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EFFECT OF VIBRATION ON THE ACCURACY OF A VERTICAL 
REFERENCE PENDULUM * 

1. Introduction. The pendulum has been used from ancient times as a 
means of establishing a local vertical reference. One of the earliest accounts 
of the use of the pendulum as a plumb-bob comes from Thebes, Egypt, 
about 1,100 B.C. [ l ,  p. 4811. As the years passed, the requirements for ac- 
curacy have increased until today tlie accuracy requirements for missile 
applications are such that second order effects may determine whether or 
not the pedulum may be used to establish a local vertical reference. 

Using the best techniques currently available, it is impossible to eliminate 
entirely the vibration transmitted through the supporting structure to the 
point of support of the pendulum. The purpose of this paper is to examine 
the effect of such residual vibration on the accuracy of a pendululn type 
vertical reference. I t  will be shown that if the vertical and horizontal com- 
ponents of acceleration of the point of support of the pendulum are corre- 
lated in time, then in general the mean position of the pendulum does not 
coincide with the local vertical axis. This zero-shift, or "Auswanderungs"- 
phenomenon, is not new, having received considerable attention in the 
German literature of the 19307s, notably by Klotter and his associates [2], 
[3] and Erdelyi [4]. Nore recently, problems of this type have been studied 
by Weidenhammer [5] and Conrad and Shellhorn 161. Except for [6] the 
analysis was restricted to weak damping and the case of harmonic excita- 
tion, where both vertical and horizontal components of the acceleration of 
the point of support have the same frequency. In the present study the 
analysis will be for heavily damped systems acted upon by a class of 
bounded excitations having zero time average. 

2. Formulation of the problem. Consider a heavily damped pendulum of 
length I and mass m whose point of support is subjected to weak oscillatory 
accelerations V(t) and H ( t )  in the vertical and horizontal directions, re- 
spectively. If 8 denotes the angle which the pendulum makes with the 
vertical axis, and C denotes the damping coefficient of the pendulum, then 
the equation of motiorl of the pendulum is 

( 1 )  m128 + C B  + ml[g + V(t)]sin e = mlH(t)cos e, t B t o ,  
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where e = dO/dt, etc. Let 

Using (2)  we may write (1) as 

(3) e" + 22e1 + [I - e,j1(7) 1 sin e = eZf2(7) cos e, T 2 TO , 
where 8' = d e l d ~ ,  etc. 

2.1. Assumptions. In the following analysis it will be assumed that the 
following conditions hold: 

( i )  z > 1, i.e., the pendulum is supercritically damped; 
(ii) f i (7) ,  i = 1, 2, are piecewise corltinuous and bounded such that 

(4) 
sup, 1 fi(7) 1 = 1, i = 1, 2; 

(iii) f j  = lirn,-. ( l / T )  IT f , ( t )  & = 0, i = 1, 2; 
0 

(iv) 1 ei 1 << 1, i = 1, 2. 

2.2. Existence and uniqueness of solutions of (3). If (3) is rewritten in 
vector form, 

8' = P(8, T) ,  

Using condition (4) (ii) it is easily shon-11 that the vector function F(g, T) 
satisfies a Lipschitz condition, 

(6) / /  F(g l ,  T)  - P ( g 2 ,  T) /I 5 (1  + 22) /I g~ - g2 11  for all 7 2 7 0 .  

Thus (5) satisfies the conditions of the Cauchy-Lipschitz theorem; hence 
the existence and uniqueness of the solutions of the initial value problem 
associated with (3) are assured. 

2.3. Ultimate boundedness of solutions. I t  will be shown that under 
weak restrictions on the initial conditions, all solutions of (3) are ulti- 
mately bounded, and that in particular 
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Consider the function V defined by 

(8)  V = [22 + l/z][l - cos B] + 0' sin 0 + d2/22. 

Define the compact set Q2 by 

The function V has the following properties: 
(i) V(B, 0') together with its first partial derivatives is continuous 

in Q2 . 
(ii) V(0, 0)  = 0. 

(10) (iii) V(B, 8') is nonnegative in Q2 and vanishes only at the origin. 
The origin is an isolated minimum of V. 

(iv) The time derivative I.'' of V along any trajectory of (3)  
satisfies the inequality1 

Denote the compact set QO by 

(11) 
'2 Qo:sin2B+B 5 2 ~ ~ ~ / [ 1 - 3 / t ~ / ] ,  I B I < a / 2 .  

Denote the compact set GI by 

where V1 is so chosen that 

(a) Q o C G 1 C Q 2 ,  

(I3) (b)  V' 5 - 6 1 0 for [B, or] E (4 - Q1) 

This choice of ITl gives 

(14) 6 0 [ e z 2 ( ~ ~  - z ) ~ ] .  

LEMMA 1. Each solution of (3) which at some time 2 T~ i s  in Q1 can 
never thereafter leave Q1 . 

Proof. Let [B(T), B'(T)] be a solution of (3) which at time T~ 2 T~ is in 
Q1. Suppose that at some later time T ~ ,  [B(T~), B'(T~) ] is in (Oz - Q1). 
Then there exists a T ~ ,  TI < TZ < 7 3 ,  such that [B(T), B'(T)] E (Q2 - Q1) 
for 7 2  < T < T~ , and 7 2  is the smallest number with this property. This 

- implies that [B(T~), B'(T~)] E Ql , and therefore V[B(T~), B'(T~)] < V[B(T3), 
B ' ( ~ ~ ) ] .  But this is impossible since V(B, 8 ' )  is nonincreasing for T in the 
interval 7 2  < T < T~ . Hence if [B(T~), B1(T1)] E Ql , it can never there- 
after leave Q1 . 

1 This inequality is easily established using (3) and (4) and the inequality 
I xy I 5 [x2 -t y21/2. 
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LEMMA 2. Each solution of (3) sta~ting in (Q2 - 91) i s  ultimately in Q1 . 
Proof. Since V(0, 8') is positive definite in Q2 and has an isolated mini- 

mum at  the origin and 8' 5 - 6 < 0 for every point in (92 - a t ) ,  i t  
follo~vs that every solution starting in (Q2 - Cll) is ultimately in Q1. By 
Lemma 1 it must thereafter remain in Q1 . 

THEOREM 1. Given (3) ,  cmclitims ( 4 )  and the co,npact sets Q1 and Qz de- 
fined in (9) and (13), then 

( i )  any solution of (3) starting in C12 i s  ultimately boundecl in 91, 
(ii) as TO tends to minus  infinity, then f o ~  all T greater than zero the maxi- 

m u m  angular displacement i s  given by 

Proof. The proof of ( i )  follo~vs directly upon application of Lemmas 1 and 
2. The proof of (ii) follo~vs from (i)  and some simple but tedious algebra. 

2.4. Solution of (3). In this study ~5-e are interested in the solutions of (3) 
for large time, and since by Theorem 1 any solution of ( 3 )  starting in Qz is 
ultimately in Cll , there is no loss of generality in assuming that solutions 
start in 4 at  T = T O  . Furthermore, by (ii), solutions in 01 are bounded by 
2 1 €2 1/41 - 3 1 €1 1 . 

I t  is convenient for the analysis which follo~vs to rewrite (3) in the form 
of a nonlinear integral e q u a t i ~ n : ~  

G(e(t>, t)  = [1 - ~lfl(t)l[e(t) - sin e(t)l - tZf2(t)[1 - cos e(t)1, 

where 

XI, Xz are the roots of X2 - 2zX + 1 = 0. 

I t  may be shown by standard techniques that solutions of (15) exist for 
all T greater than 70 and that such solutions are unique. 

See Appendix for derivation. 
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Since our interest is in the behavior of solutions for large time, let T O  tend 
to minus infinity. 

Equation ( 1 5 )  becomes 

e ( 7 )  = Im V ( E ) [ C ' L ~ ~ ( T  - 01 @ + Im v(()[elfl(~ - t ) e ( ~  - 01 & 
0  0  

( 17 )  rm 

+ 1 V ( I ) G L ~ ( T  - t ) ,  T - B d t .  
0  

Denote the right-hand side of (17) by & ( T ) .  

Substituting into the second and third integrals in (17 ) ,  in place of O ( T ) ,  
the value as given by the equation itself, we obtain 

2  

O ( T )  = E ~ Q ~ $ ~ ( T )  + t i ~ i , o ( ~ )  
k=O 

(1s )  
+ Im V ( t ) G [ d o ( ~  - tIl - tl d l ,  

0  

where 
m k f l  

A(.) = Im o (I;+l)- fold . . .  1 z - 1  
f l V ( t i ) d t i f i f l ( T - V i ) f ? ( ~ - V k + l ) ,  i -1 

Denote the right-hand side of (18) by & ( T ) .  

Substituting into the second, third and fourth terms in (18), in place of 
8( T ) ,  the value as given by the equation itself, we obtain 

The method of successive substitutions can be carried on indefinitely; 
however, ( 20 )  is sufficient to determine 8 ( 7 )  up to terms of order 2, where 
r is defined by 
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Using Theorem 1, condition (4) (ii.), (15) and (16) yields 

Using (17) and (18) and (22), ~5-e see readily that 

By substituting (23) into (20), it may be shown that 

All integrals appearing in (24) are absolutely convergent; furthermore, 

3. Zero-shift of pendulum. In order to obtain the mean deflection or 
zero-shift of the pendulum, the displacement must be averaged with respect 
to time. 

Thus 
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where 

Equation (27) is applicable to two separate classes of problems: 
(i) fl( 7) and f2 ( r )  deterministic processes, 

(ii) f1(r)  and f 2 ( r )  stochastic processes. 
Suppose that f l ( r )  and f 2 ( r )  are member functions of stochastic processes 

{fl(r))  and {f2(7)] respectively, where (f1(r)} and {f2(r))  have the follow- 
ing properties: 
( a )  they are strictly stationary; 
(b)  they have mean zero; 
(c) they are bounded and so satisfy (4) (ii) ; 
(d)  they possess an ergodic property guaranteeing strict equality of time 

averages and process expectations with probability one. 
In this case (27) is applicable if the time averages appearing on the right- 

hand side of (27) are replaced by the process expectations. Equations (27) 
and (28) show quite clearly that if any of the time averages appearing on 
the right-hand side of (27) are nonzero, then in general the mean position 
of the pendulum will not coincide with the local vertical axis. In particular 
it will be observed that the greatest zero-shift will occur if f l ( r )  and fZ(r) 
are correlated in time; however, zero-shift may still occur even if f l ( r )  and 
f2 ( r )  are uncorrelated. 

4. Examples. To illustrate the results of the present study, consider 
the following examples. 

Example 1. Suppose that f1(r) = sin WT, f2(7) = sin (wr + 4) .  Then 

Substituting (29) into (27) and carrying out the elementary integra- 
tions yields 
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(31)  8 = 5 + 0 ( 2  X lov2) seconds of arc. 

Example 2. Suppose that f l ( r )  = sin u7, f 2 ( r )  = sin 2ur. The11 

f20 = 0 ,  

f i (r  - ti)fz(r - ti - 5 2 )  = 0, 

~ I L ( T  - ai) fz(r  - 73) = $ [sin u ( h  + 2ts )] .  
i=l 

Substituting (32)  into ( 27 )  and carrying out the elementary integrations 
gives 

Example 3. Suppose that f l (  7 )  is equal to f2( r )  and that f l (  r )  is a random 
telegraph signal with average rate of zero crossing v. Using the statistical 
properties of the random telegraph signal [7],  it is easily shown that 

Substituting (34)  into (27)  and carrying out the elementary integrations 
yields 

The above examples serve to illustrate the effect of vibration on the 
accuracy of a vertical reference pendulum. Examples 1 and 3 show quite 
clearly that if the horizontal and vertical components of acceleration of the 
point of support of the pendulum are correlated in time, then in general the 
mean position of the pendulum does not coincide with the vertical axis. 
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That this is a sufficient, but not a necessary condition for zero-shift of the 
pendulum is clearly illustrated in Example 2, where f1(7) and f2(7) are un- 
correlated to first order, i.e., f1(7)f2(7 + (Y) = 0, yet the pendulum exhibits 
a shift in its mean position. In  this example, the zero-shift is caused by the 
fact that the quantity f l ( ~ ) f l ( ~  + a)f2(7 + P )  is not identically zero. - 

I t  should be noted that in all three cases the zero-shift 8 decreases as z 
and w (or Y) increase. This suggests that the errors introduced by vibration 
may, to some extent, be reduced by making the natural frequency of the 
pendulum as low as possible, and by making the damping as large as pos- 
sible. 

Appendix. Derivation of (16) and (17). Equation (3) may be rewritten as 

where G(%(T), T) is defined in (15). 
Equation (Al)  may be written in the form of an integral equation: 

(A21 + J r  V(T - t ) k X ( t )  + elfl(i)e(i) + G(e(i), i l l  4, 
' 0  

where U and V are defined by (16). 
To show that lim(,-,,,+, O(T) is independent of 60 and %(, consider the 

solution of (A2) with initial conditions 

Thus, 

For [@, @'I E i l l ,  [O, 0'1 E i l l ,  (15) shows that 

(A41 I G(e(i) ,  i )  - G(@(i),  ill 5 :K I e(i) - @(&I I, 
where K O(1). 

Subtracting (A3) from (A2) and using (16) with x 2 2 yields 

After a simple rearrangement, application of Gronwall's lemma yields 
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for E << 1, x 2 2, E + :K < X1(X2 - X I ) .  Therefore, / O(T)  - + ( T )  1 tends 
uniformly to zero as ( T  - T ~ )  tends to infinity. Hence, 

lim O ( T )  = lim + ( T ) ,  
1o+W To+-W 

r>O r>O 

irideperlderit of Oo and 0;. 
Thus if T~ - co, T > 0, (A2) becomes 

The transformation t = T - q reduces ( A 7 )  to  

Equation ( 1 7 )  is obtained by replacing 7 by i in ( A 8 ) .  
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