
 

Effect of viscosity on droplet-droplet collisional interaction

Citation for published version (APA):
Finotello, G., Padding, J. T., Deen, N. G., Jongsma, A., Innings, F., & Kuipers, J. A. M. (2017). Effect of viscosity
on droplet-droplet collisional interaction. Physics of Fluids, 29(6), [067102]. https://doi.org/10.1063/1.4984081

DOI:
10.1063/1.4984081

Document status and date:
Published: 06/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.1063/1.4984081
https://doi.org/10.1063/1.4984081
https://research.tue.nl/en/publications/55355ce0-3785-46e2-ab51-7ec49fd74a47


Effect of viscosity on droplet-droplet collisional interaction

Giulia Finotello, Johan T. Padding, Niels G. Deen, Alfred Jongsma, Fredrik Innings, and J. A. M. Kuipers

Citation: Physics of Fluids 29, 067102 (2017); doi: 10.1063/1.4984081

View online: http://dx.doi.org/10.1063/1.4984081

View Table of Contents: http://aip.scitation.org/toc/phf/29/6

Published by the American Institute of Physics

Articles you may be interested in

Capillary breakup of armored liquid filaments
Physics of Fluids 29, 062103 (2017); 10.1063/1.4984836

 Droplets passing through a soap film
Physics of Fluids 29, 062110 (2017); 10.1063/1.4986798

 Collisions of viscous droplets
Physics Today 70, 23 (2017); 10.1063/PT.3.3652

Droplet impact onto a solid sphere: Effect of wettability and impact velocity
Physics of Fluids 29, 062111 (2017); 10.1063/1.4990088

 Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube
Physics of Fluids 29, 062105 (2017); 10.1063/1.4986526

 Clippers, yachts, and the false promise of the wave line
Physics Today 70, 52 (2017); 10.1063/PT.3.3627

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Finotello%2C+Giulia
http://aip.scitation.org/author/Padding%2C+Johan+T
http://aip.scitation.org/author/Deen%2C+Niels+G
http://aip.scitation.org/author/Jongsma%2C+Alfred
http://aip.scitation.org/author/Innings%2C+Fredrik
http://aip.scitation.org/author/Kuipers%2C+J+A+M
/loi/phf
http://dx.doi.org/10.1063/1.4984081
http://aip.scitation.org/toc/phf/29/6
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4984836
http://aip.scitation.org/doi/abs/10.1063/1.4986798
http://aip.scitation.org/doi/abs/10.1063/PT.3.3652
http://aip.scitation.org/doi/abs/10.1063/1.4990088
http://aip.scitation.org/doi/abs/10.1063/1.4986526
http://aip.scitation.org/doi/abs/10.1063/PT.3.3627


PHYSICS OF FLUIDS 29, 067102 (2017)

Effect of viscosity on droplet-droplet collisional interaction

Giulia Finotello,1,a) Johan T. Padding,2 Niels G. Deen,3 Alfred Jongsma,4 Fredrik Innings,4

and J. A. M. Kuipers1

1Multiphase Reactor Group, Department of Chemical Engineering and Chemistry,
Eindhoven University of Technology, Eindhoven, The Netherlands
2Intensified Reaction and Separation Systems, Department of Process and Energy,
Delft University of Technology, Delft, The Netherlands
3Multiphase and Reactive Flows Group, Department of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands
4Tetra Pak CPS, Heerenveen, The Netherlands

(Received 19 December 2016; accepted 11 May 2017; published online 6 June 2017)

A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is

essential for industrial processes such as spray drying. When droplets with dispersed solids are dried,

the apparent viscosity of the dispersed phase increases by many orders of magnitude, which dras-

tically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the

droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation

is still not entirely understood and a general model for collision outcome boundaries is not available.

In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct

numerical simulations employing the volume of fluid method. The role of viscous energy dissipa-

tion is analysed in collisions of droplets with different sizes and different physical properties. From

the simulations results, a general phenomenological model depending on the capillary number (Ca,

accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (∆) is

proposed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984081]

I. INTRODUCTION

The dynamics of droplet-droplet collisions has been the

subject of numerous numerical,1–3 and experimental,4–7 inves-

tigations because of its complexity as a fluid dynamics phe-

nomenon as well as its relevance for various applications

in meteorology and industrial processes. Examples of these

applications are the prediction of the behaviour of atmospheric

raindrops, pollution tracking, liquid-liquid extraction, spray

combustion, and spray drying. In particular, spray drying is an

operation used in many process industries to produce powders

from suspensions containing solid particles. The suspension

is atomized to produce fine droplets that are dried in a hot air

stream. The process involves complex, multiphase, multi-scale

transport phenomena with reciprocal interactions between

drying air, droplets, and solid or partially solidified particles.

Furthermore, each phase is not a pure substance but is a mix-

ture of several components. The quality of the final product is

significantly affected by coalescence, break-up, and agglom-

eration processes prevailing during spray drying. In order to

optimize the powder morphology towards the desired charac-

teristics, it is important to have a detailed knowledge of the

phenomena taking place at the individual droplet scale. Pre-

vious modelling studies on droplet collisions employed water

as the medium of investigation so an explicit viscosity depen-

dence of the droplet collision outcome was not addressed. It

is our aim in this work to formulate a general model, enabling

a)
Electronic mail: G.Finotello@tue.nl

us to describe and predict the regime boundaries between

collision outcomes. Figure 1 illustrates three examples of col-

lision outcomes predicted by numerical simulations of this

work. The first case (left part of the figure) is a reflexive sep-

aration with the formation of one satellite resulting from two

droplets impacting on the same axis. The second case (cen-

tral part of the figure) is an example of coalescence. The

last case (right side of the figure) occurs at a high impact

velocity after stretching and consequent separation with three

satellites of different sizes. Each frame is associated with a

non-dimensional time scaled by the initial droplet diameter

and relative velocity. The bouncing regime is not represented

because it is not a part of this study. This is related to lim-

itations of the volume of fluid (VOF) method which will be

discussed in detail later.

In recent years, there has been growing interest to use

Computational Fluid Dynamics (CFD) for exploring phenom-

ena of droplet interactions. A front-tracking (FT) method was

used by Unverdi and Tryggvason8 and extended by Nobari and

Tryggvason9 to track bouncing, coalescence, and separation

for low viscosity liquids. Pan and Suga1 successfully com-

pared the numerical bouncing collisions with a model, based

on experimental results, proposed by Estrade et al.10 These

numerical simulations were performed with a level set method.

Sakakibara and Inamuro11 used a lattice Boltzmann method

to study different droplet size ratios and viscosities. It was

found that as the inertial forces increase, the mixing rate for the

smaller droplet increases while the mixing rate for the larger

droplet decreases. Georjon and Reitz12 developed a model for

droplet coalescence and stretching separation occurring at a

1070-6631/2017/29(6)/067102/13/$30.00 29, 067102-1 Published by AIP Publishing.
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FIG. 1. Collision outcomes: reflexive

separation for We = 100, B = 0, Ca

= 0.5 (left), coalescence for We = 50,

B = 0.4, Ca = 0.5 (center), and stretch-

ing separation for We = 70, B = 0.8, Ca

= 1 (right). The numbers correspond to

the dimensionless time (see main text).

high We. Munnannur and Reitz13 proposed a new model for

droplet collision outcomes with We numbers above 40. The

collision dynamics were predicted by Monte Carlo and discrete

particle methods. The spray code was adapted to track individ-

ual droplets and their collision events. In their work, Ashgriz

and Poo6 models were used as a theoretical basis for the deriva-

tion of the collision outcome boundaries. For the stretching

separation, they assumed that the dissipated energy is 30% of

the total initial kinetic energy since the estimation was giving

reasonable predictions. For the reflexive separation, 50% of

the initial total kinetic energy was assumed to be dissipated.

The final aim to develop a comprehensive and computation-

ally inexpensive droplet collision model was accomplished.

The volume of fluid (VOF) method was used by Passandideh-

Fard and Roohi14 for water with unequal drop sizes. With the

variation of the Reynolds (Re) number (note that all dimension-

less numbers mentioned in this Introduction will be defined in

Sec. II), it was found that the drop shape oscillation time and

its amplitude decrease with increasing viscosity. A detailed

analysis of the collision process predicted by VOF, with a

focus on ligament formation and dimensions, liquid-gas inter-

face region, and the creation of satellite droplets, is provided

by Nikolopoulos, Nikas, and Bergeles3 for head-on collisions

and by Nikolopoulos, Theodorakakos, and Bergeles15 for off-

center collisions. Dai and Schmidt16 conducted numerical sim-

ulations using a three dimensional moving mesh unstructured

finite volume method of head-on equal size droplet collisions.

They studied the effect of viscosity, finding that the dissipated

energy and the maximum deformation amplitude increase with

Re. Chen et al.17 performed an analysis of the energy budget

for one case of reflexive separation and one case of stretch-

ing separation. The proposed model for stretching separation,

based on the surface and kinetic energy at the droplet maxi-

mum deformation, does not take into account the influence of

droplet viscosity. More recently, Planchette et al.18 compared

experimental results with VOF simulations based and

developed on a collision dynamics model by combining energy

balances and Rayleigh-like criterion. The dynamic of the

merged drops and consequent ligament is modelled as a liquid

spring. Their study only considered the coalescence-reflexive

separation boundary, i.e., only nearly head-on collisions, for a

range of viscosity between 1 and 20 mPa s.

Compared to numerical studies, a larger number of exper-

imental works is devoted to droplet collisions. Brenn and

Frohn19 and Ashgriz and Givi20 were among the first who stud-

ied collisions of hydrocarbon droplets showing the correlation

of collision outcomes to the Weber number (We). An extensive

experimental campaign on binary water droplet collisions was

presented by Ashgriz and Poo6 for various impact conditions.

Beyond coalescence, two separating collision regimes have

been identified, reflexive and stretching separation, and theo-

retical models for their occurrence have been provided. Only

in the work of Jiang, Umemura, and Law21 a model which

explicitly includes the viscosity has been proposed. The exper-

iments were limited to a small range of viscosities, from 0.4 to

3.5 mPa s, for water and alkanes. They showed that the onset of

reflexive separation increases to a higher We as the liquid vis-

cosity to surface tension ratio increases. The model was later

refined with the Ohnesorge number (Oh) by Qian and Law.7

Furthermore Jiang, Umemura, and Law21 concluded that the

extent of viscous energy dissipation occurring during the ini-

tial stage of droplet deformation is independent of the droplet

viscosity. Willis and Orme22 and Willis and Orme23 conducted

an experimental investigation of viscous droplet collisions in

a vacuum environment to avoid aerodynamic effects during

collisions. Their results showed a proportional dependency of

energy dissipation on droplet viscosity, in contradiction with

Jiang, Umemura, and Law.21 In the work of Brenn, Valkovska,
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and Danov24 a model for the prediction of satellite formation

after the stretching separation of equal sized binary collision

was developed. Experiments with propanol showed that the

time to break the ligament between the two drops increases

with the We and decreases for the higher impact parameter.

They also found a dependency of the filament length on the

impact parameter. Brenn and Kolobaric25 extended the work

of Brenn, Valkovska, and Danov24 by including the effect of

viscosity. The model gave good predictions for highly vis-

cous liquids and high Wes but was not able to describe liquids

such as water and alcohol. Gotaas et al.26 studied experimen-

tally and numerically the influence of viscosity in a range

from 0.9 to 50 mPa s, analysing n-decane, mono-, di-, and

tri-ethylenglycole. The analysis for model development was

restricted to the boundary between coalescence and stretch-

ing separation. In general, it was observed that this boundary

shifts to a higher We for fluids with higher viscosities. Reflex-

ive separation was not identified in the experiments due to

a limitation on the amplitude modulation frequency of the

setup which affects the interdroplet distance. Through mod-

ification of the mutual distance between consecutive droplets,

it was possible to obtain data for the onset of reflexive sepa-

ration. Gotaas et al.26 confirmed that the results for the onset

of reflexive separation for viscous fluids provided by Jiang,

Umemura, and Law21 were not valid and a new empirical cor-

relation was presented. In the study of Kurt, Fritsching, and

Schulte,27 the collision behaviour for pure liquids and suspen-

sions was explored. The number of satellite droplets was found

to increase with viscosity. The opposite behaviour was noticed

for fluids with solid particles. Furthermore an instability in

the mono-dispersed droplet chain was identified for suspen-

sions. An extensive experimental investigation on the effect of

viscosity was carried out by Kuschel and Sommerfeld.28 For

the coalescence-stretching separation boundary, the model of

Ashgriz and Poo6 was considered inadequate by Kuschel and

Sommerfeld28 for capillary numbers (Cas) greater than 0.577.

To consider a large viscosity range, they applied a combina-

tion of Ashgriz and Poo6 and Jiang, Umemura, and Law21

models. The boundary of coalescence-reflexive separation was

observed only for small solid mass fractions. Sommerfeld

and Kuschel29 experimentally extended the previous work of

Kuschel and Sommerfeld28 considering different alcohols and

an oil. The derived models are, also in this case, a combina-

tion of Ashgriz and Poo6 and Jiang, Umemura, and Law21

models. Recently Krishnan and Loth30 collected all the avail-

able experimental data expressing empirical models for all

the collision outcome boundaries. They indicated the limi-

tations of these models due to experimental uncertainty and

important changes in collision conditions between different

experiments.

Numerical investigations have the advantage of capturing

all details of the internal motion of droplets during collision,

which is extremely difficult in small scale experiments. In this

paper, viscous dissipation energy, prevailing during impact

evolution, is numerically analysed.

Many studies focussed on collision boundaries based on

energy balances but a quantitative evaluation of the differ-

ent energy contributions for different collision outcomes is

still not available. In this work, we carry out an extensive

energy balance analysis for a large number of collisions includ-

ing coalescence, reflexive, and stretching separation to be

able to quantitatively describe the influence of the viscous

dissipation energy. The effect of viscous dissipation is then

translated to boundary models depending on non-dimensional

parameters.

II. THEORY

A. Droplet-droplet dimensionless collision parameters

To characterize the droplet-droplet collision outcome,

mostly collision maps are being used, where the non-

dimensional impact parameter is plotted versus the collision

Weber number. From previous studies by Qian and Law7

and Ko and Ryou,31 it is known that such maps based only

on these two dimensionless numbers are not universal but

specific to the droplet substance, in particular the droplet vis-

cosity. We therefore need to take into consideration at least

one other dimensionless number that characterizes the relative

importance of viscosity. The definitions of the dimensionless

parameters characterizing a collision of two droplets are given

below. The Weber number is the ratio between inertial forces

and surface tension

We =
ρdds |v2rel

|
σ

, (1)

where ρd is the droplet density, ds is the diameter of the small-

est droplet, vrel is the relative velocity, and σ is the surface

tension. The ratio between ds and the large droplet diame-

ter dl is the size ratio ∆. The impact parameter B is defined,

before the moment of impact, as the distance b between the

two droplet centres in the plane perpendicular to the relative

velocity vector (Fig. 2), normalized by the average droplet

diameter

B =
2b

ds + dl

. (2)

When B is equal to 0 it is a head-on collision and when it

is 1 a grazing collision.

FIG. 2. Droplet collisional system geometry.
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The Ohnesorge number represents the ratio of viscous

forces and the combined effect of inertial forces and surface

tension

Oh =
µd

√

ρddsσ
. (3)

The capillary number is another non-dimensional param-

eter accounting for viscosity, directly indicating the ratio of

viscous forces and surface tension

Ca =
µd |vrel |
σ

. (4)

Finally, some authors use the droplet Reynolds number,

defined as the ratio of the inertial and viscous forces

Re =
ρd |vrel |ds

µd

. (5)

It is important to note that next to the We, only one addi-

tional dimensionless number is needed to include the effect of

droplet viscosity. For example, when Ca is specified, Oh and

Re can be calculated according to

Oh = Ca/
√

We, (6)

Re = We/Ca. (7)

B. Current phenomenological models
for regime boundaries

For the critical We, by demarcating the change from coa-

lescence to reflexive separation for head-on collisions (B = 0),

Jiang, Umemura, and Law21 proposed a direct dependency on

the viscosity

Wec = C1

µd

σ
+ C2. (8)

Successively Qian and Law7 modified the viscosity to sur-

face tension ratio with the Oh and used two constants related to

geometrical parameters and the surface tension energy of the

deformed droplet. The model for the critical impact parameter

demarcating the boundary between coalescence and stretching

separation proposed by the same authors is

Bc =
1

We1/2

[
1 + k

µd

σ

(

ρdds

σ

)]
, (9)

where k is a constant. It takes into account that a portion of

the kinetic energy will dissipate because of the viscous flow

inside the droplets. The stretching energy available for sepa-

rating the merged droplets is less and the separation becomes

more difficult. It has to be realized that Jiang, Umemura, and

Law21 models are valid only for relatively low viscous liquid.

One of the problems with Eqs. (8) and (9) is that they contain

constants which are not dimensionless and therefore likely to

be dependent on the system under consideration. This trig-

gered other authors to develop theories or correlations which

are presented in the dimensionless form.

For low viscous liquids, Ashgriz and Poo6 proposed a

criterion for the boundary between coalescence and reflex-

ive separation according to which the effective kinetic energy

should be larger than 75% of the nominal surface energy of the

merged droplets. The transition for head-on collisions (B = 0)

between these regimes occurs at Wec = 19 when ∆ is 1. More

generally, for non-zero values of B, the model for the boundary

between reflexive separation and coalescence is given by

Wec = 3

[
7
(

1 + ∆3
)2/3
− 4

(

1 + ∆2
)

] ∆
(

1 + ∆3
)2

∆6ηs + ηl

, (10)

where

ηs = 2(1 − ξ)2
(

1 − ξ2
)1/2
− 1, (11)

ηl = 2(∆ − ξ)2
(

∆
2 − ξ2

)1/2
− ∆3, (12)

ξ =
1

2
B (1 + ∆) . (13)

For the boundary between stretching separation and coales-

cence, they found

Wec =

4
(

1 + ∆3
)2 [

3 (1 + ∆) (1 − B)
(

∆
3φs + φl

)]1/2

∆2
[(

1 + ∆3
)

−
(

1 − B2
) (

φs + ∆3φl

)] , (14)

where

φs =



1 − 1
4∆3 (2∆ − τ)2 (∆ + τ) h > 0.5ds

τ2

4∆3 (3∆ − τ) h < 0.5ds

, (15)

φl =



1 − 1
4
(2 − τ)2 (1 + τ) h > 0.5dl

τ2

4
(3 − τ) h < 0.5dl

, (16)

h =
1

2
(dl + ds) (1 − B) , (17)

τ = (1 − B)(1 + ∆). (18)

The main assumptions used in the derivation of the phe-

nomenological models are summarized in Table I.

A representation of these phenomenological models for

the regime boundaries is given in Fig. 3. For the Jiang,

Umemura, and Law21 model, the two constants obtained

experimentally and related to saccharose by Kuschel and

Sommerfeld28 were used. The Ashgriz and Poo6 models are

represented for ∆ = 1, which is also the value considered in

our simulations.

TABLE I. Main assumptions of phenomenological models.

Collision boundary Ashgriz and Poo6 model Jiang, Umemura, and Law21 model

Viscous energy dissipation neglected the Viscous energy dissipation included the

Reflexive separation reflexive criterion: Kinetic energy ≥ 75% surface energy We only for head-on collision (B = 0)

Viscous energy dissipation neglected the Viscous energy dissipation included the

Stretching separation stretching criterion: Kinetic energy ≥ surface energy inertial force = viscous force + surface tension
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FIG. 3. Phenomenological models for reflexive separation-coalescence

(RS-C) and stretching separation-coalescence (SS-C) boundaries from Ash-

griz and Poo6 and Jiang, Umemura, and Law21 for the case of two saccharose

solutions of different viscosity.

C. Viscous dissipation

The study of the viscous energy dissipation is fundamen-

tal to understand the collision dynamics of viscous droplets.

Almost all theoretical models or correlations that describe

the outcome for the collision boundary do not consider the

dissipation because they refer to water droplets where the vis-

cous forces are usually much less relevant than the surface

tension, i.e., the capillary number is usually small. In this

work, we will investigate cases where the viscous dissipation

is more important. To this end, similar to Jiang, Umemura,

and Law,21 we will explicitly measure the total amount of

the dissipated energy DE, which can be related to the viscous

dissipation rate VDR (units J/s) and (local) dissipation func-

tion Φ (units (J/s)/m3) through a time integral and a spatial

integral

DE(t) =

∫ t

0

VDR(t)dt, (19)

VDR(t) =

∫ ∫ ∫
Vd

ΦdV , (20)

Φ =
1

2
µc

∑

i

∑

j

(

∂ui

∂xj

+
∂uj

∂xi

)2

. (21)

The dissipation function Φ quantifies the local volumet-

ric viscous dissipation rate. Its volume integral, the viscous

energy dissipation rate VDR, has relatively high values from

the time of droplet impact to the time the two droplets reach

the maximum deformation. This time interval is not the same

for all collisions because the shape and volume depend on the

physical properties of the liquid, relative velocity, and impact

angle. In our analysis, in principle, also viscous dissipation

in the interstitial gas phase is considered because in Eq. (21)

the local value of the viscosity µc is used, as explained in

detail in Sec. III. Considering air as a continuous phase, we

found that in all cases, the viscous dissipation inside the liquid

droplets gives the dominant contribution to the overall viscous

dissipation rate.

III. NUMERICAL SIMULATIONS

A. VOF method

The VOF method is an interface capturing technique

which utilizes a color function F to indicate the fractional

amount of liquid in each cell. The main properties of the

method are described here. For an extensive and detailed

description of the numerical model, see Van Sint Annaland,

Deen, and Kuipers32 and Baltussen, Kuipers, and Deen.33 Our

VOF implementation is based on the continuity equation and

Navier-Stokes equation for incompressible flows

∇ · u = 0, (22)

∂

∂t
(ρu) = −∇ p − ∇ · ρuu + ∇ τ + ρg + Fσ , (23)

where Fσ represents the surface tension force. The velocity

field is continuous even across the interface and it is calcu-

lated with a staggered grid configuration, using a projection-

correction method. All terms in Eq. (23) are treated explicitly,

except for the diffusion term which is treated semi-explicitly.

The implicit part of the viscous diffusion term only depends

on the Cartesian velocity component that is solved, while the

remaining explicit terms are relatively small. The convective

term in the Navier-Stokes equation is discretized with a second

order flux-delimited Barton scheme, while for the diffusion

term, a second order central difference scheme is applied.

The tentative velocity field is corrected to satisfy Eq. (22).

Once the velocity field is calculated, a geometrical advec-

tion is applied to the phase fraction according to the following

equation:

DF

Dt
=

∂F

∂t
+ u · ∇F = 0. (24)

With the VOF method, both phases are allowed to reside in

the same computational cell. Depending on the F value in the

neighbouring computational cells, the orientation of the gas-

liquid interface is reconstructed. To preserve an accurate and

sharp interface, the interface is represented in planar segments

according to the Piecewise Linear Interface Calculation (PLIC)

algorithm of Youngs.34 The local density ρc and viscosity µc

are computed from the colour function F as follows:

ρc = F ρl + (1 − F)ρg, (25)

ρc

µc

= F
ρl

µl

+ (1 − F)
ρg

µg

, (26)

where l stands for the liquid and g for the gas.

The tensile force model is used in this work for the com-

putation of the surface tension term. This approach describes

the surface tension as a tensile force acting on the closed con-

tour defined by a surface element. Each neighbouring element

exerts a tensile force on a reference element because of their

relative orientation. A detailed description of the model is pro-

vided by Tryggvason et al.,35 within the framework of the Front

Tracking (FT) method, with modifications in the implementa-

tion for the VOF method as reported by Baltussen, Kuipers,

and Deen.33

A pressure jump correction based on the theory of

Dijkhuizen et al.36 is implemented to avoid instabilities due to
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pressure discontinuity in the gas-solid interface. The calcula-

tion of the pressure jump at the interface is coupled with the

surface tension by the following equation:

[pI − τ] · n = Fσ , (27)

where I is the unit tensor and n is the interface normal. The

viscous stress force components in the normal direction can

be neglected and Eq. (27) is reduced to

[p] =

∑

s Fσ,m · n
∑

s Sm

, (28)

where Fσ,m is the tensile force that the neighbouring ele-

ments exert on the element m and Sm is the surface area of the

element m.

The method is suitable to simulate coalescence and

breakup with no limitation in the formation of satellites. How-

ever, the bouncing regime cannot be physically predicted. VOF

models exhibit automatic coalescence when surfaces from

two elements are in close proximity because the interface

is reconstructed using data from the fixed grid. As a conse-

quence, a proper prediction of the delay in the rupture of the

drainage gaseous film between two droplets is not possible.

In Nobari, Jan, and Tryggvason2 and Pan, Law, and Zhou,37

the rupture of the interdrop film was prescribed artificially

on the basis of critical droplet shape deformation or experi-

mental observations. In the work of MacKay and Mason,38 a

critical gas film thickness of 10 nm was enforced as a coa-

lescence criterion. A multiple marker method with a coupled

level set volume of the fluid method was applied by Kwakkel,

Breugem, and Boersma39 to prevent numerical coalescence

when two droplets have an interface gap of one grid cell or

less. Whichever method is used, it is usually grid-size depen-

dent and very sensitive to the accuracy of the assumed film

drainage model. A change of the gas properties, in which

collision events occur, leads to changes in the bouncing proba-

bility. It was observed by Krishnan and Loth30 that an increase

in the gas density stabilizes the interdrop layer with a con-

sequent increase in the bouncing probability. Fortunately, it

was also affirmed that the boundaries between coalescence

and both types of separation are insensitive to the surround-

ing gas properties. We therefore apply (and limit) the current

VOF method to study the influence of viscous dissipation

on the transition from coalescence to (reflexive or stretching)

separation.

B. Simulation settings

A total number of 116 binary equal-sized drop collisions

have been simulated in the present work with a variation

of the We between 20 and 100 and B between 0 and 0.8.

Wes below 20 and impact parameters above 0.8 are excluded

a priori because a bouncing collision is expected under these

conditions. Three values of Ca, 0.1, 0.5 and 1, are considered

in this investigation. The lowest value of the Ca is important to

confirm the reflexive separation regime which occurs for rel-

atively low viscosity liquids such as water. Table II contains

the properties of the fluids used in the present simulations.

Our results will apply more generally to any viscous liquid

if we express the results in terms of dimensionless groups

TABLE II. Physical properties of the fluids used in this work.

Fluid ρ (kg/m3) µ (mPa s) σ (mN/m)

Air 1.25 18 × 10−3

Saccharose 40% 1177 6 75

Saccharose 60% 1287 57 77

(e.g., B, We, Ca) and dimensionless numerical quantities (e.g.,

number of grid cells per droplet diameter and the Courant

number).

For the simulations, free slip boundaries are set on all

six faces of the cubic computational domain. In order to con-

tain the deformed liquid droplets during the entire collision

process, the size of the computational domain is determined

according to the value of the Weber number and the impact

parameter. For head-on and near head-on collisions, a small

domain size, with a minimum of 3 droplet diameter d, was

sufficient. For higher B, the elongation of the drops stretching

apart from each other and the formation of multiple satellites

require an extension to a maximum of 7.5d. Initially, the two

droplets are positioned near the center of the domain along the

body diagonal. Depending on the impact parameter, the two

centres are shifted above and below the diagonal. The initial

gap between the droplets is 0.4 or 0.5 droplet radius. At the

beginning of the simulation, a uniform velocity is imposed on

each of the two liquid droplets in the diagonal direction while

the surrounding air is quiescent. The velocities are set in such a

way that relative collision velocities of 1–12 m/s are used. The

initial condition of the uniform velocity of the droplets and

zero initial velocity of the gas will lead to a sudden accelera-

tion of the gas, which in turn may result in unphysical transient

in the droplet surfaces. Fortunately, since the liquid/gas den-

sity ratio is equal or higher than 4800, the influence of the gas

phase acceleration on the droplet motion can be neglected. A

Cartesian uniform mesh system is used for all the present sim-

ulations. For all cases, the droplet diameter is resolved by 40

grid points. In the work of Padding et al.,40 a validation case

for a separation case with the formation of one satellite droplet

is shown for 45 grid points in the droplet diameter. These sim-

ulations, which use the same methodology as in the current

work, were compared to experiments from Qian and Law7

and simulations by Pan and Suga.1 We opt for a resolution of

dp/∆x = 40 for all our simulations as a compromise between

a good resolution, leading to reliable and consistent results,

and the very demanding computational time. Because a large

range of Wes and Cas are considered, the droplet diameters are

in a wide range from 20 µm to 2 mm, corresponding to a grid

size range of 0.5 µm–50 µm. The grid resolution was chosen

sufficiently small to have the grid-based Peclet number |u |∆x/ν,

with ν the kinematic viscosity of the liquid, smaller than 1.5

(must be smaller that 2 for stability). Moreover, the flow solver

time step∆t is chosen such that the Courant☞Friedrichs☞Lewy

(CFL) number |u|∆t/∆x is typically smaller than 0.2. We have

performed a grid dependency study for the extreme cases

(largest and smallest droplets) and confirmed that the velocity

and energy evolution after impact change by less than 10%

when increasing the grid resolution by a factor of 1.5 in each

direction.



067102-7 Finotello et al. Phys. Fluids 29, 067102 (2017)

For the serial simulations, we used a Workstation Z420

and the Cartesius cluster SURF Cooperative (Amsterdam).

The simulations with coalescence as the collision outcome had

a duration between 2 and 3 weeks. The separation cases had a

duration between 1 and 4 months, depending on the formation

of the ligament and its breakup.

IV. RESULTS

A. Energy analysis

We anticipated that the energy dissipation in a collision

attains high values from the time of the droplet impact to the

time when the two droplets reach the maximum deformation

where this interval depends on the physical properties of the

liquid, relative impact velocity, and impact angle. However,

we observed that the initial merging of the two droplets is

not the only process characterized by a high energy dissipa-

tion rate. Often a second or even a third peak appeared in the

viscous dissipation rate versus time. This occurred mostly for

collisions at the low Ca (low viscosity) which are character-

ized by a high deformation and relatively large changes in

the shape of the combined surface. For higher Cas, the vis-

cosity is sufficiently high to oppose the transversal inertial

forces that elongate the merged droplet so that a high degree

of droplet deformation does not appear. Deformation due to

the stretching of the merged droplets, with the formation of a

first liquid bridge and consecutive break-up in satellite droplets

is an observed phenomenon for all Cas but it does not lead to

high values of the viscous dissipation rate.

Figure 4 shows two collision evolutions for the same

We of 70 and the impact parameter B equal to 0.5 but a

different Ca, together with a surface contour of the viscous

dissipation function Φ, indicating regions of relatively high

viscous dissipation (in red). For the Ca 0.1, the deforma-

tion of the evolving droplet is evident and high values of

viscous dissipation result also after the initial merging pro-

cess, while for the Ca 1, the shape change is less relevant

and the viscous dissipation rate does not show major multiple

peaks.

The complexity in the spatial and temporal distribution

of the viscous dissipation function during a droplet-droplet

collision has important consequences for the validity of phe-

nomenological models which are based on simple geometrical

arguments. For example, the model of Jiang, Umemura, and

Law,21 which is based on the assumption that the energy is dis-

sipated predominantly in a lens-shaped domain after the first

impact when the drops merge, does not account for the total

amount of the viscous energy dissipated during the complete

collision.

We have tracked the energy budget of a droplet-droplet

collision from the moment the drops are separated until the

moment the collision outcome is evident. From energy con-

servation, the sum of the initial kinetic energy KEinit and

initial surface energy SEinit of the droplets must be equal to

the amount of the kinetic, surface, and dissipated energy at a

considered time

TE = KEinit + SEinit = KE(t) + SE(t) + DE(t), (29)

where TE is the total energy. KE(t) is calculated as the integral

over all cells in the domain (gas and liquid) of 1
2
ρv2. SE(t) is

calculated as σS where S is the sum of each element surface

belonging to the droplet interface. DE(t) is calculated from

Eq. (19).

In Fig. 5, the energy budget during collision for We = 20,

B = 0.7, and Ca = 0.1 is shown. The energies are normalized

by the total initial energy. The viscous dissipation rate VDR

is also shown to highlight the period of intense viscous dissi-

pation during the collision. In this case, the collision outcome

is coalescence. The dominant peak of the VDR curve corre-

sponds to the configuration 1 of the first impact, shown below

in Fig. 5, and consecutive merging with a sudden decrease

of the surface energy SE. After the peak, the viscous dissipa-

tion decreases and the coalesced drop returns to a spherical

shape.

The energy budget during collision for We = 90, B = 0.4,

and Ca = 1 is illustrated in Fig. 6. In this case, the collision

outcome is stretching separation with the formation of one

satellite droplet.

Note that in both cases, the loss due to viscous dissipation

is almost equal to the total amount of the initial kinetic energy.

It has to be confirmed that a collision can be considered com-

pleted when the residual kinetic energy is negligible. In our

FIG. 4. Collision evolution for We = 70, B = 0.5 at Ca = 0.1 (top) and Ca = 1 (bottom). Red color indicates the region of relatively high values of the viscous

dissipation function Φ.
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FIG. 5. Normalized energy budget of the kinetic energy KE, surface energy

SE, dissipated energy DE, and total energy TE for coalescence at We = 20,

B = 0.7, and Ca = 0.1. The viscous dissipation rate VDR is given by the red

line (note that an arbitrary vertical scaling was used). The time is normalized

by d/vrel .

work, the kinetic energy at the final time was always less than

10% of the total energy.

When the total normalized dissipated energy DE at the

final time tfin is plotted as a function of the impact parameter

B for various values of We and Ca, as displayed in Fig. 7, it

is evident that the assumption that a constant fraction of the

FIG. 6. Normalized energy budget of the kinetic energy KE, surface energy

SE, dissipated energy DE, total energy TE for stretching separation at

We = 90, B = 0.4, and Ca = 1. The viscous dissipation rate VDR is given

by the red line (note that an arbitrary vertical scaling was used). The time is

normalized by d/vrel .

energy is dissipated (independent of the viscosity), assumed

by Jiang, Umemura, and Law,21 is too simplistic. For head-on

collisions (B = 0), the normalized DE ranges from around 0.3

to 0.7. For higher impact parameters, the portion of the droplet

involved in the collision is smaller and, as a consequence, also

the fraction of the dissipated energy is smaller.

FIG. 7. The normalized viscous dissi-

pated energy of all collision outcomes

as a function of B for different Wes and

Cas: Ca 0.1 for continuous lines and

circles, Ca 0.5 for dashed lines and aster-

isks, Ca 1 for dotted lines and diamonds.

Different colors correspond to different

Wes, as indicated in the legend.
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FIG. 8. The normalized viscous dissi-

pated energy as a function of We for

different Bs and Cas: Ca 0.1 for contin-

uous lines and circles, Ca 0.5 for dashed

lines and asterisks, Ca 1 for dotted lines

and diamonds.

In Fig. 8, we investigate the dependence of this quantity on

the We, for different Cas and Bs. We find that, although there

is a weak dependence on We, the dependence on Ca is much

stronger. We will use this observation in the development of

an empirical correlation for collision outcome boundaries in

Secs. IV B and IV C. Similar to Ashgriz and Poo6 we found that

separate correlations need to be developed for the coalescence-

stretching separation boundary and the coalescence-separation

boundary.

In the case of the Ca 0.1 and We exceeding 60, the total

energy is observed to decrease over time, typically reducing

by 10% over the full duration of collision. We attribute this

decrease to the relatively high surface deformations occurring

under these conditions, leading to small interfacial structures

with high curvature. The surface forces occurring from such

small structures are not well captured by the tensile force

method for our current resolution of 40 cells per droplet diam-

eter. We investigated the grid resolution dependence for one

such extreme case (Ca = 0.1, We = 70) and found that the total

energy is better conserved with increasing resolution. How-

ever, these higher resolutions are extremely computationally

demanding, so we refrained to investigate all cases at such

high resolution. Fortunately, we also observed that the indi-

vidual energy contributions normalized by the total energy are

much less affected by grid resolution, so our results will still

be valid.

B. Stretching separation model

As mentioned before, because of energy conservation the

kinetic energy KEinit and the surface energy SEinit before

collision should be equal to the amount of the kinetic, sur-

face, and dissipated energy at any considered time. We will

consider a particular time, namely, the final time tfin, where

the collision outcome is evident, meaning that we can distin-

guish between coalescence, separation, and separation with the

formation of satellites, and any further dissipation only acts to

relax the deformed droplet shapes to spheres. For example, tfin

in Fig. 6 is the time corresponding to the configuration number

7 where the formation of the satellite is visible. At that time,

we have

KEinit + SEinit = KEfin + SEfin + DE(tfin). (30)

Near the boundary between coalescence and stretching

separation, the amount of the new surface created will be rela-

tively small because only a single small satellite droplet will be

created. Therefore, we assume that the surface energies before

collision and at time tfin are almost equal, SEinit ∼ SEfin. More-

over, we assume that the kinetic energy KEfin is close to zero

at time tfin. With these assumptions, the energy balance can be

rewritten
KEinit

TE
=

DE(tfin)

TE
. (31)

The right term is fitted using the measured total normal-

ized dissipated energy as shown in Fig. 7. The fit is made

under the assumption that the normalized dissipated energy

depends on the Ca and impact parameter B. The effect of We

is neglected because we observed that the dependence on We

is smaller than the dependence on B or Ca (although Fig. 8

demonstrates there is an influence especially for the Ca 1).

An example of the fitting procedure is illustrated in Fig. 9 for

stretching separation collisions at different Cas. We assume a
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FIG. 9. The normalized viscous dissi-

pated energy as a function of B for dif-

ferent Wes and Cas for stretching sep-

aration collisions and the derivation of

models. Ca 0.1 for continuous line and

circles, Ca 0.5 for dashed line and aster-

isks, Ca 1 for dotted line and diamonds.

simple linear relation between the impact parameter B and the

fraction of the dissipated energy DE/TE = a1(1 ☞ a2B), where

the two coefficients a1 and a2 of the linear relation are assumed

to depend on the capillary number.

The left term of Eq. (31) can be elaborated considering

pre-collision velocities of the small and large drops in the

center-of-mass frame of reference, Us =
vrel

1+∆3 and Ul =
∆

3vrel

1+∆3 ,

where vrel is the pre-collisional relative velocity between the

small and the large drop. Considering that the small and the

large drop have a mass ρdπ∆
3d3

l/6 and ρdπd3
l/6, respectively, and a

surface energy σπ∆2d2
l

and σπd2
l
, respectively, the large drop

diameter dl can be simplified in favour of the We.

The model for the stretching separation is therefore

expressed as a function of the We, impact parameter, size ratio,

and Ca
We∆2

12(1+∆3)(1+∆2)

We∆2

12(1+∆3)(1+∆2)
+ 1
= a1(1 − a2B), (32)

a1 =
21

22
(Ca

1/22), (33)

a2 =
1

1 + 1
4

Ca
. (34)

The coefficients a1 and a2 in Eqs. (33) and (34) were

obtained empirically by fitting the observed dependence on

Ca.

C. Reflexive separation model

In the case of head-on collisions, Jiang, Umemura, and

Law21 empirically determined that approximately 50% of the

initial kinetic energy is dissipated for water and hydrocarbon

droplets collisions. On the other hand, Qian and Law7 recog-

nized that the initial kinetic energy has to overcome the viscous

dissipation from the time of coalescence until the separation

of the ligament so that the initial kinetic energy lost in the

deformation processes is more than 50%. The losses predom-

inantly arise from the time when drops impinge head-on and

form a disk, the period when the disk contracts recovering

a spherical shape, and during the last stretching in a cylin-

der which forms an elongating ligament (which eventually

breaks). The theory was developed only for head-on collisions,

identifying the boundary between coalescence and reflexive

separation at B = 0. The model by Jiang, Umemura, and

Law21 for the onset was reformulated as a function of the

Oh, a geometrical parameter and a parameter correlated to

the variation of surface tension due to deformation. The total

number of results related to the reflexive separation regime

is not sufficient to derive a model based on the extent of

viscous energy dissipation. For this reason, the model for

the boundary between coalescence and reflexive separation

is expressed as a variation of the Ashgriz and Poo6 reflexive

separation model, with the inclusion of the effects of viscous

dissipation.

Two drops after collision will be in a state of combined

mass with no translational kinetic energy but only surface

energy and internal kinetic energy. Ashgriz and Poo6 analysed

reflexive separation introducing the concept of the effective

reflexive energy K0
r ,

K0
r = Ke + Kc − Ks, (35)
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where Kc is the kinetic energy generated by the portions of

drops which directly oppose each other and take part in the

collision event. Ks is the kinetic energy generated by stretch-

ing flows due to the portions of drops which do not directly

oppose each other. These flows are approximately perpendic-

ular to the reflexive flows. Ke is the second source of reflexive

action due to the surface-induced flows. When two drops

with zero initial velocities are brought into contact, the sur-

face tension effects will force the flow towards the contact

point. This phenomenon after the reflexive action will gener-

ate opposing flows in the combined mass. These flows are

generated by the excess surface energy and the difference

between the surface energy of the parent drops and that of

the combined mass. The effective reflexive energy K0
r can be

viewed as the amount of energy that is available for stretching

separation.

To extend the model to viscous liquids, we now make the

assumption that a fraction f of the effective reflexive separa-

tion K0
r is dissipated, i.e., the amount of the available effective

reflexive energy is (1 − f )K0
r .

Ashgriz and Poo6 postulated that for a nominal spherical

combined mass, when the effective kinetic energy is more than

75% of its nominal surface energy, reflexive separation will

occur. This criterion can be explicated in the following relation

(with our modification accounting for dissipation):

(1 − f )K0
r ≥ 0.75σπ(d3

s + d3
l
)
2/3

. (36)

The boundary between coalescence and reflexive sepa-

ration can be derived from Eq. (36) with an equal sign. By

comparing the predictions of this model with our direct numer-

ical simulation (DNS) data of the collision outcome, we found

(by fitting) the following empirical correlation for f :

f =
5 Ca

1 + 5 Ca
. (37)

The model for the boundary between coalescence and reflexive

separation is expressed then as

We =
12∆(1 + ∆3)

2

∆6ηs + ηl

[(1.75 − f )(1 + ∆3)
2
3 − (1 − f )(1 + ∆2)]

1 − f
. (38)

Here ηs and ηl are the geometric factors introduced by

Ashgriz and Poo,6 see Eqs. (11) and (12).

D. Collision outcome regime maps

Figure 10 shows the collision outcome regime maps

for constant Cas 0.1, 0.5, and 1. The proposed model for

the boundaries between coalescence-stretching separation,

Eq. (32), and coalescence-reflexive separation, Eq. (38), is

shown as black and green lines. The Ashgriz and Poo6 mod-

els for water are also provided with the purpose of show-

ing the influence of the viscosity on the collision outcomes.

Moreover, we show the Jiang, Umemura, and Law21 pre-

diction for the coalescence-stretching separation boundary,

which also includes the viscosity effects. Moving from Ca

0.1 to 1, the transitions between coalescence and both types

of separation shift to a higher We. This trend confirms the

general experimental observation of Kuschel and Sommer-

feld.28 Note that our empirically derived model describes the

boundaries more accurately than both aforementioned existing

models.

FIG. 10. Collision outcomes regimes

for Ca 0.1, 0.5, and 1 with coalescence-

stretching separation and coalescence-

reflexive separation boundary models.
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The models for stretching separation and reflexive sepa-

ration, expressed by We, B, ∆, and Ca [Fig. 11(a)], can also be

expressed as a function of We, B, ∆, and Oh [Fig. 11(b)]. The

Oh values used in Fig. 11(b) are derived from the averages of

the different Oh values corresponding to a We at a constant

Ca. For example, for Ca 0.5, we have Oh = 0.11 at We = 20

and Oh = 0.045 at We = 100, so we considered Oh = 0.075

to represent the model. The reflexive separation model at Oh

= 0.15 does not appear in Fig. 11(b) because the critical We

at B = 0 is equal to 310. Figure 11 shows that for both bound-

ary lines, when moving from a lower to higher Ca or Oh, the

boundaries shift towards a higher We promoting coalescence

as the collision outcome. The expression of the coalescence-

stretching separation model, for ∆ = 1, as a function of the

Oh is

B =

a3 −
We

We + 48

a3

1

1 + 1
4

Oh
√

We

, (39)

FIG. 11. Collision outcomes models (a) for the constant capillary number,

Eqs. (32) and (38), and (b) for the constant Ohnesorge number, Eqs. (39)

and (41).

a3 =
21

22
(Oh
√

We)
1/22

. (40)

For the coalescence-reflexive separation model a numeri-

cal solution was found for different Wes due to the complexity

of the model correlation

2
[
2(1 − B)2(1 − B2)

]
=

48

We

(1.75 − f )22/3 − 2(1 − f )

1 − f
, (41)

f =
5 Oh
√

We

1 + 5 Oh
√

We
. (42)

V. CONCLUSIONS

The effect of viscosity on binary equal-sized droplet col-

lision dynamic is investigated for a wide range of impacting

conditions. Weber numbers ranging from 20 to 100, impact

parameters B from 0 to 0.8, and capillary numbers from 0.1 to

1 were considered for our DNS study. The collision outcomes

of coalescence, stretching, and reflexive separation were cap-

tured while the model does not allow a study of the bouncing

regime. In general, the wide range of parameters introduces

a high complexity in the evolution of the interphase topol-

ogy and for each case a different profile of the viscous dis-

sipation rate during the collision process. Nevertheless, we

were able to summarize our observations in relatively simple

correlations.

The transition between coalescence and stretching separa-

tion was derived through an analysis of the viscous dissipation

relative to the total energy budget during the collision event.

The model, expressed in terms of the We, B,∆, and Ca, enables

a considerable and satisfactory prediction of the influence of

droplet viscosity on the boundary.

The coalescence-reflexive separation boundary is visible

only in the Ca 0.1 and partially in the Ca 0.5 regime maps

so that a complete energy analysis was not possible. A model

based on the Ashgriz and Poo6 theory for water was extended

to include the viscous effects. Although the empirical model is

crude, including a single parameter f (the dissipated fraction

of the effective reflexive energy), it has the benefit of predict-

ing not only the onset of reflexive separation at B = 0 but

also the complete boundary for B > 0. Due to computational

limitations, this study focused on a range of capillary num-

bers (Ca = 0.1–1) where most changes from a non-viscous

to a viscous liquid are expected to take place. Moreover,

we focused on equal sized droplets (∆ = 1). The empirical

correlations are therefore only strictly valid in this range of

parameter and should be checked outside this range in future

work.
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