
 Open access Journal Article DOI:10.1145/1031483.1031494

Effect of vertical handovers on performance of TCP-friendly rate control
— Source link

Andrei Gurtov, Jouni Korhonen

Institutions: TeliaSonera

Published on: 01 Jul 2004 - Mobile Computing and Communications Review (ACM)

Topics: Vertical handover, TCP Friendly Rate Control, Network congestion and Handover

Related papers:

 Vertical handoffs in wireless overlay networks

 Freeze-TCP: a true end-to-end TCP enhancement mechanism for mobile environments

 IP Mobility Support for IPv4

 TCP Friendly Rate Control (TFRC): Protocol Specification

 Mobility Support in IPv6.

Share this paper:

View more about this paper here: https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-
2uroj2g8re

https://typeset.io/
https://www.doi.org/10.1145/1031483.1031494
https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re
https://typeset.io/authors/andrei-gurtov-mqb7e9081o
https://typeset.io/authors/jouni-korhonen-1tnunh8noo
https://typeset.io/institutions/teliasonera-3ct0th6m
https://typeset.io/journals/mobile-computing-and-communications-review-3jzxs4eg
https://typeset.io/topics/vertical-handover-g0nbm1z8
https://typeset.io/topics/tcp-friendly-rate-control-2hanpetf
https://typeset.io/topics/network-congestion-jhxdm5tx
https://typeset.io/topics/handover-2dx4opea
https://typeset.io/papers/vertical-handoffs-in-wireless-overlay-networks-4x0xjcdu5s
https://typeset.io/papers/freeze-tcp-a-true-end-to-end-tcp-enhancement-mechanism-for-yw8xdqgrcc
https://typeset.io/papers/ip-mobility-support-for-ipv4-2st47tpg2t
https://typeset.io/papers/tcp-friendly-rate-control-tfrc-protocol-specification-2qzljm93f2
https://typeset.io/papers/mobility-support-in-ipv6-4ibgavj68m
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re
https://twitter.com/intent/tweet?text=Effect%20of%20vertical%20handovers%20on%20performance%20of%20TCP-friendly%20rate%20control&url=https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re
https://typeset.io/papers/effect-of-vertical-handovers-on-performance-of-tcp-friendly-2uroj2g8re

Effect of Vertical Handovers on Performance of
TCP-Friendly Rate Control

Andrei Gurtov Jouni Korhonen

andrei.gurtov@teliasonera.com jouni.korhonen@teliasonera.com

TeliaSonera Finland

An intersystem or vertical handover is a key enabling mechanism for next generations of

mobile communication systems. A vertical handover can cause an abrupt change of up to

two orders of magnitude in link bandwidth and latency. It is hard for end-to-end congestion

control to adapt promptly to such changes. This is especially a concern for slowly respon-

sive congestion control algorithms, such as TCP-Friendly Rate Control (TFRC). TFRC is

designed to provide a smooth transmission rate for real-time applications and, therefore, is

less responsive to changes in network conditions than TCP. Using measurements and sim-

ulation, we show that TFRC has significant difficulties adapting after a vertical handover.

TFRC receives only a fraction of TCP throughput over a fast link, but can be grossly unfair

to concurrent TCP flows after handover to a slow link. We show that two proposals based

on overbuffering and an explicit handover notification are effective solutions to these prob-

lems. Using them, TFRC can quickly adapt to new link characteristics after a handover,

while otherwise maintaining a smooth transmission rate.

I. Introduction

Existing wireless networks offer to a mobile user a

trade-off between connection bandwidth, coverage,

and cost. The user can utilize the most suitable wire-

less network at a given time and location, for example,

by switching between Wireless LAN (WLAN), Gen-

eral Packet Radio Service (GPRS), and Universal Mo-

bile Telecommunications System (UMTS) links while

keeping ongoing data transfers. An intersystem han-

dover is also known as a vertical handover because

wireless networks often form an overlay structure —

the fastest network with least coverage is contained in

a slower network with a larger coverage area [38].

An intersystem handover is challenging to end-to-

end transport protocols, because packets often get lost,

delayed or reordered during a handover. Furthermore,

path characteristics such as bandwidth, latency, and

the buffer size can change instantly, often more than

by an order of magnitude. Estimators used by the end-

to-end transport protocols to control the amount of

outstanding data in the network and the rate of trans-

mission are likely to be significantly off after a han-

dover. As a result, overshooting or underutilization of

the available bandwidth becomes likely.

In the Internet, TCP is the dominant transport pro-

tocol that serves well many applications requiring

reliable data delivery. However, for real-time ap-

plications, such as streaming video, a highly vari-

able transmission rate of TCP is problematic. Re-

cently, several slowly responsive congestion control

algorithms were proposed based on the notion of

TCP-friendliness [32, 43]. Such algorithms provide

a smooth transmission rate on the short time scale.

On the longer time scale they consume no more band-

width than a TCP flow under similar network condi-

tions. The TCP-friendly Rate Control (TFRC) [11]

is perhaps the most popular protocol among proposed

alternatives.

In this paper, we evaluate performance of TFRC

during handovers between GPRS, WLAN, and

UMTS. We measure behavior of TFRC and TCP flows

in a testbed implementing vertical handovers using

Mobile IP. To verify our testbed measurements and

to study the effect of changes in path characteristics,

we use an ideal handover model in the ns-2 simula-

tor [40]. Essentially, an ideal handover is represented

by a step change in the bottleneck link bandwidth, la-

tency, and buffer size, as if a smooth handover with

packet forwarding were implemented [7]. Through-

put, aggressiveness, responsiveness, and fairness of

TFRC are evaluated. We show that there are signifi-

cant problems with using TFRC in the presence of ver-

tical handovers. In particular, over a fast link TFRC

receives only a fraction of TCP throughput, while over

a slow link TFRC can starve concurrent TCP flows af-

ter a handover. Two proposals based on overbuffering

and an explicit handover notification are demonstrated

to be effective solutions to these problems.

The rest of the paper is organized as follows. Sec-

1

tion II gives the necessary background on end-to-end

transport protocols and congestion control. In Sec-

tion III, we describe our Mobile IP testbed and present

TFRC and TCP traces from vertical handovers. In

Section IV, behavior of TFRC and TCP during an

ideal handover is explored via simulation. In Sec-

tion V, we examine the effect of TFRC parameters.

In Section VI and VII, we introduce and evaluate

overbuffering and the explicit handover notification

for improving aggressiveness and responsiveness of

TFRC and TCP. Finally, Section VIII presents main

conclusions from this work.

II. Background and Related Work

In this section, we review congestion control mecha-

nisms in TCP and TFRC, as well as existing work on

evaluating the effect of vertical handovers on transport

protocols.

II.A. End-to-end Congestion Control

II.A.1. Transmission Control Protocol

TCP is a reliable transport protocol that uses slow start

and congestion avoidance for congestion control [3].

TCP has an important property of self-clocking, also

known as the packet conservation principle [26]. As-

suming that delayed acknowledgments are not used,

in the equilibrium condition every arriving ACK indi-

cates that a segment has left the network and triggers

a transmission of a new segment. We assume that the

reader is familiar with the TCP protocol [39] and only

review existing work on TCP performance in the pres-

ence of handovers.

A study on the effect of mobility on TCP found

that packet losses during a handover significantly re-

duce throughput [30]. The most significant factor con-

tributing to long TCP recovery from handovers was

found to be in the exponential back-off of the TCP

retransmit timer [8]. A proposed solution is to arti-

ficially generate three Duplicate ACKs at the TCP re-

ceiver to trigger fast retransmit at the sender and avoid

lengthy recovery using the retransmit timer. However,

this approach may not work if Selective Acknowl-

edgments (SACK) are used by the TCP connection.

An improved variant of this mechanism is proposed

by Fladenmuller and Silva [10]. As an alternative

to modifying TCP, Hsieh proposed a new receiver-

centric transport protocol that performs well in the

presence of handovers [21].

The transmission rate of transport protocols using

a sliding window is defined by the rate of returning

acknowledgments. The number of outstanding seg-

ments — the current window — depends on the buffer

size of the bottleneck link, that is typically set accord-

ing to the bandwidth-delay product of the link. As an

example, TCP congestion control estimators (the con-

gestion window and slow start threshold) for two links

(1000 kbps/10 ms and 100 kbps/100 ms) are the same

assuming the same link buffer size. Therefore, after

a handover between two such links, the TCP sender

instantly adapts to the bandwidth of a new link. In

other words, window-based protocols, such as TCP,

are more sensitive to the change of the bandwidth-

delay product of the link than only of the link band-

width.

TCP options negotiated at the connection establish-

ment may not be appropriate after a handover to the

network with vastly different characteristics. Unfor-

tunately, TCP options cannot be adjusted later in the

connection lifetime. We identified option values that

are adequate for all overlay networks considered in

this paper. These values are listed in Appendix A.

II.A.2. TCP-Friendly Rate Control

TFRC permits an application to transmit at a steady

rate that is typically within a factor of two from the

TCP rate in the similar conditions [11]. TFRC does

not halve the transmission rate after a single packet

loss, but is also slow to increase the rate in the ab-

sence of congestion. In other words, the main goal

of TFRC is to provide a smooth transmission rate, but

not to aggressively make use of available bandwidth.

In the absence of explicit feedback from the network,

there is an inherent trade-off between smoothness of

the transmission rate and convergence time to the fair

share of bandwidth.

The TFRC receiver reports the loss event rate � and

the average receive rate ✁✄✂✆☎✞✝ to the sender. The sender

computes the reference transmission rate ✁ ☎✞✟✡✠☛☎ based

on � , ✁ ✂✆☎✞✝ , and average round-trip time using a TCP

rate equation [32]. The actual transmission rate ✁ is

set as follows [20]:☞✍✌✏✎ �✒✑✔✓✖✕
✁ ☎✞✟✡✠☛☎✘✗✚✙✜✛✣✢✥✤✧✦ ☞✞★✣✩✫✪ ✤✧✦✆✙
✁ ✗✭✬✮✤✖✯ ✎ ✬ ☞✍✩✰✎ ✁ ☎✞✟✡✠☛☎✲✱✴✳✶✵ ✁✷✂✆✸✹☎✍✝ ✕ ✱✴✺✼✻✽✦✿✾✘❀❂❁ ✕

✙✜❃❄✺✼✙ ☞✍✌✏✎ ✦✹❅✼❆✆❇✒❈❉✦✆❃❂❊ ✑ ✗✚❋ ✕
✁ ✗✭✬✮✤✖✯ ✎ ✬ ☞✞✩✰✎ ✳✶✵ ✁ ✱✴✳●✵ ✁ ✂✆✸✿☎✞✝ ✕ ✱✴✺✣✻✼❋ ✕

✦✿❃❂❊❍✗✭✦✹❅✼❆✆❇

Here ✺ represents the packet size, ✦✆❃■❊ is time when

the rate was last doubled, ❋ is RTT, and ✦❏✾❑❀❂❁ repre-

sents the maximum back-off time (64 seconds by de-

2

fault) in the persistent absence of feedback. If � is

zero, no packet loss has yet been seen by the flow.

In this phase, the TFRC sender emulates slow start of

TCP by doubling the transmission rate every RTT.

TCP does not typically reduce the congestion win-

dow more than once per a window of data. Therefore,

calculating the loss event rate rather than simply tak-

ing the packet loss rate is an important part of TFRC.

The default method that TFRC uses for calculating

the loss event rate is called the Average Loss Interval.

With this method a weighted average of recent inter-

vals between packet losses is computed. The weights

are 1, 1, 1, 1, 0.8, 0.6, 0.4, and 0.2 for the oldest loss

interval.

History discounting allows the TFRC receiver to

adjust the weights, concentrating more on the most re-

cent loss interval, when it is more than twice as large

as the computed average loss interval. This is an op-

tional mechanism to allow TFRC to response some-

what more quickly to the sudden absence of conges-

tion, as represented by a long current loss interval.

Self-clocking is seen as the key feature of TCP con-

gestion control that contributes to the stability of the

Internet [5]. An optional self-clocking mechanism for

TFRC is applied for the RTT following a packet loss.

It limits the sender’s rate to at most the received rate

in the previous round trip time. Furthermore, in the

absence of losses, the TFRC maximum sending rate

is limited to the earlier receive rate times a constant to

prevent a rapid increase in the transmission rate.

Main metrics of a congestion control algorithm are

throughput, fairness, aggressiveness, responsiveness,

and smoothness. Throughput is the rate at which data

is delivered to the receiver. Fairness reflects the ability

of a flow to share bandwidth in a compatible way with

a TCP flow running in similar conditions. Aggressive-

ness describes how rapidly the algorithm increases the

transmission rate in the absence of congestion. Re-

sponsiveness reflects how fast the rate is decreased in

time of persistent congestion. Finally, smoothness de-

fines how variable is the rate when packet losses are

relatively rare. Formally, the responsiveness of a con-

gestion control mechanism has been defined as the

number of round-trip times of persistent congestion

until the sender halves its sending rate, where persis-

tent congestion is defined as the loss of one packet per

round-trip time [11]. The aggressiveness of a conges-

tion control mechanism has been defined as the max-

imum increase in the sending rate in one round-trip

time, in packets per second, given the absence of con-

gestion [5].

The maximum increase of TFRC rate given fixed

RTT is estimated to be 0.14 packets per RTT and 0.22

packets per RTT with history discounting [11]. It

takes four to eight RTTs for TFRC to halve its sending

rate in the presence of persistent congestion.

We explained in Section II.A.1 that window-based

protocols, such as TCP, are sensitive to changes in

the delay-bandwidth product, but not necessarily to

changes in bandwidth. For rate-based protocols, such

as TFRC, the opposite is true. TFRC does not esti-

mate the amount of outstanding data necessary to uti-

lize the link, but transmits at a relatively steady rate.

Therefore, TFRC is more sensitive to changes in the

link bandwidth than in the delay-bandwidth product.

TFRC is not a full-fledged transport protocol, as

it only concerns with end-to-end congestion control.

Therefore, TFRC should be deployed together with a

transport protocol, such as UDP, RTP, or Datagram

Congestion Control Protocol (DCCP) [27].

In this paper, we examine aggressiveness and re-

sponsiveness of TFRC during step changes in link

characteristics triggered by a vertical handover. Fair-

ness and smoothness are considered only briefly. Our

study goes further than previous work [45, 11, 5] in

several ways. First, we evaluate changes in link band-

width and latency of up to two orders of magnitude.

Second, we consider the effect of varying RTT. Third,

we are interested in cellular networks where little de-

gree of statistical multiplexing is present. This allows

us to concentrate on behavior of one or two flows.

Our results are based on measurements and simula-

tion. We are not aware of other TFRC measurements

over wireless links except by Beaufort et al. [6].

II.B. Overlay Networks

The terms wireless overlay networks and a vertical

handover were introduced during the Bay Area Re-

search Wireless Access Network project [38]. The

BARWAN testbed included WaveLAN, Infrared, Ric-

ochet wireless networks, and later a wide-area cellu-

lar network [42]. Other researchers built a number of

similar testbeds, concentrating on minimizing delays

and packet losses during handovers.

Several studies evaluated performance of a Mobile

IP [34] handover in overlay networks. A common

conclusion appears to be that while Mobile IP can

provide sufficiently quick handovers for non-real-time

applications, the disruption is too long to be tolerated

by real-time applications [10]. However, using op-

timizations, handover times as low as 10 ms can be

achieved in WLANs [9]. Local loss recovery using a

snoop proxy was shown to improve TCP performance

during handovers [4]. A study of an optimized smooth

3

Table 1: Link characteristics of overlay networks.

System RTT, Bw, Bw*RTT, Coverage

ms Mbps Kbytes

GPRS 600 0.03 � 2 country

UMTS 300 0.384 � 15 city

WLAN 10 11 � 14 building

LAN 1 100 � 13 desk

handover in Mobile IP observed that forwarding pack-

ets from the old access point to the new one can sig-

nificantly reduce packet losses [7, 33].

Hsieh and Seneviratne compared several mecha-

nisms for improving performance of Mobile IP for

TCP [22]. The basic Mobile IPv6 framework is com-

pared with Hierarchical Mobile IPv6, Hierarchical or

Flat Mobile IPv6 with Fast handover, Simultaneous

Bindings, and Seamless handoff architecture for Mo-

bile IP (S-MIP) for linear and ping-pong mobility sce-

narios. All frameworks except S-MIP suffered from

packet losses and performance degradation.

In this paper, we consider four different overlay

networks: GPRS, UMTS, WLAN, and LAN. These

network technologies are described, for example, by

Walke [41]. Their link characteristics are summarized

in Table 1. Vertical handovers cause a varying degree

of change in link characteristics. GPRS-UMTS han-

dovers trigger a change in the delay-bandwidth prod-

uct, while WLAN-LAN handovers trigger a signifi-

cant change in bandwidth. The delay-bandwidth prod-

uct of WLAN and LAN is similar.

III. Measurements of Vertical Han-
dovers

In this section, we describe our testbed and present

measurement results of TFRC flows during vertical

handovers. For comparison, we also show traces of a

TCP flow running alone and concurrently with TFRC.

III.A. Measurement Setup

Figure 1 shows the network architecture that we use

for measurements. Mobile nodes can connect to the

testbed using 100 Mbps Ethernet LAN, 11 Mbps

802.11b WLAN, a live GPRS network, and a live

UMTS network. For brevity, we only present mea-

surements results of handovers between GPRS and

WLAN.

The connection to the GPRS and UMTS cellular

networks is realized using a dedicated Access Point

Name (APN). IP traffic from GPRS and UMTS is sent

over a Generic Router Encapsulation (GRE) tunnel

✁✂✁✂✁✂✁
✁✂✁✂✁✂✁
✁✂✁✂✁✂✁

✄✂✄✂✄✂✄
✄✂✄✂✄✂✄
✄✂✄✂✄✂✄

Router

Correspondent Node

Mobile Node

APN

GPRS/UMTS

Home Agent DNS

Firewall

WLAN
LAN

Figure 1: Measurement testbed based on Mobile IP.

between a Gateway GPRS Support Node (GGSN) and

the APN router. This is necessary because the firewall

in the live cellular network would otherwise drop Mo-

bile IP messages. The Mobile Node, Correspondent

Node, Home Agent, and the APN router are PCs with

a Pentium-3 600 MHz processor running the Linux

operating system. The APN router has a Debian distri-

bution with a 2.2.17 kernel. The Mobile Node, Home

Agent, and Correspondent Node have the RedHat 7.3

distribution.

For GPRS access we used a Nokia’s D211 PCM-

CIA card, which is capable of three downlink and one

uplink timeslots. With CS-2 coding it can achieve

36 kbps downlink and 12 kbps uplink transfer speeds.

Our testbed has a commercial SecGo Mobile IPv4 in-

stallation. This Mobile IPv4 implementation is based

on the previous work done in the Dynamics research

project [12]. The SecGo Mobile IPv4 implementa-

tion is fully compliant to the latest specification [34]

and also implements NAT Traversal (NATT) tunnel-

ing [28]. The Mobile IPv4 product we used does

not implement any handover enhancements, such as a

smooth handoff [7]. Buffering in the Home Agent and

in the Mobile Node does not modify standard Linux

buffering.

In handover tests we used a co-located Foreign

Agent residing at the Mobile Node. We forced re-

verse NATT tunneling and defined zero agent solici-

tations to be sent from the Mobile Node. These set-

tings caused all traffic to go through the Home Agent.

During a handover, the Mobile Node sends a registra-

tion request message immediately to the Home Agent

using a new link. The new and old links are simulta-

neously active, the layer two handover delay is zero

and all delay is at the layer three. Handovers were

manually forced by changing the interface prioritiza-

tion from the client software graphical interface. It

may not be a practical scenario for vertical mobility,

4

Table 2: Delay and packet loss during handovers as

measured in the testbed.

From � to Delay, DL loss, UL loss,

seconds % %

GPRS � LAN 13 100 -

LAN � GPRS 3 0 100

GPRS � WLAN 1 95 -

WLAN � GPRS 4 0 100

LAN � WLAN 0.2 0 100

WLAN � LAN 0.8 0 100

but is sufficient for our purposes of studying the ef-

fect of a change in link characteristics on end-to-end

congestion control.

NATT tunneling adds header overhead of 32 bytes,

which consists of 20 bytes of encapsulating IP-header,

8 bytes of UDP headers, and 4 bytes of NATT tunnel-

ing header. The IP Maximum Transfer Unit (MTU)

was intentionally lowered to 1440 bytes to avoid

packet fragmentation. We concentrated on downlink

bulk data transfers from the server to the mobile node.

TCP traffic is generated with ✁✂✁☎✄✝✆ , and TFRC traf-

fic with an application-level implementation of TFRC

over UDP [23]. This implementation does not com-

pletely correspond to the TFRC specification, but it

was the best implementation available. Packet traces

were recorded at the end hosts using ✁☎✄✝✆✟✞✡✠☞☛✌✆ .

III.B. TCP Measurement Results

Table 2 summarizes the delay and packet loss es-

timated from TCP traces during handovers in our

testbed. No packet duplication or reordering was ob-

served during the measurements. The delay refers to

the total duration of the handover on the IP layer and

does not include, for example, the effect of TCP time-

outs. The fraction of lost packets during handovers is

given separately for downlink (DL) and uplink (UL)

directions. During handovers from WLAN and LAN,

packets were rarely lost in downlink, but always in the

uplink direction.

During handovers from GPRS, all packets in down-

link were lost and we did not have sufficient infor-

mation to estimate losses in uplink. TCP transmits ac-

knowledgments only when data segments are arriving.

As we only experimented with downlink transfers,

loss of data segments in the downlink direction stops

transmission of acknowledgments in uplink. Without

any packets sent in the uplink direction, it is not pos-

sible to estimate the loss probability for uplink traffic.

In the rest of this section, we focus on traces of TCP

connections during vertical handovers between GPRS

and WLAN. Handovers to and from LAN have had

a similar pattern and we do not include those traces

here. Figure 2(a) shows TCP behavior during a han-

dover from GPRS to WLAN. The graph shows a time-

sequence trace of TCP segment numbers modulo 90

from the sender side. The handover takes a second

to execute. Although almost all data segments were

lost, a single acknowledgment arriving after the han-

dover resumes the connection quickly. Linux TCP

uses the FACK algorithm [36] that enables trigger-

ing a fast retransmit after a single Duplicate ACK

rather than waiting for three Duplicate ACKs as re-

quired by the standard TCP [3]. In experiments where

the TCP sender had to rely on the retransmit time-

out to recover lost segments, we observed connec-

tion breaks of more than ten seconds during handovers

from GPRS to WLAN and LAN. The reason for such

breaks is a high latency and queuing delay in GPRS.

A handover from WLAN to GPRS in Figure 2(b)

lasted four seconds. The TCP sender timed out

and performed three retransmissions using exponen-

tial back-off. Interestingly, the first acknowledgment

that returns to the sender after a handover on the 31st

second confirms all outstanding segments. This tells

us two things. First, all data segments outstanding

when the handover has started were delivered to the

receiver. Second, all acknowledgments except the one

for the highest outstanding segment were lost. TCP

generates an acknowledgment for at least every sec-

ond segment; if they arrived to the sender we would

see unnecessary go-back-N retransmissions [29].

III.C. TFRC Measurement Results

Figure 3(a) and 3(b) show behavior of a single TFRC

flow during handovers between GPRS and WLAN.

As before, the time-sequence trace is recorded at the

sender side and the sequence numbers in the graph

wrap after 90 segments. Handovers are triggered ap-

proximately on the 30th second.

TFRC aggressiveness can be evaluated from Fig-

ure 3(a), when a handover is made from a slow

(GPRS) to a fast link (WLAN). In this test, the TFRC

flow accelerates quickly to the bandwidth of the new

link. A possible reason is that the flow has not yet

exited the slow start phase when the handover oc-

curs [17]. In slow start, TFRC is much more aggres-

sive than after reaching the steady state with a smooth

transmission rate. Then, the past history of high RTT

and low bandwidth can make TFRC adaptation slow

after a handover from GPRS to WLAN.

The responsiveness of TFRC to a decrease in band-

5

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � WLAN

0

10

20

30

40

50

60

70

80

90

20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

(b) WLAN � GPRS

Figure 2: Measured behavior of a TCP flow during a vertical handover in the testbed (the handover occurs

approximately at time 30).

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � WLAN

0

10

20

30

40

50

60

70

80

90

25 30 35 40 45 50 55 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) WLAN � GPRS

Figure 3: Measured behavior of a TFRC flow during a vertical handover in the testbed (the handover occurs at

time 30).

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � WLAN

0

20

40

60

80

100

120

140

160

180

25 30 35 40 45 50 55 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) WLAN � GPRS

Figure 4: Measured behavior of a TFRC (top) and TCP flow (bottom) during a vertical handover in the testbed

(the handover occurs at time 30).

6

width after a handover from WLAN to GPRS can

be seen in Figure 3(b). On the 30th second feed-

back packets stop arriving to the sender. About a sec-

ond later, a no-feedback timer expires at the sender

and the transmission rate is halved several times un-

til the first feedback packet arrives on the 40th sec-

ond. Because TFRC is a rate-based protocol, there

is no visible break in transmission during a handover

as with TCP. There is a significant time period before

the TFRC flow converges to the bandwidth on the new

link.

III.D. TFRC Measurement Results with
a Competing TCP Flow

In this section, we describe packet traces of a TFRC

flow with a competing TCP flow during vertical han-

dovers between GPRS and WLAN. In Figure 4(a)

and 4(b), handovers are triggered approximately on

the 30th second. Figures show a time-sequence graph

from the sender side of TCP and TFRC. Segment

numbers modulo 90 are plotted for TCP in the lower

and for TFRC in the upper part of the graph.

Figure 4(a) shows TCP and TFRC behavior during

a handover from GPRS to WLAN. Prior to handover,

both flows are running at similar rates. However, the

TFRC flow accelerates slower than the TCP flow after

a handover. The TFRC flow obtains only 15% of the

throughput of a competing TCP flow. This scenario il-

lustrates that TFRC discovers the increased bandwidth

significantly slower than TCP. Several minutes can be

needed for TFRC to achieve a fair share of bandwidth

after a handover from a slow to a fast link.

Figure 4(b) shows TCP and TFRC behavior during

a handover from WLAN to GPRS. As in the previ-

ous graph, flows share the bandwidth fairly before the

handover. However, after a handover the TCP flow

is starved, performing retransmissions using the ex-

ponential back-off. Only when the TFRC flow termi-

nates (not shown in the graph) the TCP flow is able

to resume transmission. A possible explanation for

this behavior is that the TFRC implementation used

for measurements has the minimum sending rate of

one packet per RTT [11]. On a slow GPRS link,

a TFRC flow transmitting at this minimum rate can

starve a TCP flow that uses the exponential back-off

up to 64 seconds between retransmission attempts.

Although the latest TFRC specification [20] requires

a similar type of behavior, TFRC still reacts consider-

ably slower than TCP to decreased bandwidth, caus-

ing congestion and a high packet loss rate for concur-

rent flows after a handover from a fast to a slow link.

IV. Simulating Ideal Vertical Han-
dovers

In this section, we evaluate the effect of abrupt

changes in link bandwidth, latency, and buffer size on

TCP and TFRC flows after a vertical handover.

IV.A. Simulation Setup

In this section, we want to focus on fundamental ef-

fects of a change in link characteristics, but not on

transient disruptions caused by imperfect handover

mechanisms. Therefore, a simple approach present-

ing a handover as a step change in the bottleneck link

bandwidth, latency, and the buffer size is sufficient for

our purposes. We model an ideal handover using the

ns-2 simulator [40]. We implemented an algorithm

described in Appendix B to prevent packet reordering

during a handover. The implementation of the Drop-

Tail queue was enhanced to check for buffer overflow

when the limit of queue size changes.

The network topology is a simple dumbbell, with

a mobile node adjacent to the wireless access link

(see e.g., [18]). Traffic is generated by uni-directional

downlink transfers. A handover is triggered on the

30th second after the start of simulation. The bottle-

neck queue is Drop-Tail. The bandwidth and one-way

latency of the link are set according to Table 1. The

end-to-end one-way latency is higher than the link la-

tency by 50 milliseconds to account for an Internet

path. The link buffer is set to 7 packets for GPRS

and WLAN, and to 20 packets for UMTS. The TCP

agent is uni-directional TCP SACK with delayed ac-

knowledgments, Limited Transmit, timestamps, and

the receiver window of 50 segments (it is sufficiently

large so that the protocol behavior is dominated by the

bottleneck buffer in the network).

By default, TFRC history discounting is enabled,

the feedback frequency is once per RTT, and self-

clocking is disabled. Our simulation scripts are pub-

licly available [16].

IV.B. TCP Simulation Results

In this section, we evaluate the performance of a sin-

gle TCP connection during an ideal handover between

GPRS and UMTS. After a handover from GPRS to

UMTS in Figure 5(a), it takes approximately 10 sec-

onds for the connection to fully utilize the new link.

This delay is explained by the slow increase of the

TCP window in congestion avoidance and the in-

creased bandwidth-delay product of the path.

7

In Figure 5(b), a TCP flow creates congestion af-

ter a handover from UMTS to GPRS. The handover

causes packet losses due to the reduced bandwidth-

delay product of the path. TCP experiences a retrans-

mit timeout due to many lost segments. For several

seconds the TCP flow remains idle waiting for the re-

transmit timer to expire. In previous work [18], we

proposed a TCP variant NewReno-SACK that better

avoids retransmit timeouts than the standard Reno-

SACK used in this simulation. It can improve TCP

throughput in the presence of handovers, but cannot

entirely eliminate delays due to the retransmissions of

lost packets.

In summary, the self-clocking property of TCP al-

lows a relatively rapid adaptation to changed link

bandwidth after a handover. However, a retransmit

timeout due to packet losses forces TCP to lose self-

clocking. Furthermore, it is important to avoid a spuri-

ous retransmit timeout when RTT suddenly increases

after a handover [18].

IV.C. TFRC Simulation Results

In this section, we evaluate the behavior of a sin-

gle TFRC flow during an ideal handover between

GPRS and UMTS. In Figure 6(a), a TFRC flow signif-

icantly underutilizes the UMTS link after a handover

from GPRS. This behavior differs from measurements

shown in Figure 3(a), where TFRC quickly increased

the transmission rate. This discrepancy is explained

by the presence of losses due to a buffer overflow at

time 10 in Figure 6(a). They terminate TFRC slow

start and prevent rapid acceleration after a handover.

Furthermore, high latency of UMTS contributes to the

slow increase of the transmission rate. Such sluggish-

ness can prevent TFRC from using the available band-

width if the fast link is available only for a short period

of time.

In Figure 6(b), a TFRC flow creates heavy con-

gestion after a handover from UMTS to GPRS. The

TFRC flow starts to react to the reduced bandwidth

only after several acknowledgments. Taking the inter-

val at which acknowledgments are sent, about 50 data

packets are transmitted and dropped before the sender

starts slowing down. The flow slows down sufficiently

only after 20 seconds from the handover. Such delays

in the reduction of transmission rate can negatively

affect concurrent traffic from other users and applica-

tions.

IV.D. TFRC Simulation Results with a
Competing TCP Flow

In this section, we experiment with a TFRC flow with

a competing TCP flow during an ideal handover be-

tween GPRS and UMTS. In Figure 7(a), the TFRC

flow is shown at the upper and the TCP flow at the

lower part of the graph. For convenience, sequence

numbers wrap every 90 segments. In this scenario,

the TCP flow receives 12 times more bandwidth than

the TFRC flow. Such gross unfairness starts at time

5 after a burst of losses resulting from buffer over-

flow. While the TCP connection is able to recover

from losses and transmit at a steady rate, the TFRC

flow only transmits a packet every five seconds. Af-

ter the handover at time 30, TCP adapts to the new

link rate after ten seconds. The TFRC flow increases

the rate very slowly and even at time 60 has not yet

converged to the fair share of the link bandwidth.

In Figure 7(b), TFRC and TCP flows are shown

during a handover from UMTS to GPRS. TFRC re-

duces the rate excessively after a buffer overflow in

UMTS at time 5, that results in TCP obtaining more

bandwidth than the TFRC flow before the handover.

However, after the handover, despite the high packet

loss rate, TFRC transmits faster than TCP. In fact, a

similar observation was made during measurements in

Figure 4(b), where TFRC prevented a TCP flow from

getting any packets through after a handover.

V. Effect of TFRC Parameters

In this section, we examine the effect of self-clocking,

history discounting, and feedback frequency on ag-

gressiveness and responsiveness of TFRC during a

simulated ideal handover.

Self-clocking can improve TFRC responsiveness

after a UMTS to GPRS vertical handover when the

available bandwidth sharply decreases. Figure 6(b)

showed TFRC behavior without self-clocking. With

self-clocking, a TFRC flow reduces the rate somewhat

faster after a handover; the transmission rate better

corresponds to the actual link bandwidth. There are

fewer congestion losses with self-clocking.

When history discounting is enabled, TFRC is able

to forget about losses in the past faster. This is a

useful feature for handovers from GPRS to UMTS

when available bandwidth increases, especially when

error losses occur during a handover. Figure 6(a)

showed TFRC behavior with history discounting en-

abled. When we repeated the experiment without his-

tory discounting, TFRC was slightly more aggressive

than with history discounting.

8

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � UMTS

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) UMTS � GPRS

Figure 5: Simulated behavior of a TCP flow during an ideal handover. A vertical line indicates the handover

time. X marks show drops at the bottleneck queue.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � UMTS

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) UMTS � GPRS

Figure 6: Simulated behavior of a TFRC flow during an ideal handover.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

tcp_snd_data
tcp_drops

tfrc_snd_data
tfrc_drops

(a) GPRS � UMTS

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

tcp_snd_data
tcp_drops

tfrc_snd_data
tfrc_drops

(b) UMTS � GPRS

Figure 7: Simulated behavior of a TFRC flow (top) with a competing TCP flow (bottom) during a vertical

handover.

9

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

Figure 8: Effect of a higher feedback frequency (three

acknowledgments per RTT) on TFRC during a han-

dover from GPRS to UMTS.

Normally, TFRC uses feedback frequency of one

packet per RTT. Higher feedback frequency makes it

more resilient to loss of feedback packets, but should

not significantly affect the dynamics of the protocol.

Figure 8 shows TFRC with feedback frequency in-

creased from one to three times per RTT. The re-

sult can be compared to Figure 6(a), where feed-

back frequency was once per RTT. Surprisingly, a

shorter feedback interval improves aggressiveness and

responsiveness TFRC by 30%. However, a scenario

with a higher feedback frequency was shown where

TFRC transmits at a lower rate, because several pack-

ets are lost in the beginning of a flow [17].

In summary, existing TFRC optimization mecha-

nisms are helpful but not sufficient to adapt to chang-

ing link characteristics after a vertical handover. Even

with an optimal choice of TFRC parameters, heavy

congestion is present for several seconds after switch-

ing from a fast to a slow link. It can take tens of sec-

onds for a TFRC flow to fully utilize a fast link after a

handover from a slower link.

VI. Dealing with a Changing
Bandwidth-Delay Product

The size of the link buffer is commonly set to the prod-

uct of delay and bandwidth of the link. An interest-

ing problem arises when a handover occurs between

two networks with different bandwidth-delay prod-

ucts (e.g., GPRS and UMTS). When forwarding pack-

ets from a network with a high bandwidth-delay prod-

uct to a low one, some data can be lost because the

buffer space is insufficient to hold all packets. When

transferring from a low bandwidth-delay product net-

work to a high one, the number of buffered packets

may not be enough to utilize the new link.

A possible solution to this problem can be configur-

ing the buffer of all links to the maximum bandwidth-

delay product of any link. Some links would become

overbuffered, that is persistently have a longer queue

than required for utilizing the link. However, packet

losses or underutilization present after handovers can

be reduced. A drawback of the proposed approach is

a requirement to the network operator to know type of

links that the user can handover to, which may not be

always feasible in practice.

The effect of overbuffering on TCP flows can be

seen in Figure 9(a) during a handover from GPRS to

UMTS. In this simulation, the buffer size is fixed at 20

packets. TCP behavior can be compared to Figure 5(a)

where the buffer size changes after the handover and

the link is underutilized for four seconds. With over-

buffering, a UMTS link is better utilized after a han-

dover from the GPRS link. Figure 9(b) shows the ef-

fect of overbuffering after a handover from UMTS to

GPRS. Packet losses that triggered a retransmission

timeout in Figure 5(b) are eliminated and TCP per-

forms optimally.

Overbuffering is known to have three negative as-

pects. First, interactive applications can suffer from

the increased response time because of the queuing

delay. In GPRS, the RTT is approximately 10 seconds

with a buffer size of 10 kilobytes and is increasing

by approximately one second per additional kilobyte.

Second, the inflated RTT causes the retransmit time-

out value at the sender to be very high delaying loss

recovery. Third, when a data transfer is aborted, pack-

ets buffered in the network are unnecessarily delivered

to the receiver.

It it planned that traffic in cellular systems is sep-

arated into different service classes [1]. Streaming

and background traffic can use overbuffering with-

out harming the interactive traffic, that solves the first

problem. The second problem can be partly solved

by implementing the state-of-the-art TCP at the end

hosts, which is less prone to timeouts than the older

TCP Reno. We proposed a solution to the third prob-

lem called Fast Reset that eliminates unnecessary data

delivery from aborted data connections [15].

A scenario with overbuffering was shown where

TFRC transmits at a higher rate after a handover, be-

cause the sender stays in slow start due to the ab-

sence of losses in the beginning of a flow [17]. We

also found scenarios where TFRC does not benefit

from overbuffering. The TFRC transmission rate is in-

versely proportional to the RTT. Reducing losses with

overbuffering is compensated with increasing RTT

10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � UMTS

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) UMTS � GPRS

Figure 9: Effect of overbuffering on TCP.

due to queuing. Therefore, overbuffering is a more

useful mechanism for TCP than TFRC. The next sec-

tion presents a highly efficient mechanism for TFRC.

VII. Explicit Handover Notification

In a highly dynamic network environment it is chal-

lenging for end-to-end protocols to estimate network

characteristics accurately. Feedback from link layers

that have local knowledge of the link conditions can

be helpful to transport protocols [44]. Such mecha-

nisms are currently under discussion in IETF (Trig-

tran) [24]. In this section, we examine how TCP

and TFRC could utilize such information if it is made

available to them.

To improve TCP performance for vertical han-

dovers it can be helpful to artificially change the trans-

mission rate of the sender. The TCP receiver is able

to limit the transmission rate by manipulating the ad-

vertised window [37]. Additionally, by setting the Ex-

plicit Congestion Notification bit, the receiver can sig-

nal to the sender the need to reduce the transmission

rate. As a last resort, the receiver can deliberately

drop a packet to avoid heavy losses in the future. Us-

ing the receiver window also allows accelerating the

sender. The TCP sender can grow the congestion win-

dow while being limited by the receiver window. By

increasing the receiver window the TCP sender can be

made to transmit at a higher rate.

For slowly responsive congestion control, such as

TFRC, the problem of adapting to varying network

conditions is even more topical than for TCP. TFRC

is forced to reduce the rate quickly during high loss

rates to avoid heavy congestion. However, it is fairly

slow to probe for available network bandwidth.

The TFRC receiver reports the estimated through-

put and recent loss history to the sender. It is possi-

ble to adjust receiver reports to reflect changes in the

networking conditions after a handover. TFRC im-

plementations differ in how rapidly they increase the

transmission rate when the calculated rate suddenly

increases. The TFRC specification [20] makes possi-

ble an instant increase of the transmission rate to the

rate given by the rate equation (however, the specifi-

cation discourages increasing the rate more than twice

per RTT to be compatible with TCP).

When receiving a handover notification from lower

layers, the TFRC receiver could change the loss rate

(�) and throughput estimates (✁✫✂✆☎✞✝) in its standard re-

ports according to characteristics of a new link for

several RTTs (three in our tests). Consequently, the

receiver reports real throughput and loss rate. These

“faked reports” allow to instantly change the transmis-

sion rate of the sender and hide non-congestion related

losses during a handover. Figure 10(a) shows the ef-

fect of the explicit handover notification on a TFRC

flow after a handover from GPRS to UMTS. Under-

utilization on the UMTS link present in Figure 6(a) is

eliminated. A TFRC flow with a handover notification

in Figure 10(b) (from UMTS to GPRS) causes fewer

losses than without it in Figure 6(b).

However, simply changing the receiver reports

without adjusting the receiver state allows the trans-

mission rate to restore when reports are not changed

anymore. Indeed, TFRC keeps estimates of the loss

rate, RTT, and throughput as smoothed averages.

Plenty of new samples may be needed to change the

average value so that it reflects new network charac-

teristics. We found that resetting the TFRC receiver

state after a handover eliminates this problem.

The explicit handover notification can be used when

servers connect to the wireless network via a LAN

11

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(a) GPRS � UMTS

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

S
eg

m
en

t n
um

be
r

Time, seconds

(b) UMTS � GPRS

Figure 10: Effect of explicit handover notification on TFRC.

with abundant transmission capacity. It is reasonable

to expect that network operators place their real-time

application servers as close to the user as possible to

avoid extra latency of an Internet path.

It is an open question if the explicit handover noti-

fication for TFRC can be used in the public Internet.

An abrupt increase in the transmission rate can cause

transient congestion when the bottleneck link is some-

where else than in the wireless link. However, slow

start in TCP causes a similar problem of transient con-

gestion, but is widely accepted as a safe mechanism

for the Internet.

VIII. Conclusions

We believe that vertical handovers are a fundamen-

tal property of future mobile networking. In this pa-

per, we explored the effect of a change of networking

characteristics triggered by vertical handovers on end-

to-end transport protocols and arrived at the following

results:

� Using measurements of handovers between

GPRS and WLAN, as well as simulation of ideal

handovers between GPRS and UMTS, we have

shown that TFRC has significant difficulties in

adapting to new link characteristics after a han-

dover. In particular, TFRC receives only 10-50%

of TCP thoughput over a fast link, while it can

completely starve a TCP flow after handover to a

slow link after a handover. The adaptation time

of the TFRC rate to new link characteristics can

be from tens to hundreds of seconds.

� Tuning TFRC parameters has only a minor pos-

itive effect. In particular, enabling self-clocking

and history discounting in TFRC has slightly im-

proved its responsiveness and aggressiveness. A

higher feedback frequency from the TFRC re-

ceiver allows to increase the rate faster.

� We proposed and evaluated two mechanisms to

improve transport performance during vertical

handovers. With overbuffering, the bottleneck

buffer of all links is set according to the maxi-

mum delay-bandwidth of any link. It helps TCP

to smoothly change between links with different

bandwidth-delay products. With an explicit han-

dover notification, a TFRC receiver or a perfor-

mance enhancing proxy adjusts TFRC feedback

reports for several RTTs. It enables TFRC to

quickly adapt to new link characteristics, while

otherwise maintaining a smooth sending rate.

During experiments, we also made two important

observations. First, implementing congestion control

at the application layer may not be feasible, because

UDP applications do not receive prompt congestion

notification from the operating system. When we first

run measurements with a standard Linux kernel, the

user-level TFRC implementation had been grossly un-

fair to concurrent TCP flows. The problem was found

in a local congestion notification inside the kernel.

While TCP flows reduce the transmission rate upon

filling of network buffers, TFRC flows continue to run

at a high rate until detecting a packet loss. The second

observation is that it is possible to define a set of TCP

options that provides good performance in all overlay

networks we considered. Thus, no modifications to

TCP specifications to enable option renegotiation are

needed.

The effort that designers of transport protocols are

willing to spend for achieving good performance in

12

the presence of handovers needs motivation. If han-

dovers occur only rarely, their negative effect on trans-

port protocols could be ignored. However, there are

scenarios, such as Infostations on a highway [13],

where vertical handovers can be frequent. Therefore,

we believe that the effect of vertical handovers on

transport protocols is an issue of growing importance.

Acknowledgments

Antti Erkkilä, Olli Aalto, and Tomi Luostarinen

helped with setting up the testbed and performing

measurements. We also thank Mun Choon Chan for

an idea on preventing packet reordering in ns-2, Pasi

Sarolahti for consulting on Linux TCP, Mark Handley

and Sally Floyd for valuable comments on details of

TFRC.

References

[1] 3GPP. TS 23.107: QoS concept and architecture,

Mar. 2002.

[2] M. Allman and V. Paxson. On estimating end-

to-end network path properties. In Proc. of ACM

SIGCOMM’99, Aug. 1999.

[3] M. Allman, V. Paxson, and W. Stevens. TCP

congestion control. IETF RFC 2581, Apr. 1999.

[4] H. Balakrishnan, S. Seshan, and R. H.

Katz. Improving reliable transport and hand-

off performance in cellular wireless networks.

ACM/Baltzer Wireless Networks, 1(4):469–481,

1995.

[5] D. Bansal, H. Balakrishnan, S. Floyd, and

S. Shenker. Dynamic behavior of slowly-

responsive congestion control algorithms. In

Proc. of ACM SIGCOMM’01, Aug. 2001.

[6] D. Beaufort, L. Fay, C. Samson, and A. Teil.

Measured performance of TCP friendly rate con-

trol protocol over a 2.5G network. In Proc.

of the IEEE Vehicular Technology Conference

(VTC’02 Fall), Sept. 2002.

[7] C. Blondia, N. Van den Wijngaert, G. Willems,

and O. Casals. Performance analysis of opti-

mized smooth handoff in Mobile IP. In Proc.

of ACM MSWiM’02, Sept. 2002.

[8] R. Cáceres and L. Iftode. Improving the per-

formance of reliable transport protocols in mo-

bile computing environments. IEEE Journal on

Selected Areas in Communications, 13(5):850–

857, 1995.

[9] R. Caceres and V. N. Padmanabhan. Fast and

scalable wireless handoffs in support of mobile

internet audio. ACM Mobile Networks and Ap-

plications, 3(4):351–363, 1998.

[10] A. Fladenmuller and R. Silva. The effect

of mobile IP handoffs on the performance of

TCP. ACM Mobile Networks and Applications,

4(2):131–135, May 1999.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer.

Equation-based congestion control for unicast

applications. In Proc. of ACM SIGCOMM’00,

Aug. 2000.

[12] D. Forsberg, J. Malinen, J. Malinen, T. Weck-

strm, and M. Tiusanen. Distributing mobility

agents hierarchically under frequent location up-

dates. In Proc. Sixth IEEE International Work-

shop on Mobile Multimedia Communications

(MOMUC’99), Nov. 1999.

[13] R. H. Frenkiel, B. R. Badrinath, J. Borras, and

R. D. Yates. The Infostations challenge: Bal-

ancing cost and ubiquity in delivering wireless

data. IEEE Personal Communications Maga-

zine, 7(2):66–71, Apr. 2000.

[14] A. Gurtov. Making TCP robust against delay

spikes. Technical Report C-2001-53, University

of Helsinki, Nov. 2001.

[15] A. Gurtov. Eliminating aborted data delivery

over cellular links. ACM Mobile Computing

& Communications Review, 7(4):53–54, Oct.

2003. Extended abstract (selected posters from

Mobicom’03).

[16] A. Gurtov. Extensions of ns-2 simulator. Avail-

able at http://www.cs.helsinki.fi/u/gurtov/ns/,

Mar. 2004.

[17] A. Gurtov and S. Floyd. Modeling wireless links

for transport protocols. ACM Computer Commu-

nication Review, 34(2):85–96, Apr. 2004.

[18] A. Gurtov and R. Ludwig. Responding to spu-

rious timeouts in TCP. In Proc. of IEEE INFO-

COM’03, Apr. 2003.

[19] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola.

Multi-layer protocol tracing in a GPRS network.

In Proc. of the IEEE Vehicular Technology Con-

ference (VTC’02 Fall), Sept. 2002.

13

[20] M. Handley, S. Floyd, J. Padhye, and J. Wid-

mer. TCP friendly rate control (TFRC): Protocol

specification. IETF RFC 3448, Jan. 2003.

[21] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivaku-

mar. A receiver-centric transport protocol for

mobile hosts with heterogeneous wireless inter-

faces. In Proc. of ACM MOBICOM’03, Sept.

2003.

[22] R. Hsieh and A. Seneviratne. A comparison of

mechanisms for improving Mobile IP handoff

latency for end-to-end TCP. In Proc. of ACM

MOBICOM’03, Sept. 2003.

[23] ICIR. Equation-based congestion con-

trol for unicast applications, Aug. 2003.

http://www.icir.org/tfrc/.

[24] IETF. Access link intermediaries assisting ser-

vices BOF, Oct. 2003.

[25] H. Inamura, G. Montenegro, R. Ludwig, A. Gur-

tov, and F. Khafizov. TCP over second (2.5G)

and third (3G) generation wireless networks.

IETF RFC 3481 (BCP 71), Feb. 2003.

[26] V. Jacobson. Congestion avoidance and control.

In Proc. of ACM SIGCOMM’88, Aug. 1988.

[27] E. Kohler, M. Handley, and S. Floyd. Designing

DCCP: Congestion control without reliability.

Available at http://www.icir.org/kohler/dccp/,

May 2003.

[28] H. Levkowetz and S. Vaarala. Mobile IP traver-

sal of network address translation (NAT) de-

vices. IETF RFC 3519, May 2003.

[29] R. Ludwig and R. H. Katz. The Eifel algorithm:

Making TCP robust against spurious retransmis-

sions. ACM Computer Communication Review,

30(1):30–36, Jan. 2000.

[30] P. Manzoni, D. Ghosal, and G. Serazzi. Im-

pact of mobility on TCP/IP: an integrated perfor-

mance study. IEEE Journal on Selected Areas in

Communications, 13(5):858–867, 1995.

[31] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-

manow. TCP selective acknowledgement op-

tions. IETF RFC 2018, Oct. 1996.

[32] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.

Modeling TCP throughput: a simple model and

its empirical validation. In Proc. of ACM SIG-

COMM’98, Sept. 1998.

[33] X. Perez-Costa, M. Torrent-Moreno, and

H. Hartenstein. A performance comparison

of Mobile IPv6, Hierarchical Mobile IPv6,

fast handovers for Mobile IPv6 and their

combination. ACM Mobile Computing &

Communications Review, 7(4):5–19, Oct. 2003.

[34] C. Perkins. IP mobility support for IPv4. IETF

RFC 3344, Aug. 2002.

[35] K. Ramakrishnan, S. Floyd, and D. Black.

The addition of explicit congestion notification

(ECN) to IP. IETF RFC 3168, Sept. 2001.

[36] P. Sarolahti and A. Kuznetsov. Congestion con-

trol in linux TCP. In Proc. of USENIX’02, June

2002.

[37] N. Spring, M. Chesire, M. Berryman, V. Sahas-

ranaman, T. Anderson, and B. Bershad. Re-

ceiver based management of low bandwidth ac-

cess links. In Proc. of IEEE INFOCOM’00, Mar.

2000.

[38] M. Stemm and R. H. Katz. Vertical hand-

offs in wireless overlay networks. ACM Mobile

Networks and Applications, 3(4):335–350, Dec.

1998.

[39] W. R. Stevens. TCP/IP Illustrated, Volume 1

(The Protocols). Addison-Wesley, Nov. 1994.

[40] UCB/LBNL/VINT. The ns-2 network simulator,

Aug. 2003. http://www.isi.edu/nsnam/ns/.

[41] B. Walke. Mobile Radio Networks, Networking

and Protocols (2. Ed.). Wiley & Sons, 2001.

[42] H. J. Wang, R. H. Katz, and J. Giese. Policy-

enabled handoffs across heterogeneous wireless

networks. In Proc. of the Second IEEE Workshop

on Mobile Computing Systems and Applications,

Feb. 1999.

[43] J. Widmer, R. Denda, and M. Mauve. A survey

on TCP-friendly congestion control. IEEE Net-

work, 15(3):28–37, May 2001.

[44] G. Xylomenos. Multi Service Link Layers: An

Approach to Enhancing Internet Performance

over Wireless Links. PhD thesis, University of

California at San Diego, 1999.

[45] Y. R. Yang, M. S. Kim, and S. S. Lam. Tran-

sient behaviors of TCP-friendly congestion con-

trol protocols. In Proc. of IEEE INFOCOM’01,

Apr. 2001.

14

A. Static Protocol Options

Most connection-oriented transport protocols, such as

TCP or DCCP, perform negotiation of protocol op-

tions during the connection establishment. In case of

TCP, the options cannot be adjusted later during the

connection lifetime. Options negotiated at the connec-

tion establishment may not be appropriate after a han-

dover to the network with vastly different character-

istics. In this section, we seek values of TCP options

that would be appropriate for all considered overlay

networks. Table 3 lists four widely implemented TCP

options and a TCP header flag [35].

Table 3: Currently deployed TCP options.

Option Name Values Recommended Value

Timestamps On/Off On

Window scaling Scale factor 4

MSS Bytes 1460

SACK-enabled On/Off On

ECT (flag) On/Off On

The timestamp option requires that both connection

end points use it through the connection lifetime. A

timestamp and an echo of the received timestamp are

placed in every segment. The benefit of always using

the timestamp option is questioned [2] because of its

12-byte overhead in every segment. However, some

studies found that timestamps are useful in the wire-

less environment [14]. Therefore, we believe that the

use of the timestamp option is justified in all consid-

ered overlay networks.

The window scale option defines a multiplier for the

receiver window. A scaled window is appropriate in

networks with a high bandwidth-delay product, such

as UMTS (with bandwidth close to 2 Mbps). How-

ever, limiting the receiver window to a smaller size

is often beneficial in slow networks, such as GPRS, to

prevent excessive queueing in the network [19]. Using

the scaling option, the receiver window becomes of a

granularity of 2, 4, 8, . . . bytes for the scaling param-

eter of 1, 2, 3, Reduced granularity does not sig-

nificantly affect the ability of the receiver to limit the

size of the receiver window, if necessary. Hence, the

receiver can negotiate the largest required scale factor

even if the connection is initiated in the network with

a low delay-bandwidth product, such as GPRS.

Justifications for setting the maximum segment size

(MSS) were given, for example, by Stevens [39]. In

summary, the trade-off is between lighter header over-

head (with larger segments) and inefficient operation

in the presence of packet losses and high latency.

GPRS does not have high packet loss rates because

of retransmissions at the link layer. In GPRS, the la-

tency is already so high that using a large segment size

does not significantly increase it. Therefore, using the

MSS of 1460 bytes in all overlay networks is accept-

able. A slightly smaller value should be used to avoid

fragmentation due to tunneling by Mobile IP.

The SACK-enabled option [31] informs that the

end point supports selective acknowledgments. The

ECN-capable transport (ECT) flag defines that the

end point understands an explicit congestion notifica-

tion [35] given by routers. These options are useful in

any network.

Hence, we found a set of option values adequate for

all considered overlay networks. In fact, these values

are approved as a best current practice recommenda-

tion in the IETF [25]. It is fortunate that the TCP pro-

tocol need not be modified to enable re-negotiation of

options during an ongoing connection.

B. Preventing Packet Reordering

We implemented an algorithm in ns-2 to prevent

packet reordering that can occur during a step change

in link bandwidth and latency. The algorithm can be

implemented in real-world networking nodes schedul-

ing packets over multiple links or over a link with

frequently changing bandwidth. An intuitive purpose

of the algorithm is to avoid transmitting a packet if it

could arrive to the receiver earlier than the previously

sent packet.

✤ ✪✼✪✁� ☞ ✬ ✙✄✂ ✪ ✙✄☎ ✗ ✓
✌ ★✣✪ ✩ ✙✜✯✥✦ �✝✆ ✦ ✦ ★ ✺✼✙ ✩ ❊

✤ ✪✣✪✁� ☞ ✬ ✙✶✗ �✝✆ ✦✟✞ ☞✡✠ ✙✼✻☞☛✍✌ ❊☞✍✌ ✤ ✪✣✪✎�✶☞ ✬ ✙✄✂ ✪ ✙✎☎✑✏ ✤ ✪✣✪✎�✶☞ ✬ ✙
✤ ✪✣✪✎�✶☞ ✬ ✙ ✗✭✤ ✪✣✪✁� ☞ ✬ ✙✄✂ ✪ ✙✎☎✒✌ �✝✆ ✦✟✞ ☞✡✠ ✙✽✻☞☛

✤ ✪✣✪✁� ☞ ✬ ✙✎✂ ✪ ✙✄☎❍✗✚✤ ✪✣✪✁� ☞ ✬ ✙
✺✎✓✄✔ ✙ ❊ ✢ ❃❂✙✎✂ ✆ ✦ ✎ ✤ ✪✣✪✁� ☞ ✬ ✙ ✕

Here ☛ is the link bandwidth, ❊ is the link one-

way latency, and ✤ ✪✣✪✁� ☞ ✬ ✙ estimates when the packet

would arrive to the receiver across the link. Note that

☛ and ❊ can change during the execution of the al-

gorithm. In ns-2, an arrival of the packet to the re-

ceiver is scheduled directly with schedulePkt(). If the

algorithm is implemented in a real router, then sched-

ulePkt() refers to transmission of the packet to the link

and should be called with ✤ ✪✣✪✁� ☞ ✬ ✙✎✂ ✪ ✙✄☎ ❈ ✺✣✻☞☛ ❈ ❊
as a parameter.

15

