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Abstract—We numerically assess the potential of microwave
tomography (MWT) for the detection and dielectric properties
estimation of axillary lymph nodes (ALNs), and we study the
robustness of our system using prior information with varying
levels of accuracy. We adopt a 2-dimensional MWT system with
8 antennas (0.5-2.5 GHz) placed around the axillary region. The
reconstruction algorithm implements the distorted Born iterative
method. We show that: (i) when accurate prior knowledge of
the axillary tissues (fat and muscle) is available, our system
successfully detects an ALN; (ii) ±30% error in the prior
estimation of fat and muscle dielectric properties does not affect
image quality; (iii) ±7mm error in muscle position causes slight
artifacts, while ±14mm error in muscle position affects ALN
detection. To the best of our knowledge, this is the first paper in
the literature to study the impact of prior information accuracy
on detecting an ALN using MWT.

Index Terms—axillary lymph node imaging, breast cancer,
distorted Born iterative method (DBIM), microwave tomography,
prior information.

I. INTRODUCTION

In the context of breast cancer diagnosis and treatment
planning, the diagnosis of axillary lymph nodes (ALNs) is
fundamental as the status (healthy or pathological) of these
organs is essential to determine cancer staging before making
therapeutical decisions [1].

In developed countries, the state-of-the-art method for ALN
diagnosis is sentinel lymph node biopsy (SLNB), which
consists of the surgical excision and histological examination
of the first regional node (or nodes) to drain the primary
tumour. However, SLNB is an invasive procedure which
often leads to longer patient recovery, risk of infection and
lymphoedema [2], [3]. Standard imaging modalities, such as
Magnetic Resonance Imaging (MRI) or the combination of
Positron Emission Tomography and Computed Tomography
(PET-CT), are currently used as alternatives to avoid (when
possible) SLNB, but they present some limitations: MRI

has low specificity, while PET-CT has low sensitivity; both
of them are associated to high costs and, PET-CT is
associated to radiation exposure. Thus, there is a clinical
need for an alternative technology which can diagnose ALNs
non-invasively, and low costs.

The possibility of imaging ALNs using microwave imaging
(MWI) is under study in our research group [4], [5], [6],
[7], and other authors in the literature considered such
possibility [8]. However, axillary MWI presents considerable
challenges if compared to other medical-MWI applications:
here, given the morphology of the axilla, antennas cannot be
placed in a circular configuration, but only in a limited arc
around the area of interest (≈ 90◦), significantly limiting the
information available for image reconstruction. In addition, we
already argued [6] that the presence of muscle tissue near the
ALNs hinders the detection of ALN. Hence, in order validate
MWI as a viable imaging modality for ALN diagnosis, it is
clear that research efforts should focus on the mitigation of
the influence of the muscle in imaging algorithms.

Microwave tomography (MWT) algorithms explore
available prior information, incorporating a guess of the
dielectric map of the investigated region (initial guess) into
the reconstruction algorithm. This practice has been suggested
to significantly improve image quality in breast MWT [9].
Authors in [10] quantified the impact of errors in prior
information on image quality in the case of breast MWT.

In this paper, we assess the imaging performance of
MWT for the detection and dielectric properties estimation of
ALNs, using the distorted Born iterative method (DBIM). In
particular, we aim to: i) study if DBIM can detect and estimate
the dielectric properties of an ALN when prior knowledge of
surrounding tissues is available; ii) study the robustness of
the algorithm to uncertainties/errors in the prior information
of surrounding tissues (notably, muscle dielectric properties
and its position). To do so, we consider a 2-dimensional (2D)
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Fig. 1. 2D tomographic setup used to assess axillary microwave tomography:
8 point-source antennas (black circles) are placed in a quarter-circular
configuration around the axillary region, which is composed of three tissues:
fat, muscle, and axillary lymph node (ALN). The figure colors define
the complex permittivity of axillary tissues at 1.5 GHz (a) Real part of
permittivity; (b) Imaginary part of permittivity.

MWT simulation to image an axial slice of the axillary region.
This allows us to study the impact of prior information in ideal
conditions, without measurement and model mismatch errors.
Moreover, the 2D model has the advantage of speeding up the
computation time of the DBIM, which is particularly relevant
considering that DBIM solves an EM problem (forward
solution) at each iteration. To the best of our knowledge, this
is the first paper in the literature to study the impact of prior
information accuracy on detecting an ALN using MWT.

II. METHODS

We used a 2D axial representation of the axillary region
anthropomorphic model that we developed in [5], where we
included a circular ALN (radius of 5mm). Given the marginal
influence of lung and bone on the E-field coupling inside
the axillary region [5], we decided not to consider them in
our study. As a result, the adopted axillary model consists of
three tissue types: fat, muscle, and ALN. The anatomy and the
dielectric properties (at 1.5 GHz) of the axillary model can be
visualised in Fig. 1.

The setup is represented in Fig. 1, and considers eight
antennas facing the axillary region in a quarter-circular
array configuration. Antennas are point sources that generate
wide-band Gaussian pulses centered at 1.5 GHz in a transverse
magnetic (TM) configuration, and are immersed in a lossy
immersion liquid made of 90% Glycerol-water mixture
(Glycerol 90). The complex permittivity of Glycerol 90 is
εr = 14.3 − 13.2j at 1.5 GHz. We sampled the E-field at
the sources in 11 equally-spaced frequency points covering
the 0.5-2.5 GHz band.

We produced simulation data using the finite-difference
time-domain (FDTD) EM-solver with a convolutional
perfectly matched layer (CPML) boundary condition, using
a 0.5x0.5mm2 mesh size. To solve the nonlinear inverse
EM scattering problem, we employed the general framework
of the DBIM [11], combined with the two-step iterative
shrinkage/thresholding (TwIST) algorithm [12] to solve the
linearised system of equations at each iteration. The adopted
algorithm was originally proposed for 2D breast MWI [13],
and experimentally tested in [14], [15]. Regarding the
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Fig. 2. Benchmark: reconstructed complex permittivity for the case where
the initial guess represents the exact anatomy and dielectric properties of the
tissues surrounding the ALN. The inner red circle shows the actual position
of the ALN. (a) Real part of permittivity; (b) Imaginary part of permittivity.
Frequency = 1.5 GHz.

EM-solver used by the inversion algorithm, we adopted the
same FDTD implementation used for the generation of the
data. We note that, to avoid the so called “inverse crime”, we
used a 2x2mm2 mesh size, which differs from the size of the
mesh used for data generation. We then calibrated our data as
proposed in [16], considering the axillary model without ALN
as a reference scenario for calibration.

We used a frequency hopping approach, which firstly
reconstructs lower frequencies, and uses the resulting dielectric
map as the initial guess to the subsequent (higher) frequencies.
This allows to initially exploit the stabilizing effect of lower
frequencies, together with the finer resolution of higher
frequencies, resulting in an enhanced imaging performance as
reported in [13], [14], [15]. We considered 11 equally-spaced
frequency points between 0.5 and 2.5 GHz, and we performed
50 DBIM-TwIST iterations at each frequency. We assigned
different heterogeneous dielectric maps as the initial guess of
the DBIM algorithm at 0.5 GHz.

Firstly, to investigate if DBIM can detect and estimate the
ALN position and properties, we defined an initial guess which
consisted of a heterogeneous dielectric map, representing the
investigated model without the target. We considered this case
as a benchmark, as it represents the ideal case, where all
the axillary tissues (except the target) are known a priori.
Secondly, to evaluate the robustness to errors in the initial
guess, we introduced errors in the initial estimation of (i)
dielectric properties of the axillary tissues, and (ii) muscle/fat
interface position.

III. RESULTS

Fig. 2 presents the imaging results for the benchmark case
where the initial guess represents the exact anatomy and
dielectric properties of the tissues surrounding the ALN. We
observe that the ALN is detected in its correct position, with
good estimation of the real part of permittivity, and a slight
underestimation of the imaginary part of permittivity.

A. Robustness to errors in dielectric properties

In order to study the effect of errors in the initial estimation
of the background dielectric properties, we examined the cases
where the dielectric properties of fat are perturbed in the range



between -30% and +100%, and the dielectric properties of
muscle are perturbed by ±30%. We did not introduce errors
in the permittivity of the immersion liquid, as this is not
patient-dependent and is known ahead of each measurement.
Fig. 3 (a, b) reports the reconstruction results for the case
where the dielectric properties of both fat and muscle are
overestimated by +30%. The images show that, despite the
introduced error in the dielectric properties prior knowledge,
the ALN is detected in its correct position, and no noticeable
differences are visible when comparing these results with the
benchmark case in Fig. 2. We also report that we observed
similar results when initially underestimating the dielectric
properties of fat and muscle tissue by -30%. For the sake of
brevity, we did not report such results in the present paper,
but we will during our presentation.

To further investigate the robustness of our algorithm to
errors in the prior estimation of dielectric properties, we
studied the case were the dielectric properties of fat are
overestimated by +100%, and the dielectric properties of
muscle are underestimated by -30%. Fig. 3 (c, d) reports
the reconstruction results. The images show that the ALN is
detected in its correct position, but with a reduced contrast,
which is particularly evident in the imaginary part of the
permittivity. We report that similar results were obtained when
introducing a +100% error in fat and a +30% error in muscle
dielectric properties. We believe that these are good results
as it is reasonable to consider the last two described cases as
“worst case scenarios”. In light of the physiological variability
of biological tissues dielectric properties among individuals,
we are confident that potential errors in dielectric properties
will be lower than 100% for fat and lower than 30% for muscle
tissues.

B. Robustness to errors in fat/muscle interface

In order to study the effect of errors in the initial estimation
of the position of fat/muscle interface, we translated the
interface along the vectors represented in Fig. 4 (left column).
As a result, we considered four different initial guesses,
corresponding to the following translation vectors with respect
to the true position of the muscle: -14mm, -7mm, +7mm,
+14mm; where a negative translation indicates a movement
toward lower x and y coordinates in Fig. 4 (larger fat region
in the initial guess), and a positive translation indicates a
movement toward larger x and y coordinates in Fig. 4 (smaller
fat region in the initial guess).

Fig. 4 reports the results for the four cases. Fig. 4 (c,d)
and Fig. 4 (e,f) suggest that the detection of the ALN is still
clear when translating the fat/muscle interface by ±7mm. The
image quality deteriorates when the error in prior information
increases to ±14mm. Fig 4 (a, b) shows that the ALN can
be obscured by muscle - based on the imaginary part - when
the initial guess of the fat/muscle interface is translated by
-14mm with respect to its true position; while Fig 4 (g,h)
shows that the ALN position is not well estimated in the case
where the fat/muscle interface is initially translated by +14mm
with respect to its true position.
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Fig. 3. Reconstructed complex permittivity for the cases where errors are
introduced in the initial guess of the dielectric properties of fat and muscle
tissues. The error in the initial estimation of dielectric properties is (a, b)
+30% for both fat and muscle; (c, d): -30% for muscle and +100% for fat.
The red circle shows the actual position of the ALN. Left column: Real part
of permittivity; Right column: Imaginary part of permittivity. Frequency =
1.5 GHz.

C. Robustness to errors in both dielectric properties and
fat/muscle interface

As a final test, we studied the effect of errors in the initial
estimation of the position of fat/muscle interface when an error
in the initial estimation of dielectric properties simultaneously
occurs. To do so, we considered the same four cases studied
in Sec. III-B, and added +30% error to the initial estimation
of dielectric proprieties. As in Sec. III-B, we applied the
following translations to the initial guess of the fat/muscle
interface with the respect to its true position: -14mm, -7mm,
+7mm, +14mm. Fig. 5 reports the results for the four cases.
If comparing Fig. 5 to Fig. 4, we notice that no significant
differences can be observed when adding a +30% error in the
initial estimation of dielectric properties. Similar results were
observed for the cases where we introduced a -30% error in
the initially guessed dielectric properties. These results suggest
that - even when errors in fat/muscle interface occur - errors
in dielectric properties prior estimation (±30%) do not affect
the overall quality of the reconstructed image.

IV. CONCLUSIONS AND FUTURE WORK

We numerically assessed - for the first time in the literature -
the possibility of detecting ALNs using MWT, and we
investigated the robustness of the DBIM algorithm to errors
in prior information of axillary tissues surrounding the ALN.

We observed that, when prior knowledge of muscle position
is available, the ALN is detected in its correct position,
with a good estimation of the real part of permittivity, and
an overestimation of the imaginary part of permittivity. In



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Reconstructed complex permittivity for the cases where the position
of the initial guess of the fat/muscle interface is translated with respect to its
true position. The translation vector is indicated (for each case) by the arrow
in the left column. The direction of the translation vector bisects the first and
third quadrants of the reference system. The modulus of the translation vector
is: a, b -14mm, c, d -7mm; e, f +7mm; g, h +14mm. The white/grey line
traces the true fat/muscle interface. The red circle shows the actual position
of the ALN. Left column: real part of permittivity; right column: imaginary
part of permittivity. Frequency = 1.5 GHz.
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Fig. 5. Reconstructed complex permittivity for the cases where the errors in
the initial guess involve both the dielectric properties of fat and muscle tissues
and the position of the fat/muscle interface (translation with respect to its true
position). The error in dielectric properties is a +30% overestimation for all
cases. The error in fat/muscle interface position is indicated (for each case) by
the translation vector in the left column; the modulus of the translation vector
is: a, b -14mm, c, d -7mm; e, f +7mm; g, h +14mm. The white/grey line
traces the true fat/muscle interface. The red circle shows the actual position
of the ALN. Left column: real part of permittivity; right column: imaginary
part of permittivity. Frequency = 1.5 GHz.



addition, we showed that results do not significantly change
when a ± 30% error occurs in the initial estimation of the
dielectric properties of the axillary tissues surrounding the
target; the ALN is detected with less contrast in the case where
the error in prior estimation of dielectric properties is +100%
for fat and ±30% for muscle. We consider this a good result,
which suggests robustness of our algorithm to errors in the
initial estimation of the dielectric properties. Regarding the
robustness of the algorithm to errors in the estimation of the
muscle position, we demonstrated that, for a positioning error
of ±7mm, the detection of the ALN is still acceptable; while
for ±14mm error, the image quality deteriorates, even if the
ALN remains visible.

In conclusion, this study suggests that prior knowledge of
muscle position is fundamental for the detection and dielectric
properties estimation of ALNs. Future work on axillary MWI
should focus on understanding how such knowledge can
be inferred a priori, bearing in mind that errors in the
initial estimation of muscle/fat interface should be minimised.
One strategy may reside in using radar-MWI algorithms to
firstly estimate the muscle position, and then integrate this
information into MWT reconstruction - an analogous approach
has been proposed in the literature for breast MWI [17]. A
second strategy may be to use patient-specific information
(e.g. body mass index) which correlates with the amount of
fat laying between skin and muscle surface.
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