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Effect of voids on the propagation of waves in an elastic layer 
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Abstract. The present paper investigates the propagation of waves in an elas- 
tic layer containing voids. Numerical calculations and discussions indicate that 
the velocity of the propagation of waves decreases due to the presence of voids 
in the material medium of the layer and the voids cause dispersion of the general 
waveform. 
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1. Introduction 

Recently, the theory of elasticity concerning the solid elastic material consisting of a dis- 
tribution of various pores, generally known as voids or vacuous pores, is receiving greater 
attention due to its theoretical and practical relevance. The general theory in this respect 
has been formulated by Nunziato and Cowin (Nunziato & Cowin 1979; Cowin & Nunziato 
1983). They also formulated the linearised version of the above theory (Cowin & Nunziato 
1983) where the voids have been included as an additional kinematic variable. This theory 
reduces to the classical theory of elasticity in the limiting case when the void-volume van- 
ishes. This new theory can play an important role in practical problems of geological and 
synthetic porous media where the classical theory is inadequate. Some basic theorems and 
a brief account of the theory on voids have been introduced by Iesan (1985) and Cowin 
(1984) respectively. Cowin (1984) presented the inter-relationship between this theory of 
voids and other theories of elasticity. The uniqueness theorem in the theory of elastic ma- 
terial with voids has been presented by Chandrasekharaiah (1987b). He investigated plane 
waves in a rotating elastic solid with voids (Chandrasekharaiah 1987c). The effect of sur- 
face stresses and voids on Rayleigh waves in an elastic medium was also investigated by 
him (Chandraseldaaraiah 1987c). Following the above theory, an attempt has been made in 
this paper to carry out a thorough investigation of the propagation of waves and vibrations 
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in an isotropic, homogeneous, elastic solid layer containing a distribution of voids. The 
authors believe that the problem in its present form has not been discussed so far. In the 
present investigation, the results obtained are in agreement with the corresponding classical 
results when the parameter for the void character of the material medium tends to be zero. 

2. Formulation of the problem and boundary conditions 

Let us introduce a rectangular Cartesian frame of reference OXlX2X3 in the middle plane 
of the elastic layer. We consider the effect of voids on the propagation of waves in an elastic 
layer of thickness 2h. The planes bounding the layer x3 = 4-h are supposed to be free of 
stresses. There exist plane waves moving with a constant velocity c in the positive direction 
of the x l axis. Both the longitudinal and transverse waves in the infinitely extended layer 
would be propagated. It is evident that the boundary surfaces of the elastic space lead to a 
distortion of the state of stress which also influences the velocity of propagation of elastic 
waves. Considering the nature of the problem we may take ul and u3 as the non-zero 
components of the displacement u at any point and they may be expressed in the form 

0e 0Q 
U 1 

t)X1 0X3' (1) 
0t, 0Q 

U3 = OX3 d- OXl 

where P and Q are displacement potentials which are functions of coordinates Xl, x3 and 
time t. The dynamical equations of motion (Nunziato & Cowin 1979; Cowin & Nurlziato 
1983; Chandrasekharaiah 1987a) are 

/.tV2u + (~ + ~,)VV • u + flVt~ ----- 02u/Ot 2, (2) 

0~ 
otV2~ - ~ - w - flY. u = pkO2~o/Ot 2. (3) 

Ot 

~0 is volume-fraction field; )~, # are Lain6 elastic constants, p is the mass density; or, fl, ~, w 
and k are new material constants characterizing the presence of voids. 

For a plane deformation parallel to the xlx3 plane we take 

U = (Ul, O, U3). (4) 

From (I), (2) and (4), we get the following differential equations 

V 1 02 ) /~ ~, 
a 2 ~  P = - ) ~ + 2 #  

(V 2 1 02 ) 
b2 0t 2 Q =O. 

Eliminating ~ from (3) and (5) we obtain [( 1:){ 1( ] 
V2-a~0-- ~ V 2 - ~  - 1 +  ~ - +  ~-~ +/~*V 2 V = 0 ,  

(5) 

(6) 

(7) 
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where 

a2 _ ~. + 2# b2 /z, or* ot o)* o) 
p p ,~' ~ '  

K* = pK t2 
, # *  = .. (8) 

o~(x + 21z) 

In presence of voids the stress tensor aij obeys the following law (Nunziato & Cowin 
1979) 

oij = ~.~ijUk,k + ]£(ui,j + uj,i) --~ #~ijdi). 

We seek solutions of (5) and (6) subject to the boundary conditions 

(9) 

a33 = o3t = 0, on planes x3 = +h.  (10) 

Following Nunziato & Cowin (1979) we take the boundary condition due to the void nature 
of the material medium as 

OdO/Ox3 = 0, for x3 = +h.  

Now using (1), (4), (5) in (9) we get 

r2_o , 1 
L Ox,Ox3 ' 

(10a) 

02Q a2P] lz 02P 
033 = 2# 2 + - - - -  

aXlOX3 Ox 2 b 20t  2" 
(11) 

3. M e t h o d  o f  s o l u t i o n  

To solve (6) and (7) we take P and Q in the following forms 

[e ,  Q] = [P(x3), Q(x3)] exp i(rlxl - Ct), (12) 

where ~ is the angular frequency which is a real constant in our problem and if(x3), Q(x3) 
are functions of x3, ~ is an unknown complex constant and i = ~/-L-~. 

Introducing (12) in (6) and (7) we get the following differential equations 

a ~ 2 2 ~ 2 ) ] [ ~ - ~ 3 - ~ 2 - ~ ( 1 - i ¢ w * - ¢  2K*) 

--r/2 P = 0 ,  

- ~  Q=O. 
d2Q 

(13) 

dx32 (14) 
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Solutions of  (13) and (14) are taken in the following form 

P = AI sinh rlmlx 3 q- A2 cosh rlmlx 3 -b A3 sinh rlm2x 3 q- A4 cosh r/m2x3, 

Q = A5 sinh rlm3x 3 q- A6 cosh r/m3x3, 

where m 1 and m2 are the roots with positive real parts of  the equation 

and 

( l - - m 2 )  2 - j r  2 - -  1 ] 
r/2ct, (1 - i(o9" -- ( 2 K * )  4- r/2/~* (1 - m  2) 

r 2 
r/2ot.(1 - i(o~* - ( 2 K * )  = 0, (15) 

2 1 
m3 = (1 - s )~. (16) 

A1, A2, A3, A4, As, A6 are arbitrary constants and 

( c c 
c = - ,  r = - ,  s = -  (17) 

)7 a b 

Applying the boundary conditions (10) and (10a) one obtains the following: 

2imlqlA1 + 2imlplA2 + 2im2q2A3 + 2im2P2A4 - (1 + m2)p3A5 

- (1 + m2)q3A6 = O, 

2 imlqlAl  - 2imlPlA2 + 2im2q2A3 - 2im2P2A4 + (1 + m2)p3A5 

- (1 q- m2)q3A6 = O, 

(2 - s2)plA1 + (2 - s2)qlA2 + (2 - s2)p2A3 + (2 - s2)q2A4 

+ 2im3q3A5 + 2im3P3A6 = O, 

(2 -- s2)plA1 - (2 - s2)qlA2 + (2 -- s2)p2A3 - (2 - s2)q2A4 

- 2im3q3A5 + 2im3P3A6 = O, 

mlnlqlA1 + mlnlPlA2 + m2n2q2A3 + m2n2P2A4 = O, 

mlnlqlA1 - mln lp l  A2 + m2n2q2A3 - m2n2P2A4 = 0, (18) 

where 

pj = sinh rlmjh, 

q j=coshomjh ,  j = 1 , 2 , 3 ,  

n l = m  2 + r  2 - 1 , .  

n2 = m 2 + r 2 - 1. 

Elimination of  the constants in (18) gives 

A=de t [a i j ]=O,  i, j = 1, 2, 3 ,4 ,  5 ,6 ,  

where 

a l l  =2imlq l ,  a12 = 2imlPl,  a13 = 2im2q2, a14 = 2im2P2, 

(19) 

(20) 
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a15 = - - ( 1  + m2)p3, a16 = - ( 1  + m2)q3, 

a21 =2imlql ,  a22 = --2imlPl, a23 = 2im2q2, a24 = -2im2P2, 

a25 ----- (1 4- m2)p3, a26 = --(1 4- m2)q3, 

a31 = ( 2 - -  s2 )p l ,  q32 = ( 2 - -  s2)ql ,  a33 = ( 2 - -  s2)p2, 

a34 = (2 -- s2)q2, a35 = 2im3q3, a36 = 2im3P3, 

a41 = (2 -- s2 )p l ,  a42 = --(2 -- s2)ql ,  a43 = (2 -- s2)p2, 

a44 = --(2 -- s2)q2, a45 = --2im3q3, a46 ---- 2im3P3, 

a51 =mlnlq l ,  a52 = mlnlPl,  a53 = m2n2q2, a54 = m2n2P2, 

a55 = 0 ,  a56 = O, 

a61 =mlnlq l ,  a62 = --mlnlPl, a63 = m2n2q2, a64 = --m2n2P2, 

a65 = 0 ,  a66 = O. 

Equation (20) represents the wave velocity equation for surface waves in an elastic layer 

with voids. This equation contains c and 1/as only unknown quantities and hence c can 

be expressed as a function of  1/ indicating the dispersive nature of  waves considered. 

This dispersive nature of  the general waveform arises due to the presence of  voids in the 

material medium. The above sixth-order determinant A can be expressed as the product 
o f  two third-order determinants as follows: 

where 

and 

A = A 1  .A2 ,  

A 1 = 

mini 
tanh rim lh tanh rim2h 0 

m2n2 

2ml tanh rimlh 2mE tanh rimEh (1 + m2) tanh rimah 

2 - s 2 2 - s 2 2m3 

A 2 = 

m i n i  
1 0 

m2n2 

2ml 2m2 1 + m32 

( 2 -  s2)tanhriml h ( 2 -  s2)tanhrim2 h 2m3 tanhrim3h 

Hence (20) implies either A 1 = 0 or A2 - -  0.  

We now discuss each of  the above cases separately as follows 

Case A 

where 

(A1 = 0): After simplification, A 1 ---- 0 gives 

mlnl tanh rimlh t~ 
A 1 = . A1, 

m2n2 tanh rim2h 

2ml tanh rimlh (1 + m 2) tanh rim3h 

2 - s 2 2m3 

(21) 

A~ = 
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A t =  
2rn2 tanh rlrn2h (1 + m 2) tanh rlm3h 

2 - s 2 2m3 

Case A1:  

2h, the hyperbolic tangents can be replaced by their arguments. So (21) becomes 

4R2V .2 - (2 - s2) 2 = 0, 

where 

If the length of the wave is large in comparison with the thickness of the layer 

(22) 

R 2 = 1 - r 2, R 2 = ( m l / R )  2, (23) 

R 2 ( m 2 / R ) 2 ,  V,2 2 2 2 = = R 1 R 2 / ( R  1 + R 2 -  1). 

Equation (22) determines the wave velocity of plane waves and corresponds to results 
similar to those obtained by Rayleigh (1889) and Lamb (1916) in an elastic layer containing 
some voids. When the medium is free from voids we have m 1 = R, R1 = 1, V* = 1 
and we get the classical results of Rayleigh (1889) and Lamb (1916). Thus we note that 
wave velocity due to Rayleigh and Lamb in presence of voids may be obtained from the 
corresponding classical form by replacing R by R V* where V* is given by (23). For small 
frequency waves we ignore higher degree terms in ( (Chandrasekharaiah 1987a). In view 
of this approximation and with the help of (8), (15) and (17)," (22) becomes 

4V~ - (2 - $2 )2  = 0 ,  (24) 

where 
1 

Vo = [1 - (c2 /a2(1  - N))]2 (25) 

N = a*fl* = fl2/[~(X + 2/~)1. (26) 
and 

Case  A2:  If the length of the wave is very small in comparison with the thickness of the 
layer 2h, we may assume that the ratio of hyperbolic tangents in (21) approaches unity 
and hence (21) becomes 

4 m 3 R R *  - (2 - s2) 2 = 0, (27) 

where 

2 1 
R = ( 1 - r  )2, R l = m l / R ,  

R2 = m 2 / R ,  R* = R1R2(R1  + R 2 ) / [ R  2 + R 2 + R I R 2  - 1]. (28) 

Equation (27) determines the velocity of Rayleigh surface waves in an elastic layer with 
voids. For small frequency waves, which play a great role in analysing motions caused by 
earthquakes and explosions, we neglect the higher degree terms in ( (Chandrasekharaiah 
1987a). With the use of this approximation equation (27) transforms to 

4m3R0 - (2 - s2) 2 = 0, (29) 

where 
1 

R0 = [1 - (c2/a2(1  - N))]2,  N -----/32/[~(~ + 2/x)]. (30) 
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Case B (A 2 = 0): On simplification, A2 = 0 gives 

4mlm3 (1 + m2)(2 2 tanh rlmlh 
-- - s ) t--a-a~rlm3h 

tanh rlm2h ] .  
- m2n2mln~ 4m2m3 - (1 + m2)(2 - s2) tanhr lm3hj  (31) 

Case B1: If the length of the wave is large in comparison with thickness of the layer, the 
hyperbolic tangents can be replaced by the first two terms of their expansions into series 
and hence (31) becomes 

4 m l m 3 - ( l + m 2 ) ( 2 - s 2 ) [ m l ( 1 - ½ r 1 2 h 2 m 2 ) / m 3 ( 1 - ~ o l  2h2m3)]2 

= (mln l /m2n2){4m2m3 - (1 + m2)(2 - s 2) 

1 2 2 2  × [m2(1 30 h m2) /m3(1 - l~2h2m2)]}. (32) 

Equation (32) may be regarded as the revised form of the classical result obtained by 
Rayleigh (1889) and Lamb (1916) in an elastic layer with voids. If the layer is free from 
voids (~  = 0), (32) simplifies to the form 

c2/b 2 = (4/3)r/2h2(1 - (b2/a2)) 

which is the classical result of Rayleigh (1889) and Lamb (1916). 

Case B2: If the length of the wave is small in comparison with the thickness of the layer, 
the ratio of hyperbolic tangents in (31) may be approximated to unity and (31) reduces 
to (27) which determines the velocity of Rayleigh surface waves in an elastic layer with 
voids. 

4. Numerical results 

From (24) we obtain 

1 
s --2{1 - 1/[(a2/b2)(1 - N)]}2. 

Table 1. Values ofs forcase A1. 

(a/b)  2 

N 2.3710 2.4758 2.5806 2.6854 2.7902 2.8950 2.9980 3.5 4.3 

0 1.5208 1.5441 1.5652 1.5844 1.6020 1.6181 1.6327 1.6903 1.7521 
0.2000 1.3752 1.4073 1.4361 1.4622 1.4859 1.5076 1.5272 1.6036 1.6844 
0.3000 1.2609 1.3008 1.3363 1.3682 1.3972 1.4234 1.4471 1.5386 1.6343 
0.4000 1.0901 1.1434 1.1902 1.2318 1.2691 1.3028 1.3328 1.4475 1.5651 
0.5000 0.7911 0.8768 0.9487 1.0104 1.0643 1.1120 1.1539 1.3093 1.4627 
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Table 2. Values of s for case A2. 

(a/b) 2 

N 2.3710 2.4758 2.5806 2.6854 2.7902 2.8950 2.9980 3.5 4.3 

() 0.8996 0.9042 0.9082 0.9116 0.9145 0.9171 0.9194 0.9274 0.9331 
0.2000 0.8627 0.8721 0.8799 0.8865 0.8920 0.8968 0.9009 0.9142 0.9254 
0.3000 0.8221 0.8375 0.8501 0.8605 0.8692 0.8766 0.8827 0.9030 0.9188 
0.4000 0.7406 0.7686 0.7913 0.8100 0.8254 0.8383 0.8489 0.8797 0.9079 
0.5000 0.5547 0.6115 0.6574 0.6951 0.7263 0.7524 0.7739 0.8406 0.8830 

Values of s for different values of (a/b) 2 and N for case A1 are shown in table 1. 
It is observed from table 1 that the wave velocity decreases with the increase of values 

of N for a particular value of (a/b) 2. We further note that for a particular value of N, the 
wave velocity increases with the increase of (a/b) 2. 

Again, from (29) one obtains 

S 6 - -  8S 4 + {24 - 16/[(aE/b2)(1 - N)]}s2-{16 - 16/[(a2/b2)(1-N)]}=O. 

Values o f s  for different values of N and (a/b) 2 for case A2 are shown in table 2. 
From (22), (27) and (32) we see that the wave velocity equation contains c and 1/as 

the only unknown quantities and hence c can be expressed as a function of 17 in each case 
indicating the dispersive nature of the waves. 

Table 2 reveals that the Rayleigh wave velocity in the presence of voids in an elastic 
layer decreases when the value of  N increases for a particular value of  (a/b) 2. Also for a 
particular value of N, the Rayleigh wave velocity increases with the increase of values of 
(a/b) 2. 

Similar computations may be made and conclusions drawn for the cases in B. 

5. Conclusions 

The most significant outcome of the paper is that voids modulate the surface waves by 
reducing their speed as well as by causing dispersion. 

The authors are very grateful to the reviewer for his/her valuable comments and suggestions 
towards the improvement of this paper. 
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