .0252 .0208 .0214

.50 1, 4, 2, 5, 3 .0440 .0397 .0420 .0452 .0387 .0386 .0333 .0377

0 1, 5, 4, 2, 3 .0513 .0483 .0489 .0481 .0512 .0606 .0551 .0621

−.50 3, 5, 2, 4, 1 .0560 .0593 .0611 .0626 .0676 .0806 .0970 .1122

−1 5, 4, 3, 2, 1 .0672 .0769 .0716 .0809 .0880 .1090 .1471 .1797
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Table 16 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of variance Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

125 25 1.5 0.16 20, 22, 25, 28, 30 1 1, 2, 3, 4, 5 .0470 .0492 .0437 .0469 .0436 .0446 .0481 .0459

.50 1, 4, 2, 5, 3 .0469 .0465 .0492 .0459 .0467 .0476 .0519 .0520

0 1, 5, 4, 2, 3 .0480 .0533 .0521 .0534 .0518 .0569 .0598 .0667

−.50 3, 5, 2, 4, 1 .0540 .0523 .0582 .0518 .0545 .0621 .0674 .0750

−1 5, 4, 3, 2, 1 .0550 .0571 .0576 .0599 .0616 .0676 .0791 .0813

2.5 0.33 15, 20, 22, 30, 38 1 1, 2, 3, 4, 5 .0398 .0465 .0419 .0396 .0357 .0350 .0313 .0325

.50 1, 4, 2, 5, 3 .0453 .0480 .0454 .0428 .0443 .0429 .0454 .0501

0 1, 5, 4, 2, 3 .0506 .0523 .0521 .0527 .0517 .0486 .0571 .0620

−.50 3, 5, 2, 4, 1 .0572 .0579 .0591 .0528 .0650 .0697 .0771 .0865

−1 5, 4, 3, 2, 1 .0595 .0599 .0652 .0707 .0713 .0883 .1058 .1281

5.3 0.50 8, 15, 25, 35, 42 1 1, 2, 3, 4, 5 .0325 .0369 .0312 .0319 .0291 .0279 .0248 .0207

.50 1, 4, 2, 5, 3 .0415 .0412 .0430 .0405 .0400 .0373 .0371 .0380

0 1, 5, 4, 2, 3 .0481 .0486 .0497 .0466 .0545 .0615 .0544 .0607

−.50 3, 5, 2, 4, 1 .0576 .0501 .0653 .0610 .0645 .0768 .0908 .1042

−1 5, 4, 3, 2, 1 .0684 .0745 .0804 .0738 .0867 .1112 .1447 .1803

150 30 1.5 0.16 24, 27, 30, 33, 36 1 1, 2, 3, 4, 5 .0452 .0440 .0459 .0493 .0475 .0414 .0440 .0431

.50 1, 4, 2, 5, 3 .0486 .0450 .0499 .0491 .0474 .0449 .0545 .0506

0 1, 5, 4, 2, 3 .0460 .0490 .0512 .0473 .0487 .0526 .0574 .0608

−.50 3, 5, 2, 4, 1 .0506 .0542 .0534 .0566 .0542 .0616 .0715 .0766

−1 5, 4, 3, 2, 1 .0519 .0568 .0583 .0573 .0586 .0707 .0804 .0914

2.5 0.33 18, 24, 27, 36, 45 1 1, 2, 3, 4, 5 .0408 .0414 .0390 .0390 .0384 .0337 .0326 .0289

.50 1, 4, 2, 5, 3 .0453 .0453 .0413 .0493 .0403 .0458 .0456 .0452

0 1, 5, 4, 2, 3 .0503 .0484 .0534 .0537 .0513 .0548 .0569 .0591

−.50 3, 5, 2, 4, 1 .0548 .0544 .0588 .0524 .0608 .0703 .0785 .0858

−1 5, 4, 3, 2, 1 .0615 .0677 .0667 .0664 .0682 .0853 .1043 .1221

5.7 0.50 9, 18, 30, 42, 51 1 1, 2, 3, 4, 5 .0320 .0351 .0316 .0312 .0287 .0252 .0224 .0195

.50 1, 4, 2, 5, 3 .0438 .0419 .0409 .0398 .0410 .0362 .0355 .0361

0 1, 5, 4, 2, 3 .0503 .0523 .0486 .0486 .0496 .0535 .0540 .0599

−.50 3, 5, 2, 4, 1 .0611 .0618 .0640 .0630 .0700 .0784 .0966 .1041

−1 5, 4, 3, 2, 1 .0705 .0732 .0801 .0789 .0905 .1172 .1451 .1783

200 40 1.5 0.16 32, 36, 40, 44, 48 1 1, 2, 3, 4, 5 .0428 .0410 .0433 .0452 .0397 .0418 .0468 .0431

.50 1, 4, 2, 5, 3 .0474 .0469 .0452 .0503 .0460 .0512 .0508 .0521

0 1, 5, 4, 2, 3 .0499 .0481 .0461 .0472 .0550 .0528 .0539 .0641

−.50 3, 5, 2, 4, 1 .0535 .0501 .0506 .0543 .0534 .0635 .0663 .0753

−1 5, 4, 3, 2, 1 .0543 .0577 .0573 .0588 .0559 .0648 .0741 .0848

2.5 0.33 24, 32, 36, 48, 60 1 1, 2, 3, 4, 5 .0399 .0422 .0360 .0394 .0329 .0331 .0313 .0288

.50 1, 4, 2, 5, 3 .0466 .0466 .0439 .0447 .0430 .0451 .0416 .0436

0 1, 5, 4, 2, 3 .0519 .0555 .0530 .0512 .0517 .0550 .0584 .0620

−.50 3, 5, 2, 4, 1 .0551 .0537 .0558 .0575 .0655 .0711 .0799 .0844

−1 5, 4, 3, 2, 1 .0576 .0628 .0636 .0634 .0769 .0805 .1080 .1177

5.7 0.50 12, 24, 40, 56, 68 1 1, 2, 3, 4, 5 .0348 .0369 .0327 .0363 .0290 .0254 .0221 .0198

.50 1, 4, 2, 5, 3 .0439 .0408 .0420 .0393 .0382 .0368 .0356 .0379

0 1, 5, 4, 2, 3 .0499 .0497 .0474 .0491 .0480 .0524 .0600 .0615

−.50 3, 5, 2, 4, 1 .0627 .0591 .0585 .0627 .0722 .0782 .0775 .1003

−1 5, 4, 3, 2, 1 .0715 .0737 .0756 .0789 .0907 .1136 .1480 .1874

250 50 1.5 0.16 40, 45, 50, 55, 60 1 1, 2, 3, 4, 5 .0466 .0437 .0455 .0422 .0421 .0449 .0495 .0452

.50 1, 4, 2, 5, 3 .0481 .0465 .0454 .0453 .0428 .0520 .0511 .0556
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Table 16 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of variance Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

0 1, 5, 4, 2, 3 .0497 .0449 .0505 .0509 .0513 .0496 .0576 .0622

−.50 3, 5, 2, 4, 1 .0549 .0511 .0505 .0530 .0506 .0650 .0605 .0697

−1 5, 4, 3, 2, 1 .0552 .0586 .0596 .0614 .0600 .0679 .0733 .0818

2.5 0.33 30, 40, 45, 60, 75 1 1, 2, 3, 4, 5 .0397 .0408 .0385 .0391 .0350 .0309 .0296 .0308

.50 1, 4, 2, 5, 3 .0433 .0478 .0482 .0473 .0443 .0447 .0410 .0481

0 1, 5, 4, 2, 3 .0504 .0492 .0497 .0538 .0509 .0571 .0596 .0609

−.50 3, 5, 2, 4, 1 .0531 .0566 .0573 .0569 .0626 .0627 .0738 .0840

−1 5, 4, 3, 2, 1 .0605 .0604 .0660 .0643 .0707 .0878 .1017 .1200

5.7 0.50 15, 30, 50, 70, 85 1 1, 2, 3, 4, 5 .0352 .0324 .0342 .0297 .0303 .0232 .0207 .0188

.50 1, 4, 2, 5, 3 .0410 .0429 .0442 .0405 .0419 .0353 .0371 .0354

0 1, 5, 4, 2, 3 .0480 .0486 .0526 .0512 .0527 .0520 .0552 .0601

−.50 3, 5, 2, 4, 1 .0577 .0513 .0612 .0596 .0677 .0778 .0944 .1036

−1 5, 4, 3, 2, 1 .0711 .0774 .0777 .0772 .0853 .1184 .1427 .1828

300 60 1.5 0.16 48, 54, 60, 66, 72 1 1, 2, 3, 4, 5 .0491 .0459 .0424 .0428 .0403 .0414 .0448 .0464

.50 1, 4, 2, 5, 3 .0497 .0516 .0482 .0453 .0474 .0479 .0494 .0538

0 1, 5, 4, 2, 3 .0484 .0538 .0498 .0502 .0523 .0541 .0587 .0637

−.50 3, 5, 2, 4, 1 .0540 .0530 .0508 .0547 .0578 .0594 .0670 .0737

−1 5, 4, 3, 2, 1 .0535 .0540 .0571 .0558 .0603 .0708 .0722 .0872

2.5 0.33 36, 48, 54, 72, 90 1 1, 2, 3, 4, 5 .0371 .0385 .0432 .0392 .0360 .0317 .0320 .0330

.50 1, 4, 2, 5, 3 .0473 .0499 .0436 .0429 .0472 .0426 .0416 .0485

0 1, 5, 4, 2, 3 .0476 .0531 .0555 .0530 .0486 .0516 .0581 .0655

−.50 3, 5, 2, 4, 1 .0531 .0557 .0595 .0546 .0661 .0723 .0765 .0851

−1 5, 4, 3, 2, 1 .0588 .0651 .0646 .0721 .0732 .0890 .1031 .1185

5.7 0.50 18, 36, 60, 84, 102 1 1, 2, 3, 4, 5 .0351 .0378 .0322 .0289 .0283 .0246 .0225 .0188

.50 1, 4, 2, 5, 3 .0413 .0408 .0398 .0408 .0411 .0370 .0363 .0360

0 1, 5, 4, 2, 3 .0515 .0443 .0464 .0516 .0490 .0515 .0560 .0553

−.50 3, 5, 2, 4, 1 .0607 .0578 .0603 .0654 .0679 .0790 .0881 .1124

−1 5, 4, 3, 2, 1 .0714 .0725 .0786 .0817 .0853 .1154 .1437 .1802

350 70 1.5 0.16 56, 63, 70, 77, 84 1 1, 2, 3, 4, 5 .0459 .0451 .0414 .0416 .0454 .0444 .0447 .0447

.50 1, 4, 2, 5, 3 .0465 .0488 .0444 .0499 .0469 .0498 .0514 .0509

0 1, 5, 4, 2, 3 .0477 .0497 .0516 .0506 .0520 .0559 .0562 .0567

−.50 3, 5, 2, 4, 1 .0503 .0532 .0566 .0506 .0585 .0597 .0637 .0709

−1 5, 4, 3, 2, 1 .0551 .0548 .0542 .0570 .0630 .0722 .0804 .0850

2.5 0.33 42, 56, 63, 84, 105 1 1, 2, 3, 4, 5 .0419 .0424 .0437 .0405 .0334 .0337 .0310 .0279

.50 1, 4, 2, 5, 3 .0466 .0444 .0427 .0461 .0380 .0436 .0408 .0446

0 1, 5, 4, 2, 3 .0473 .0539 .0537 .0474 .0506 .0527 .0572 .0659

−.50 3, 5, 2, 4, 1 .0570 .0562 .0586 .0629 .0596 .0681 .0742 .0874

−1 5, 4, 3, 2, 1 .0580 .0629 .0612 .0629 .0700 .0818 .1031 .1216

5.7 0.50 21, 42, 70, 98, 119 1 1, 2, 3, 4, 5 .0356 .0389 .0332 .0296 .0282 .0245 .0237 .0196

.50 1, 4, 2, 5, 3 .0414 .0418 .0410 .0401 .0384 .0383 .0345 .0356

0 1, 5, 4, 2, 3 .0492 .0542 .0491 .0453 .0510 .0544 .0586 .0614

−.50 3, 5, 2, 4, 1 .0588 .0574 .0581 .0631 .0731 .0827 .0900 .1085

−1 5, 4, 3, 2, 1 .0666 .0721 .0812 .0780 .0870 .1148 .1583 .1811

400 80 1.5 0.16 64, 72, 80, 88, 96 1 1, 2, 3, 4, 5 .0469 .0428 .0437 .0478 .0455 .0403 .0424 .0440

.50 1, 4, 2, 5, 3 .0455 .0487 .0487 .0484 .0491 .0486 .0530 .0523

0 1, 5, 4, 2, 3 .0515 .0517 .0493 .0464 .0478 .0527 .0597 .0591

−.50 3, 5, 2, 4, 1 .0495 .0555 .0492 .0535 .0554 .0571 .0638 .0675
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Table 16 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of variance Variance ratio

1.5 1.6 1.7 1.8 2 3 5 9

−1 5, 4, 3, 2, 1 .0538 .0529 .0558 .0582 .0600 .0657 .0717 .0845

2.5 0.33 48, 64, 72, 96, 120 1 1, 2, 3, 4, 5 .0402 .0405 .0431 .0382 .0372 .0330 .0343 .0314

.50 1, 4, 2, 5, 3 .0475 .0456 .0451 .0441 .0406 .0420 .0426 .0398

0 1, 5, 4, 2, 3 .0500 .0487 .0476 .0499 .0550 .0524 .0611 .0669

−.50 3, 5, 2, 4, 1 .0581 .0532 .0585 .0542 .0632 .0683 .0820 .0839

−1 5, 4, 3, 2, 1 .0628 .0630 .0673 .0693 .0710 .0905 .1024 .1257

5.7 0.50 24, 48, 80, 112, 136 1 1, 2, 3, 4, 5 .0333 .0363 .0325 .0316 .0289 .0224 .0202 .0186

.50 1, 4, 2, 5, 3 .0426 .0455 .0401 .0404 .0386 .0364 .0357 .0403

0 1, 5, 4, 2, 3 .0493 .0501 .0490 .0499 .0511 .0506 .0582 .0634

−.50 3, 5, 2, 4, 1 .0619 .0529 .0620 .0620 .0701 .0762 .0966 .1055

−1 5, 4, 3, 2, 1 .0661 .0688 .0769 .0828 .0818 .1172 .1506 .1840

450 90 1.5 0.16 72, 81, 90, 99, 108 1 1, 2, 3, 4, 5 .0441 .0439 .0473 .0484 .0460 .0431 .0464 .0432

.50 1, 4, 2, 5, 3 .0494 .0483 .0463 .0462 .0475 .0507 .0525 .0521

0 1, 5, 4, 2, 3 .0501 .0510 .0490 .0482 .0541 .0510 .0557 .0599

−.50 3, 5, 2, 4, 1 .0507 .0567 .0531 .0505 .0572 .0641 .0660 .0739

−1 5, 4, 3, 2, 1 .0550 .0599 .0574 .0605 .0599 .0711 .0737 .0833

2.5 0.33 54, 72, 81, 108, 135 1 1, 2, 3, 4, 5 .0435 .0376 .0404 .0397 .0375 .0349 .0303 .0301

.50 1, 4, 2, 5, 3 .0439 .0459 .0450 .0425 .0429 .0439 .0467 .0416

0 1, 5, 4, 2, 3 .0456 .0493 .0555 .0552 .0503 .0530 .0609 .0647

−.50 3, 5, 2, 4, 1 .0541 .0512 .0557 .0565 .0601 .0687 .0794 .0874

−1 5, 4, 3, 2, 1 .0646 .0624 .0645 .0652 .0719 .0900 .0995 .1215

5.7 0.50 27, 54, 90, 126, 153 1 1, 2, 3, 4, 5 .0353 .0352 .0329 .0349 .0300 .0244 .0208 .0231

.50 1, 4, 2, 5, 3 .0443 .0446 .0430 .0381 .0386 .0336 .0391 .0390

0 1, 5, 4, 2, 3 .0485 .0485 .0492 .0511 .0525 .0549 .0569 .0606

−.50 3, 5, 2, 4, 1 .0585 .0611 .0584 .0585 .0684 .0762 .0937 .1083

−1 5, 4, 3, 2, 1 .0666 .0686 .0743 .0809 .0906 .1107 .1429 .1794

500 100 1.5 0.16 80, 90, 100, 110, 120 1 1, 2, 3, 4, 5 .0460 .0434 .0428 .0432 .0472 .0454 .0450 .0408

.50 1, 4, 2, 5, 3 .0477 .0462 .0470 .0481 .0497 .0490 .0503 .0546

0 1, 5, 4, 2, 3 .0519 .0527 .0506 .0502 .0504 .0492 .0553 .0608

−.50 3, 5, 2, 4, 1 .0533 .0579 .0516 .0542 .0506 .0603 .0679 .0747

−1 5, 4, 3, 2, 1 .0529 .0550 .0574 .0560 .0625 .0707 .0724 .0867

2.5 0.33 60, 80, 90, 120, 150 1 1, 2, 3, 4, 5 .0414 .0432 .0420 .0399 .0385 .0325 .0315 .0300

.50 1, 4, 2, 5, 3 .0461 .0430 .0495 .0486 .0462 .0419 .0411 .0465

0 1, 5, 4, 2, 3 .0507 .0478 .0483 .0525 .0531 .0517 .0591 .0589

−.50 3, 5, 2, 4, 1 .0548 .0489 .0603 .0604 .0636 .0647 .0779 .0792

−1 5, 4, 3, 2, 1 .0648 .0675 .0680 .0699 .0753 .0866 .1042 .1180

5.7 0.50 30, 60, 100, 140, 170 1 1, 2, 3, 4, 5 .0377 .0361 .0315 .0322 .0294 .0302 .0213 .0197

.50 1, 4, 2, 5, 3 .0428 .0448 .0410 .0385 .0434 .0352 .0375 .0331

0 1, 5, 4, 2, 3 .0502 .0478 .0529 .0536 .0523 .0534 .0553 .0632

−.50 3, 5, 2, 4, 1 .0630 .0639 .0623 .0642 .0651 .0810 .0962 .1042

−1 5, 4, 3, 2, 1 .0694 .0738 .0755 .0766 .0869 .1139 .1461 .1776

Note. N = total sample size; N/J = mean of group sample size; nLargest
nSmallest

= ratio of the largest to the smallest group sample size;Δn = coefficient of sample

size variation; n = number of units per group. The Type I error rates outside the boundary of Bradley’s liberal criterion are in bold (conservative: <.025;
liberal: >.075)
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Appendix 3. Empirical Type I error rates for F-test with unequal sample sizes for several nominal alpha levels in the
conditions under which it is not robust against heterogeneity for a nominal alpha level equal to .05

Table 17

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Alpha Variance ratio

1.6 1.7 1.8 2 3 5 9

15 5 1.5 0.16 4, 5, 6 −.50 2, 3, 1 .05 .0787 .0864

.025 .0390 .0590

.01 .0240 .0200

−1 3, 2, 1 .05 .0816 .0948

.025 .0540 .0540

.01 .0260 .0310

2.3 0.33 3, 5, 7 −.50 2, 3, 1 .05 .0873 .0977

.025 .0570 .0600

.01 .0250 .0230

−1 3, 2, 1 .05 .0791 .0897 .1122 .1319

.025 .0413 .0520 .0730 .1000

.01 .0200 .0180 .0430 .0450

3 0.50 3, 3, 9 −1 3, 2, 1 .05 .0760 .0786 .0794 .1171 .1624 .2077

.025 .0350 .0420 .0458 .0650 .1080 .1390

.01 .0140 .0250 .0170 .0306 .0510 .0660

30 10 1.5 0.16 8, 10, 12 −1 3, 2, 1 .05 .0788 .0867

.025 .0500 .0550

.01 .0270 .0200

2.3 0.33 6, 10, 14 −.50 2, 3, 1 .05 .0870 .0913

.025 .0590 .0510

.01 .0270 .0310

−1 3, 2, 1 .05 .0863 .1128 .1245

.025 .0535 .0630 .0830

.01 .0230 .0310 .0430

4 0.50 4, 10, 16 −.50 2, 3, 1 .05 .0809 .0926 .1099

.025 .0466 .0610 .0550

.01 .0280 .0310 .0380

−1 3, 2, 1 .05 .0761 .0757 .0761 .0881 .1185 .1486 .1788

.025 .0400 .0390 .0500 .0515 .0620 .1040 .1300

.01 .0190 .0230 .0170 .0190 .0379 .0580 .0660

45 15 1.5 0.16 12, 15, 18 −1 3, 2, 1 .005 .0807 .0861

.025 .0460 .0570

.01 .0220 .0190

2.3 0.33 9, 15, 21 −.50 2, 3, 1 .05 .0794 .0876

.025 .0540 .0570

.01 .0250 .0290

−1 3, 2, 1 .05 .0761 .0921 .1074 .1302

.025 .0399 .0502 .0760 .1000

.01 .0130 .0240 .0310 .0340

4 0.50 6, 15, 24 −.50 2, 3, 1 .05 .0785 .0914 .1082

.025 .0481 .0680 .0720

.01 .0240 .0340 .0380

−1 3, 2, 1 .05 .0788 .0803 .0916 .1132 .1497 .1737

.025 .0460 .0530 .0506 .0830 .0900 .1100
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Table 17 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Alpha Variance ratio

1.6 1.7 1.8 2 3 5 9

.01 .0160 .0180 .0250 .0374 .0660 .0520

60 20 1.5 0.16 16, 20, 24 −1 3, 2, 1 .05 .0761 .0905

.025 .0540 .0630

.01 .0230 .0230

2.3 0.33 12, 20, 28 −.50 2, 3, 1 .05 .0873

.025 .0490

.01 .0330

−1 3, 2, 1 .05 .0765 .0949 .1072 .1208

.025 .0384 .0497 .0700 .0630

.01 .0190 .0200 .0470 .0530

4 0.50 8, 20, 32 −.50 2, 3, 1 .05 .0764 .0885 .0953

.025 .0462 .0680 .0630

.01 .0200 .0530 .0420

−1 3, 2, 1 .05 .0767 .0911 .1137 .1452 .1739

.025 .0520 .0483 .0769 .1140 .1170

.01 .0200 .0270 .0340 .0570 .0800

.005 .0520

75 25 1.5 0.16 20, 25, 30 −1 3, 2, 1 .05 .0885

.025 .0590

.01 .0270

2.3 0.33 15, 25, 35 −.50 2, 3, 1 .05 .0873

.025 .0580

.01 .0200

−1 3, 2, 1 .05 .0829 .1069 .1224

.025 .0494 .0620 .0730

.01 .0250 .0450 .0550

4 0.50 10, 25, 40 −.50 2, 3, 1 .05 .0783 .0902 .1009

.025 .0489 .0670 .0570

.01 .0270 .0400 .0390

−1 3, 2, 1 .05 .0759 .0764 .0806 .0900 .1101 .1420 .1737

.025 .0480 .0420 .0500 .0475 .0672 .0880 .1340

.01 .0140 .0180 .0310 .0230 .0370 .0690 .0720

90 30 1.5 0.16 24, 30, 36 −1 3, 2, 1 .05 .0762 .0859

.025 .0470 .0560

.01 .0290 .0290

2.3 0.33 18, 30, 42 −.50 2, 3, 1 .05 .0755 .0812

.025 .0530 .0450

.01 .0340 .0320

−1 3, 2, 1 .05 .0880 .1032 .1242

.025 .0523 .0780 .0780

.01 .0220 .0320 .0460

4 0.50 12, 30, 48 −.50 2, 3, 1 .05 .0755 .0890 .1041

.025 .0463 .0760 .0590

.01 .0203 .0400 .0410

−1 3, 2, 1 .05 .0756 .0796 .0930 .1085 .1400 .1748

.025 .0530 .0460 .0504 .0649 .1120 .1100

.01 .0240 .0190 .0230 .0370 .0660 .0540
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Table 17 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Alpha Variance ratio

1.6 1.7 1.8 2 3 5 9

120 40 1.5 0.16 32, 40, 48 −1 3, 2, 1 .05 .0753 .0846

.025 .0450 .0530

.01 .0270 .0290

2.3 0.33 24, 40, 56 −.50 2, 3, 1 .05 .0779 .0840

.025 .0590 .0480

.01 .0300 .0270

−1 3, 2, 1 .05 .0903 .1061 .1206

.025 .0513 .0680 .0770

.01 .0280 .0400 .0370

4 0.50 16, 40, 64 −.50 2, 3, 1 .05 .0774 .0933 .0967

.025 .0422 .0770 .0510

.01 .0210 .0400 .0390

−1 3, 2, 1 .05 .0807 .0734 .0880 .1161 .1460 .1646

.025 .0470 .0340 .0518 .0643 .1030 .1190

.01 .0180 .0240 .0190 .0290 .0540 .0630

150 50 1.5 0.16 40, 50, 60 −1 3, 2, 1 .05 .0764 .0868

.025 .0460 .0440

.01 .0170 .0260

2.3 0.33 30, 50, 70 −.50 2, 3, 1 .05 .0803 .0772

.025 .0510 .0530

.01 .0270 .0260

−1 3, 2, 1 .05 .0879 .1061 .1258

.025 .0507 .0680 .0900

.01 .0310 .0480 .0480

4 0.50 20, 50, 80 −.50 2, 3, 1 .05 .0793 .0881 .0987

.025 .0436 .0660 .0820

.01 .0190 .0460 .0350

−1 3, 2, 1 .05 .0759 .0808 .0831 .0880 .1071 .1424 .1731

.025 .0410 .0400 .0370 .0471 .0706 .1110 .1200

.01 .0140 .0210 .0160 .0180 .0330 .0510 .0660

180 60 1.5 0.16 48, 60, 72 −1 3, 2, 1 .05 .0774 .0823

.025 .0520 .0410

.01 .0210 .0250

2.3 0.33 36, 60, 84 −.50 2, 3, 1 .05 .0834

.025 .0600

.01 .0270

−1 3, 2, 1 .05 .0907 .1039 .1190

.025 .0482 .0570 .0650

.01 .0270 .0280 .0480

4 0.50 24, 60, 96 −.50 2, 3, 1 .05 .0762 .0888 .0991

.025 .0380 .0680 .0650

.01 .0261 .0430 .0330

−1 3, 2, 1 .05 .0753 .0775 .0787 .0825 .1167 .1445 .1697

.025 .0410 .0370 .0460 .0503 .0760 .0890 .1140

.01 .0120 .0200 .0250 .0200 .0420 .0610 .0380

210 70 1.5 0.16 56, 70, 84 −1 3, 2, 1 .05 .0767 .0855

.025 .0460 .0430
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Table 17 (continued)

N N/J nLargest
nSmallest

Δn n Pairing Order of
variance

Alpha Variance ratio

1.6 1.7 1.8 2 3 5 9

.01 .0310 .0320

2.3 0.33 42, 70, 98 −.50 2, 3, 1 .05 .0759

.025 .0530

.01 .0220

−1 3, 2, 1 .05 .0842 .1074 .1224

.025 .0590 .0580 .0840

.01 .0290 .0420 .0380

4 0.50 28, 70, 112 −.50 2, 3, 1 .05 .0764 .0866 .1019

.025 .0402 .0590 .0680

.01 .0160 .0430 .0440

−1 3, 2, 1 .05 .0769 .0762 .0843 .1141 .1470 .1639

.025 .0410 .0330 .0497 .0780 .1130 .1000

.01 .0250 .0160 .0250 .0320 .0670 .0840

.005 .0460

240 80 1.5 0.16 64, 80, 96 −1 3, 2, 1 .05 .0821

.025 .0470

.01 .0310

2.3 0.33 48, 80, 112 −.50 2, 3, 1 .05 .0866

.025 .0540

.01 .0310

−1 3, 2, 1 .05 .0773 .0859 .1052 .1256

.025 .0429 .0600 .0660 .0770

.01 .0230 .0300 .0470

4 0.50 32, 80, 128 −.50 2, 3, 1 .05 .0880 .0960

.025 .0720 .0640

.01 .0390 .0390

−1 3, 2, 1 .05 .0782 .0762 .0908 .1133 .1429 .1687

.025 .0400 .0410 .0503 .0660 .1010 .1110

.01 .0150 .0130 .0250 .0420 .0560 .0770

.005 .0440

270 90 1.5 0.16 72, 90, 108 −1 3, 2, 1 .05 .0837 .0878

.025 .0550 .0440

.01 .0250 .0250

2.3 0.33 54, 90, 126 −.50 2, 3, 1 .05 .0827

.025 .0550

.01 .0290

−1 3, 2, 1 .05 .0873 .1012 .1140

.025 .0620 .0720 .0910

.01 .0330 .0340 .0520

4 0.50 36, 90, 144 −.50 2, 3, 1 .05 .0782 .0863 .0995

.025 .0470 .0704 .0630

.01 .0390 .0390 .0490

−1 3, 2, 1 .05 .0786 .0816 .0882 .1075 .1397 .1629

.025 .0410 .0600 .0493 .0600 .0930 .1250

.01 .0200 .0180 .0320 .0340 .0590 .0640

300 100 1.5 0.16 80, 100, 120 −1 3, 2, 1 .05 .0853

.025 .0450
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