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Effect of Wet Tropospheric Path Delays on Estimation 

of Geodetic Baselines in the Gulf of California 

Using the Global Positioning System 

DAVID M. TRALLI, TIMOTHY H. DIXON, AND SCOTT A. STEPHENS • 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena 

Geodetic baseline measurements using the Global Positioning System (GPS) were acquired in the Gulf 

of California between Loreto and Cabo San Lucas in Baja California and Mazatlan on the mainland of 
Mexico. Tropospheric water vapor content was high during the experiment, typically yielding wet path 

delays in excess of 20 cm at zenith. Surface meteorological (SM) and water vapor radiometer (WVR) 
measurements were recorded at each site, providing independent means of calibrating the GPS signal for 
the wet tropospheric path delay. Residual wet delays at zenith are estimated as constants and also as 
first-order exponentially correlated stochastic processes. In addition, the entire wet zenith delay is esti- 
mated stochastically without prior calibration. The results of these approaches are compared in terms of 

day-to-day baseline repeatability and other system performance discriminants. Calibration with WVR 
data yields the best repeatabilities, of the order of 1-7.5 parts in 108 in the horizontal components of 350- 
to 650-km baselines with carrier phase data. Further improvement in these results occurs if combined 
carrier phase and pseudorange data are used. WVR data are important for direct characterization of the 
wet tropospheric path delays in humid regions. SM measurements, if used with a simple atmospheric 
model and estimation of residual zenith delays as constants, can introduce significant errors in baseline 
solutions. However, SM calibration and stochastic estimation of residual zenith wet delays may be 

adequate for precise estimation of GPS baselines, with a deterioration in repeatability of less than 1-2 cm 
compared to WVR calibration. Stochastic estimation of the entire zenith wet delay yields comparable 
repeatabilities, particularly if both carrier phase and pseudorange data are used. Similar analyses of the 
Owens Valley Radio Observatory-Mojave baseline in California, where zenith wet delays are factors of 
3-5 less, show no significant differences among the various tropospheric calibrations. 

1. INTRODUCTION 

The first geodetic baseline measurements across the Gulf of 

California (Mexico) using radio signals from the Global Posi- 

tioning System (GPS) satellites were acquired in November 

1985 through a cooperative effort by many institutions under 

the direction of the Jet Propulsion Laboratory (JPL), spon- 

sored by the National Aeronautics and Space Administration 

[Dixon et al., 1988]. The experiment was designed to assess 

the feasibility and potential accuracy of GPS-based geodesy in 

the gulf and to establish epoch measurements for part of a 
future network. Continued baseline measurements in the 

region will constrain kinematic models of this part of the 

Pacific-North America plate boundary. 

The sites occupied in this experiment include Loreto and 

Cabo San Lucas in Baja California and Mazatlan on the 

mainland of Mexico, in addition to several "fiducial" stations 

in the United States (Figure 1). Since this study reports on the 

first occupation in the Gulf of California, no GPS-based 

spreading rates can be determined. However, an assessment of 

the precision and potential accuracy of these geodetic 

measurements can be made. In this paper, strategies for esti- 

mating and correcting the effects of tropospheric water vapor 

are evaluated. Tropospheric path delays can be a major source 

of error in space-based geodetic techniques [Dravskikh and 

Finkelstein, 1979], such as very long baseline interferometry 

(VLBI) [e.g., Kroger et al., 1986; Herring, 1986; Treuhaft and 

Lanyi, 1987]. The gulf experiment is significant in that tropo- 

spheric water vapor content was high, with wet path delays 

regularly exceeding 20 cm at zenith. Water vapor radiometer 

•Now at University of Illinois, Urbana. 

Copyright 1988 by the American Geophysical Union. 

Paper number 7B2063. 
0148-0227/88/007 B- 2063 $05.00 

(WVR) measurements were taken at each site, providing an 

opportunity to evaluate their effectiveness for tropospheric ca- 

libration. If the troposphere represents the largest contribution 

to system noise, it is expected that WVRs will yield better 

results relative to alternate calibration techniques, based on 

experience with VLBI and covariance studies [Kroger et al., 

1986-1, as well as Seasat altimeter data, which yielded im- 

proved height measurements when microwave radiometers 

were used for calibration [Tapley et al., 1982]. 

In this study, the efficacy of WVR calibration of the wet 

tropospheric path delay is rigorously assessed relative to cali- 

bration based on surface meteorological (SM) measurements 

and to stochastic estimation of the entire wet delay without 

prior calibration. Once representative values for stochastic pa- 

rameters describing the wet troposphere in a given region and 

season are obtained, stochastic estimation may prove an eco- 

nomical alternative to the acquisition of WVR data in future 

GPS experiments or may allow greater flexibility in the dispo- 

sition of limited numbers of WVRs among several sites. The 

analyses are undertaken using only carrier phase data (inte- 

grated Doppler) and also using combined carrier phase and 

pseudorange data. Residual zenith wet path delays, after SM 

or WVR calibration, are estimated simultaneously with the 

geodetic parameters at each site as constant offsets or biases 

spanning the satellite observation periods and alternately as 

first-order exponentially correlated stochastic processes. Base- 

line repeatabilities, differences in the mean baseline solutions, 

consistency of the wet troposphere solutions, and comparison 

of solutions on a VLBI baseline in southern California pro- 

vide discriminants by which to evaluate the various wet tropo- 

spheric calibration schemes. 

2. TROPOSPHERIC PATH DELAY 

Background 

Radio wave propagation in the troposphere is nondisper- 

sive, and therefore path delays cannot be calibrated by obser- 
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Fig. 1. Approximate locations of sites occupied in this study. The 

Pacific-North America plate boundary is highly simplified. 

where S is the path length along L. AL includes propagation 

delays and a contribution due to refractive bending [Dodson, 

1986]. The S- G term is insignificant, about 1 cm or less at 

elevation angles greater than about 15 ø [Resch, 1984], al- 

though it could easily be modeled using ray-tracing tech- 

niques. Clearly, the effects of ray bending and horizontal inho- 

mogeneities are more important for slant paths; for observa- 

tions at zenith, S is equal to G. 

The atmosphere may be modeled simply as spherically sym- 

metric shells. Model refractivity profiles can be derived empiri- 

cally from radiosonde measurements of atmospheric parame- 

ters at various heights. The path delay itself may be expressed 

as an empirical function of meteorological measurements. For 

example, Smith and Weintraub [1953] give the refractivity N, 

defined by 

N- (n- 1) x 10 6 (3) 

as a function of total atmospheric pressure P (in millibars), 

atmospheric temperature T (in kelvins), and partial water 

vapor pressure e (in millibars): 

vations at different frequencies [e.g., Spilker, 1978]. The tropo- 

sphere contains about 80% of atmospheric mass and nearly 

all water vapor and clouds [Gill, 1982]. It is also characterized 

by convective heat transfer, implying the possibility of azi- 

muthal asymmetry. Estimation of tropospheric path delays 

involves either direct measurement, measurement of other pa- 

rameters which are related through simple physical or empiri- 

cal models, or the use of statistical or probabilistic models 

which fit the spatial and temporal characteristics of the tropo- 

sphere. A review of the various methods is given by Nahvi et 

al. [ 1986]. 

In this study, estimation of the GPS signal delay introduced 

by propagation through the wet troposphere is undertaken in 

three ways: (1) use of SM measurements combined with a 

simple atmospheric model, (2) direct measurements of atmo- 

spheric water vapor content using WVRs, and (3) stochastic 

estimation according to the apparent temporal behavior of the 

wet troposphere. Although statistical characterization of the 

troposphere could be based on historical data or previously 

developed models, the best indicator of short-term tropo- 

spheric behavior comes from actual WVR data recorded 

during the experiment, recognizing that this may be dependent 

on site, season, and weather. 

SurJ•tce meteorological measurements. Surface measure- 

ments of atmospheric temperature, barometric pressure, and 

relative humidity can be combined with simple atmospheric 

models to obtain estimates of the tropospheric path delay at 

zenith. The relations are briefly summarized in this section. 

The Fermat measured path length L e of a radio wave which 

propagates along a path L through the atmosphere is given by 

Le-- •L n(s) ds (1) 
where n(s) is the refractive index as a function of position s 

along the path L. L e is also known as the apparent electrical 

length. The difference between L e and the straight-line geo- 
metrical distance (slant range) G is the excess path length: 

AL = L e -- G: ;t, [n(s)- 1] ds + (S - G) (2) 

N = 77.6(P/T)+ 3.73 x 105(e/T 2) (4) 

This expression is considered accurate to 0.5% for frequencies 

less than 30 GHz in normal ranges of P, T, and relative 

humidity [Resch et al., 1985]. The two terms in equation (4) 

are usually referred to as the "dry" and "wet" components, 

respectively. Generally, about 90% of the total refractivity is 

attributable to the dry component. 

The wet troposphere component is less uniform both spa- 

tially and temporally relative to the dry component. It is also 

more likely to be mismodeled, since the distribution of liquid 

water and vapor is much less predictable than that of temper- 

ature and pressure [Chao, 1973]. Hogg et al. [1981] used 

radiosonde profiles to measure the short-term (2 min to 1 day) 

temporal spectrum of precipitable water vapor and showed 

that to within about 1% accuracy the wet path delay is 6.5 

times the total precipitable water vapor' however, the corre- 

lation with surface humidity is highly variable according to 

site and season [Reber and Swope, 1972]. 

The dry troposphere refractivity is integrated by assuming 

hydrostatic equilibrium combined with an equation of state 

for dry air which relates barometric pressure, temperature, and 

air density. The corresponding dry path delay is about 220- 

230 cm at zenith. Moisture effects on density are not usually 

significant [Gill, 1982]. However, horizontal gradients in the 

atmospheric temperature at a given elevation can cause gradi- 

ents in density even if the surface pressure is independent of 

position [Bender, 1983]. Horizontal gradients in the dry com- 

ponent may occur due to mountain lee winds but in general 

are thought to be small. Bender [1983] suggests that horizon- 

tal variations might be estimated if SM data are taken at 

various sites in the vicinity of the region of interest [see 

Gardner et al., 1978' Gibbs and Majer, 1981]. 

The dry troposphere model used in this study is a linear 

function of surface pressure, assuming static equilibrium and 

the ideal gas law. If these conditions are satisfied, the uncer- 

tainty in the zenith dry delay is +2 mm given a precision of 

+ 1 mbar in the surface barometric pressure measurement 

[Hopfield, 1971]. The zenith dry path delay Apzd, (in meters) is 
given by 

Apz.. = 2.276P o (5) 
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where Po is the surface pressure (in bars). In the absence of a 

pressure measurement a nominal pressure for a station at ele- 

vation h (in meters) above mean sea level is 

Po • 1.013e-h/u (6) 

where 1.013 bars is sea level pressure and H is the scale height 

with an adopted value of 7000 m [Bean and Dutton, 1966]. 

The expression used in this study for predicting the zenith 

wet delay Ap .... (in meters) from surface meteorological 
measurements is given by Chao [1974]: 

eo 1.23 e01.4-61 Ap .... = cz 1.63 + 2.053, (7) 
T•c 2 T•c 3 / 

where 7 is the temperature lapse rate (in kelvins per kilometer) 

and e o is the surface vapor pressure (in newtons per square 
meter) 

eo = 6.1(RH)10(,•T/(•+ r)) (8) 

T K-- T + 273.15 and RH is the (percent) surface relative 
humidity. The coefficient A equals 7.4475, and B equals 

234.7øC, with temperature T (in degrees Celsius) measured at 

the surface. The multiplicative scaling factor cr depends on site 
altitude and is related to the model derivation from radio- 

sonde balloon data [Chao, 1974], confining the wet refracti- 

vity profiles to the first 6.1-7.6 km of altitude, where most of 

the atmospheric water vapor is contained [Chao, 1973]. Sur- 

face measurements may not always be dependable, a point 

which will be discussed later. For example, inconsistencies in 

surface measurements of temperature or relative humidity can 

occur due to diurnal effects (especially differential ground 

heating) and the presence of a thin layer of high humidity near 

the surface. Thus there may not be a direct relation between 

total atmospheric water content and surface meterological 
measurements. 

Water vapor radiometers. Wet tropospheric path delays 
can also be estimated with microwave radiometer measure- 

ments. WYRs measure the microwave radiation emitted by 

water vapor in the atmosphere. The technique is described by 

Westwater [1967, 1978], Claflin et al. [1978], Wu [1979], 

Resch et al. [1982, 1985], Janssen [1985], Gary et al. [1985], 

and S. E. Robinson (unpublished manuscript, 1987). 

Briefly, a WYR yields measurements of the brightness tem- 

perature of the atmosphere, which can be related to the 

amount of precipitable vapor and liquid through the equation 

of radiative transfer [e.g., Chandrasekhar, 1950]. Measure- 

ments are taken near a spectral line at 22.235 GHz, corre- 

sponding to a resonance in the water molecule. Measurements 

at one or two additional frequencies are necessary to separate 

the effects of vapor and liquid and pressure broadening [e.g., 

Resch et al., 1985, Figure 6-1]. "Tipping curves" (elevation 

scans) are used to minimize instrumental error by calibrating 

with respect to the cosmic blackbody temperature and the 

expected elevation angle dependence of a homogeneous atmo- 

sphere [Claflin et al., 1978]. Equations are formulated to solve 

for the excess path delay due to water vapor and the integrat- 

ed liquid content in the atmosphere in terms of apparent 

brightness temperature [Resch, 1984; Resch et al., 1985]. 

WVR measurements may be made by copointing along the 

line of sight to the radio source (e.g., GPS satellite). Effects 

attributable to azimuthal variations in water vapor content 

are then incorporated into the measurements. More common- 

ly, however, repeated tipping curves are performed to obtain a 

good estimate of the average zenith delay, implicitly assuming 

azimuthal symmetry. Examples of azimuthal variations in tro- 

pospheric water content, which tend to map into horizontal 

baseline components [Bender, 1983], are given by Hatgrave 

and Shaw [1978] and Coco and Clynch [1982]. Nevertheless, 

azimuthal variations are typically small, less than 2 cm of path 

delay (M. A. Janssen, personal communication, 1987). The 

data from this experiment suggest negligible azimuthal vari- 
ation. 

The model which combines WVR and meteorological data 

to derive a wet tropospheric path delay is known as the "re- 

trieval algorithm." In the past, the retrieval algorithm has 

been based on radiosonde data which provide profiles of at- 

mospheric parameters that can be used to calibrate the micro- 

wave brightness temperature measurement. Since the path 

delay is a site-dependent function of temperature, pressure, 

and water vapor density, a statistical analysis of measured 

brightness temperatures versus radiosonde-measured delay is 

undertaken. There are uncertainties, however, due to limi- 

tations in the accuracy of the radiosonde sensors [Yang et al., 

1981]. The retrieval algorithm may also introduce systematic 
errors due to site and seasonal variations in addition to the 

instrument calibration uncertainties [Resch, 1984; Resch et al., 

1985; Beckman, 1985]. Covariance analyses of GPS system 

accuracy have suggested an improvement by up to a factor of 

2 with the use of WVR data, provided the instrumental noise 
is below about 0.5 cm. Absolute calibration of WVRs remains 

incomplete, but direct calibration by comparison with inde- 

pendent measurements is planned [Bender, 1983; Walter and 

Bender, 1987]. Without such calibration the expected uncer- 

tainty of a WVR-based zenith delay is about 1-2 cm (rms) 

[Davidson and Trask, 1985]. 

Stochastic modeling. Spatial and temporal water vapor 

fluctuations in the atmosphere, or equivalently variations in 

refractivity, can be modeled statistically or characterized by 

probabilistic laws. This approach was used by Treuhaft and 

Lanyi [1987] to estimate the effect of tropospheric delays in 

VLBI measurements. An advantage of a stochastic formu- 

lation is that spatial and temporal variations of water vapor 

can be described mathematically and to some extent predicted 

over varying spatial dimensions and time scales. 

In this study, the time-dependent behavior of the wet tropo- 

spheric path delay is modeled as a first-order Gauss-Markov 

process, which is defined by the differential equation 

dp/dt = -p(t)/rp + w(t) (9) 

where p is the model parameter corresponding to the zenith 

wet delay, rp is the correlation time of the process, and w(t) is 
a zero-mean white noise random variable of variance a,• 2 
given by the ensemble average of its square 

(w(t)w(t')) = rtw2rS(t- t') (10) 

where angle brackets denote the expectation value operator 

and g(t- t') is the Dirac delta function. The discrete solution 

to equation (9) is 

p(t + At) = mp(t) + (1 -- m2)l/2wp (11) 

where 

m = e (-at/•") (12) 

is a measure of the (exponential) time correlation between 

adjacent measurements. If zp is much shorter than the 
measurement interval At, adjacent measurements become un- 
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correlated. The steady state deviation of the process 
termined from 

is de- 

O'p 2--- •Wp 2) (13) 

in the limit of time t greater than the correlation time r•, and is 
related to the correlation time by 

ap 2 = rpaw2/2 (14) 

A derivation of these expressions is provided by Bierman 

[1977]. 

Modeled as a first-order Gauss-Markov stochastic process, 

the wet tropospheric path delay at zenith can be parame- 

terized by two values, r•, and a•,. The quantity rn may be 
obtained from the ensemble average of the covariance, 

(p(t + At)p(t))= (mp2(t)) + ((1 -m2)•/2p(t)w•,) (15a) 

(p(t + At)p(t))= m(p2(t)) (15b) 

given that (wv) equals zero. Equation (12) then allows rp to be 
expressed as a function of process measurements (through m) 

and measurement interval At. Similarly, an expression for the 

steady state deviation a v can be derived using equations (11) 
and (12). Values of r v obtained in this study (Table 2) range 
from 0.2 to 10 hours and in most cases are less than half the 

satellite observation periods, while measurement intervals are 

6 min. This indicates that steady state behavior will typically 

be evidenced within a given observation period (about 4-8 

hours) and that adjacent data points are highly correlated. In 

the limit of an infinite correlation time and infinite steady 

state variance a Markov process approaches a random walk, 

the stochastic model used in other studies [e.g., Lichten and 

Border, 1987]. The two formulations are nevertheless similar. 

In the formalism proposed here, the process p is the zenith 

wet tropospheric path delay, for example, derived from actual 

WVR measurements during satellite observation periods at 

each site or from residual zenith delays after calibration. Sto- 

chastic estimation is carried out simultaneously with esti- 

mation of the geodetic parameters of interest and yields the 

entire wet zenith delay (with no prior calibration) or a residual 

zenith delay (after SM or WVR calibration). In the former 

case, values of the stochastic parameters r v and a v may be 
obtained directly from the WVR-based zenith delays, while in 

the latter case, appropriate values are determined empirically. 

Both approaches are considered in this study. Stochastic esti- 

mation of residual delays has the advantage that potential 
errors in the calibration can be modeled. Stochastic estimation 

without prior calibration, using values of rp and a v which span 
those based on the WVR data, is also undertaken to assess the 

sensitivity of baseline solutions to these parameter values. To 

some extent this indicates the marginal utility of WVRs in 

terms of relative improvements over other calibration tech- 

niques in the absence of WVRs. 

Elevation An,qle Mappin•t Function 

Tropospheric path delays depend on the geometrical path 

length through the troposphere (equation (2)) and are there- 

fore functions of the elevation angle from the ground receiver 

to the radio source (e.g., GPS satellite). The estimate of the 

delay appropriate at a given elevation angle can be based on 

the value at zenith obtained from WVR or SM measurements, 

combined with simple atmospheric models [e.g., Chao, 1974]. 

Alternately, the WVR measurements and copointing retrieval 

algorithms can be used directly, as discussed above. 

The tropospheric delay rtrop is expressed as a linear combi- 
nation of the dry and wet components' 

'•trop = ,D zdryRdry(E) q- P ..... Rwct(E) (16) 

where p: terms are zenith delays and R is an elevation angle 

mapping function. E is the apparent elevation angle to the 

observed radio source. The analytic elevation angle mapping 

function used in this study is that developed by Lanyi [1984], 

which is accurate to the level of 1% at a 6 ø elevation angle. 

Others are given by Bertnan [1970], Saastatnoinen [1972], 

Chao [1973], and Davis et al. [1985]. The functional form of 

the tropospheric delay is 

rtrop '• F(E)/sin E (17) 

where F(E) is a function of wet and dry zenith delays and 

path-bending delays, atmospheric scale height and average 

surface temperature (which determines the scale height), mean 

molecular mass of dry air, and gravitational acceleration. The 

path delays are expressed as moments of wet and dry refracti- 

vities [Lanyi, 1984]. 

Errors in the mapping function, particularly at low eleva- 

tion angles, can be a major error source in estimating the path 

delay. Model inadequacies related to the assumption of no 

horizontal gradients in atmospheric parameters and errors in 
the actual surface measurements can also lead to incorrect 

path delay estimates [-Dodson, 1986]. Horizontal refractivity 

gradients cause deviations from the simple cosecant of the 

elevation angle scaling and may introduce up to 3-cm (rms) 

delay errors at elevation angles of about 10 ø [Gardner, 1976]. 

Horizontal pressure gradients and inadequacies in the dry 

troposphere mapping functions may result in a systematic 

error of about 1 cm in the vertical baseline component [David- 

son and Trask, 1985]. 

3. ESTIMATION OF GEODETIC PARAMETERS 

The application of G PS for high-precision geodesy is dis- 

cussed by Bossler et al. [1980], Rernondi [1985], Bock et al. 

[1986b], Beutler et al. [1987], Lichten and Border [1987], and 

others. A typical GPS experiment consists of a network of 

receivers at "mobile" and "fiducial" sites, with measurements 

recorded simultaneously during periods of mutual satellite 

visibility among all stations in the network, resulting in about 

4-8 hours of data per day for a span of a few days. The 

positions of the mobile sites are determined by multiparameter 

estimation methods. Fiducial sites (fixed) are used to define a 

terrestrial reference frame, as well as to constrain satellite or- 

bital parameters. One may also choose to treat a subset of the 

fiducial network as mobile sites for comparison of their lo- 
cation solutions to known VLBI-based values and thus obtain 

some measure of system performance and accuracy. In this 

study, baseline component solutions are obtained separately 

for each day of data and then combined to yield mean values. 

The scatter is the day-to-day repeatability and is a measure of 

precision. 

The analytical method employed here involves simulta- 

neous estimation of satellite trajectories, satellite and receiver 

clock biases, carrier phase ambiguities, mobile receiver posi- 

tions, and tropospheric delays at zenith (or residual zenith 

delays if independent calibration is available) and allows treat- 

ments of dynamic Earth model parameters and satellite radi- 

ation parameters. The GPS inferred positioning system 

(GIPSY) software is used, developed at JPL and described by 
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TABLE I. Wet Troposphere Calibrations Applied in This Study 

Scheme I Scheme II Scheme III 

SM plus model WVR no a priori calibration; 
entire wet zenith 

delay estimated as 

Calibration 

Residual zenith delay 
Case a, constant case a, constant 

/x, cm 20 2 unconstrained 

Case b, GMSP case b, GMSP 

•-p, hours 16 8 various •3,, % values 
%,, cm 10 2 
A, cm unconstrained 2 

SM, surface meteorology; WVR, water vapor radiometer; GMSP, Gauss-Markov stochastic 

process; •3,, correlation time; %,, steady state deviation; and/X, constant bias term a priori uncertainty. 
Carrier phase data: all calibration cases utilized (la, lb, lla, Ilb, Ilia, and lllb); Carrier phase and 
pseudorange data: cases lb, llb, and lllb only. 

Wu et al. [1986], Davidson et al. [1987], and Lichten and 

Border [1987]. The parameter estimation algorithm is a batch 

sequential U-D filter [Bierman, 1977; Thornton and Bierman, 

1980], similar to a Kalman filter [Kalman, 1960] but provid- 

ing greater numerical stability. Satellite and receiver clocks are 

modeled as white noise processes with a reference clock at a 

given receiver, equivalent to double differencing [e.g., Bock et 

al., 1986a]. A satellite elevation angle cutoff of 15 ø is used to 

minimize the effects of multipathing and atmospheric propa- 

gation errors. The data interval is 6 min after compression. 

Owing to the lengths of the baselines and the correspondingly 

large differential ionospheric effects, bias fixing is not attemp- 

ted; rather, the range ambiguity is estimated jointly with the 

other parameters. 

4. DATA 

The November 1985 GPS experiment spanned a 13-day 

period, 10 days of which yielded data for one or more of the 

sites at Loreto and Cabo San Lucas in Baja California and 

Mazatlan on the mainland of Mexico [Dixon et al., 1988]. 

Equipment problems at one or more sites limited high-quality 
data at all three sites in the Gulf of California to 6 consecutive 

days (November 18-23). Problems with both the carrier phase 

and pseudorange data at Loreto on November 20 and 21 were 

noted. Analyses of postfit residuals indicated larger rms scatter 

(by a factor of about 2) at this site, possibly related to calibra- 

tion problems in the receiver and increased data noise. In- 

clusion of these data yielded baseline solution outliers which 

dominated the repeatability regardless of tropospheric calibra- 
tion. Data from Loreto on November 20 and 21 are therefore 

not used in this study. Figure 1 shows the gulf sites relative to 

the entire U.S. fiducial network. The longest baseline across 

the gulf is approximately 650 km, from Loreto to Mazatlan; 

Lmeto to Cabo San Lucas is about 450 km; and Mazatlan to 

Cabo San Lucas is about 350 km. The fiducial network con- 

sists of international radio interferometric surveying (IRIS) 

sites (Haystack, Massachusetts; Fort Davis, Texas; and Rich- 

mond, Florida) and the Owens Valley Radio Observatory 

(OVRO) in California. GPS data are also used from a VLBI 

site at the Deep Space Network facility at Mojave, California, 
which is treated as a mobile site in order to establish a control 

baseline to OVRO and to provide some measure of system 

accuracy. Results for the gulf baselines based on various fidu- 

cial network configurations are reported by Dixon et al. 

[19883. 

Carrier phase data are used, along with pseudorange data 

from all sites where available (TI-4100 receivers). SERIES-X 

receivers were deployed at OVRO and Mojave, and only car- 

rier phase data were obtained at these sites. The time span of 

data collected at each gulf site is indicated in Table 2. Seven 

GPS satellites were available (NAVSTARS 3, 4, 6, 8, 9, 10, 11), 

although the amount of data from satellite 11 is small. The 
WVR used at Cabo San Lucas is a new three-channel model 

(J-01) [Janssen, 1985], while the WVRs at the other two gulf 

sites are older two-channel units (R0-4 [Resch et al., 1985] at 

Mazatlan and SCAM at Loreto). All sites recorded SM data 

consisting of temperature, barometeric pressure, and relative 

humidity at approximately half-hour intervals. No WVR data 

were available for Mazatlan on two of the days. In addition, 

review of the field operator logs indicated rain on November 

22 at Cabo San Lucas and light rain on November 21 at Cabo 

San Lucas, on November 22 at Mazatlan, and on November 

23 at Loreto. Liquid water in the atmosphere hampers WVR 

performance. In addition, a thin film of water can form near 
the horn of the WVR antenna. Unless this film is removed 

prior to a measurement, the WVR data are degraded as the 

presence of near-field liquid water contributes significant ther- 

mal radiation into the measurement beam. Initially, these 

WVR data were used and yielded inconsistencies in wet tropo- 

sphere and baseline solutions which suggested erroneous cali- 

brations. Although WVR calibrations for several site days 

were suspect, only the WVR data on November 22 at Cabo 

San Lucas and on November 23 at Loreto introduced signifi- 
cant variation from otherwise normal distributions of baseline 

solutions, which are particularly sensitive to outliers given the 

small population size. WVR data from these two site days are 
therefore not used. 

5. CALIBRATION OF WET TROPOSPHERIC PATH DELAYS 

Three approaches to calibrating the GPS signal for wet 

tropospheric path delays are presented (summarized in Table 

1): scheme I, calibration with SM data combined with a 

simple atmospheric model [e.g., Chao, 1974]; scheme II, cali- 

bration with WVR data; and scheme III, no a priori calibra- 

tion, but estimation of the entire wet zenith delay along with 

the geodetic parameters of interest. In schemes I and II, re- 

sidual zenith delays are estimated for case a as constant over 

the satellite observation period at each station with a given a 

priori uncertainty, or for case b as a first-order exponentially 
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TABLE 2. Correlation Times rp and Steady State Deviations •, 
Obtained from WVR Tipping Curves Over Indicated Data Spans 

for Gulf of California Sites 

Data Span, 

Day hours rp, hours •,, cm 

Loreto 

18 5.8 9.57 1.72 

19 6.5 2.96 0.78 

20 6.1 2.81 0.51 

21 6.5 5.75 1.09 

22 1.9 0.29 0.22 

23 6.9 0.54 0.36 

Mazatlan 

18 4.5 7.25 !.73 

19 6.5 6.55 2.10 

20 6.2 0.60 0.91 

21 6.4 0.25 0.53 

22 6.2 1.28 1.40 

23 5.9 0.29 0.43 

Cabo San Lucas 

18 8.4 5.81 0.76 

19 7.2 0.19 0.34 

20 8.5 1.17 0.95 

21 8.4 0.55 0.38 

22 7.7 0.00 0.95 

23 7.7 2.08 0.83 

Values for Mazatlan on days 18 and 19 are determined from SM 

measurements and the Chao [1974] atmospheric model. A rp value 
of zero indicates a negative correlation (see equation (15)). 

correlated (Gauss-Markov) stochastic process with character- 

istic correlation times z, and steady state deviations o-, deter- 
mined empirically. For scheme III the entire wet zenith delay 
is estimated for case a as a constant or for case b as a sto- 

chastic process as described above. Various z, and o-, values 
are tested for case IIIb, in part derived from the WVR data 

(Table 2). On site days for which there are no WVR data, or if 

the WVR data appeared to be invalid as noted above, calibra- 
tion for scheme II is instead based on SM measurements with 

subsequent stochastic estimation of the residual zenith delay 

(as in case lb). 
All six cases described above are tested with the carrier 

phase data type. In addition, a subset of these (the more pre- 

cise stochastic cases lb, lib, and IIIb) are tested using the 

more robust combination of carrier phase and pseudorange 

data. Note that modeling the zenith delay as a zero-mean 

Markov-type stochastic process requires joint estimation of a 
constant offset term. This allows some assessment of differ- 

ences in repeatability due solely to modeling tropospheric fluc- 

tuations by comparing case a to case b solutions. For sim- 

plicity, the various calibration schemes are applied only to the 

three gulf sites, since these have the largest wet path delays. 

Tropospheric calibration at the remaining sites uses WVRs if 

available (case IIa) (i.e., at OVRO and Mojave) or SM 

measurements and the Chao [1974] atmospheric model (case 

la). However, in an attempt to achieve the best possible preci- 

sion, one network analysis is performed with optimized tropo- 

spheric calibration at all sites with requisite stochastic param- 

eters determined empirically from initial analyses. 

Since the functional form of the mapping function for both 

wet and dry tropospheric components is similar it is difficult 

to estimate simultaneously both wet and dry zenith path 

delays. Therefore only the zenith wet delay is estimated; the 

dry tropospheric calibrati.on is assumed correct, considered 

only as a potential systematic error at the level of 1 cm [David- 

son and Trask, 1985]. The time scale of dry variations tends to 

be much longer and of the order of one-third the wet variation 

[Treuhaft and Lanyi, 1987]. For 'this experiment the wet 

troposphere at the gulf sites is also very stable over periods of 
hours. 

Except for instrumental uncertainties, errors associated with 

the retrieval algorithm, and potential azimuthal asymmetries, 

the WVR data yield a direct estimate of the delay due to 

tropospheric water vapor. Stochastic estimation of a residual 

delay after WVR calibration (case IIb) would ideally include 

error models for the WVR. This is not attempted specifically 

in this study. The values of the stochastic parameters used for 

estimation of residual zenith delays after WVR calibration 

(case IIb), namely, 8-hour correlation time and 2-cm steady 

state deviation (Table 1), are determined empirically and are 
consistent with the level of fluctuations in WVR-based zenith 

delays. Stochastic estimation of zenith residuals after SM cali- 

bration (case Ib) similarly should incorporate errors in the 

empirical atmospheric models. However, as demonstrated in 

the following section, atmospheric models constrained only by 

SM measurements are intrinsically not very dependable due to 

both highly localized atmospheric variations and instrumental 

uncertainties, neither of which is amenable to accurate quanti- 
tative characterization at this time. A correlation time of 16 

hours and a steady state deviation of 10 cm for SM calibrated 

data (Table 1) are also empirically determined and are repre- 
sentative of the scatter noted in the SM data. Correlation 

times of 8 and 24 hours and steady state deviations of 6 and 
20 cm were also tested. 

6. DISCUSSION OF RESULTS 

Assessment of Tropospheric Calibrations for the Gulf Sites 

A comparison of the repeatabilities obtained for the three 

baselines in the Gulf of California using the various wet tropo- 

spheric calibration methods (Table 1) is shown in Figure 2 

using carrier phase data only and in Figure 7 with combined 

carrier phase and pseudorange data. The histograms show the 

root-mean-square (rms) scatter about the means of the compo- 

nents obtained from each of the single-day solutions, weighted 

by the corresponding standard errors. Note that baseline 

length is redundant with the horizontal components (east and 

north) and that for the mainly east-west Mazatlan to Cabo 

San Lucas baseline the east and length components are essen- 

tially identical. The largest uncertainty is typically in the east 

component when only carrier phase data are used. Several 

geometrical considerations, including the mainly north-south 

satellite ground tracks and satellite visibility and distribution, 

account for this lack of longitudinal resolving power. How- 

ever, when pseudorange data are combined with carrier phase 

data, repeatability in the east component is greatly improved 

by constraining system clocks and range ambiguities. The ver- 

tical component repeatability then becomes the most weakly 

resolved but is always better than 1 part in 107 (Figure 7). 

Figure 2 shows that with carrier phase data only baseline 

repeatability is poor when SM data are used for calibration 

and the residual wet delay at zenith is estimated simply as a 

constant (case Ia). A significant improvement in horizontal 

baseline repeatability occurs if the residual wet delay is esti- 

mated instead as an exponentially correlated stochastic pro- 

cess (case Ib). Curiously, baseline repeatabilities, when the 

entire wet delay is estimated as a constant without prior cali- 
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Fig. 2. Histogram of baseline component (E, N, V) and length (L) 
repeatabilities for the three Gulf of California baselines determined 
from the standard deviation about the weighted mean of each of the 
solutions. Only carrier phase data are used. The wet troposoheric 
calibration schemes are outlined in Table 1. 

bration (case IIIa), are better than in case Ia. This indicates 

that simple SM calibration actually introduces errors into the 
baseline estimates. The effect of these SM errors is minimized 

if the residual zenith delay is allowed to be time varying (case 

Ib). Stochastic estimation of the entire wet zenith delay yields 

similarly good results (case IIIb). Some explanation for this 
behavior comes from the actual wet delays, as estimated from 

SM and WYR calibration. Figure 3a shows a greater level of 

fluctuations in SM-based zenith delays relative to WYR-based 

delays. In addition, Figure 3b indicates a significant difference 
between the two wet zenith delays. This offset may be attribu- 

table to the fact that all three gulf sites lie on the coast and 

marine layer conditions were present in the early morning 

(local time). A marine layer tends to homogenize temperature 
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Fig. 3a. Wet tropospheric path delay at zenith for Mazatlan on 
November 23 based on WVR tipping curves (triangles) and SM 
measurements in conjunction with the Chao [1974] atmospheric 
model (circles). Error bars on the tipping curve are about _+2 cm, 
reflecting a known 4.5 ø offset in the WVR beam direction at this site 
(S. E. Robinson, personal communication, 1987). Note the stable 
nature of the WVR-based zenith delays. Dry tropospheric path delays 
at zenith are also shown. 

differences, and the troposphere behaves very stably. There 
will be a lack of correlation between surface measurements 

and tropospheric water content if simple atmospheric models 
are used which treat the temperature profile as linearly de- 

creasing with altitude [e.g., Chao, 1973]. Since a marine layer 
creates an inversion in the actual temperature profile [see 

Dixon et al., 1988], zenith wet path delays based only on SM 
measurements can be in error by large amounts. Estimation of 

only a constant residual zenith delay does not adequately ac- 
count for these errors in simple SM-based calibrations. 

The baseline repeatabilities when only carrier phase data 
are used appear to be optimized with WYR calibration and 
stochastic estimation of residual zenith wet path delays (case 

IIb). The differences with case Ib are not dramatic, the largest 
being an improvement by 2.2-3.3 parts in 108 in the east 
component repeatabilities of baselines involving Cabo San 
Lucas and by 3.9 parts in 108 in the vertical repeatability of 
the Loreto to Cabo San Lucas baseline; the Loreto to Mazat- 

lan east repeatabilities actually become worse by about 1 part 
in 108. The relatively greater improvement with WYR calibra- 
tion for baselines involving Cabo San Lucas may reflect the 
use of the newer, three-channel J-01 WYR [Janssen, 1985] at 

this site. The day-to-day east component repeatabilities for 
case IIb are 4.5 parts in 108 to 1.1 parts in 107 for the three 
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Fig. 3b. Wet tropospheric path delay at zenith for Loreto on No- 
vember 18 (see caption Figure 3a). Note the stable nature of the 
WVR-based zenith delays. The offset between the SM- and WVR- 
based zenith delays is attributable to marine layer conditions (see 
text). Dry tropospheric path delays at zenith are also shown. 
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Fig. 4. Histogram of baseline component (E, N, V) and length (L) 
repeatabilities for case IIIb, and stochastic estimation of wet tropo- 

spheric zenith delay without prior calibration for values of % and % 
of 1 and 10 hours and 1 and 5 cm, respectively. Only carrier phase 
data are used. Arrows indicate repeatabilities obtained with stochastic 
parameter values determined from actual WVR-based zenith delays 
(Table 2 and Figure 2). 

baselines, while north repeatabilities are 1.0-2.6 parts in 10 8. 
Vertical component repeatabilities range from 5.7 to 7.0 parts 
in 10 8. 

The agreement between cases IIIa and IIIb is surprising but 

consistent with the small magnitude (generally less than 2 cm 

and often less than 1 cm) of the steady state deviations ob- 

tained from the WVR data (Table 2). Comparing the results 

from these two cases gives an indication of the improvement 

attributable to stochastic modeling. In order to test the sensi- 

tivity of case IIIb to the values of the stochastic parameters, 

baseline solutions were obtained for values of % (1 and 10 
hours) and % (1 and 5 cm) which span those obtained from 
the WVR data. These are compared to solutions using values 

listed in Table 2 (Figure 4). Although this is not an exhaustive 

analysis, it appears that baseline repeatabilities are more sensi- 

tive to the choice of steady state deviation (%) than corre- 
lation time (%) for the range of tested values. The relatively 
small values of % characterizing the tropospheric delay during 
this experiment place rather tight constraints on the stochastic 

models. It is clear that there is some benefit to having the 

WVR data even if the troposphere is modeled stochastically, 

because optimum values of % and % thereby can be obtained. 
What is important, and at this point unknown, is the long- 

term validity of such a stochastic parameterization for a given 
site. 

The consistency of the various tropospheric calibrations can 

be investigated by considering the daily mean zenith wet tro- 

pospheric delay solutions. These are plotted in Figure 5 for 

each gulf site over the time span of the experiment. Generally, 

there is good agreement, with values tending to the mean 

zenith delays determined from WVR rather than SM calibra- 

tion. Although mean solutions for Cabo San Lucas on No- 

vember 20 are distinctly different (about 8 cm) for cases Ia and 

Ib, residual zenith delays estimated stochastically (Ib) show 

variations of more than + 5 cm (Figure 6), indicating that 

modeling of fluctuations can change significantly the estimate 
of the constant term. The uncertainties in the estimated con- 
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Fig. 5. Mean zenith wet tropospheric delay solutions for each gulf 
site according to the indicated calibration schemes using only carrier 
phase data. Mean zenith delays from case IIIb are omitted for clarity 
but fall within 1 cm of the case Ilia values. For Loreto on November 

20 and 21 (not used in the analyses), SM- and WVR-based mean 
zenith delays are shown for continuity. 
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Fig. 6. Stochastic estimation solution of residual zenith wet tro- 
pospheric path delay at Cabo San Lucas on November 20 using case 
lb, SM calibration, and stochastic estimation of residual wet zenith 

delay. Values are superimposed on a constant equal to the sum of the 
mean of the SM calibration (26.28 cm) and the estimated offset 

( -- 13.57 cm). 

stant terms are 1-2 cm in all cases except cases lb and lib 

where the uncertainties are about 10 cm, comparable to the 

steady state deviations. While Figure 5 shows that wet zenith 

delays increased over the 6 days of the experiment, the tropo- 

sphere was stable over any given 4- to 8-hour satellite obser- 

vation period. 

Figure 7 shows the baseline component repeatabilities for 
solutions based on combined carrier phase and pseudorange 

data, with SM and WVR calibration and stochastic estimation 

of residual zenith wet delays (cases Ib and IIb, respectively,) 
and with stochastic estimation of the entire wet zenith delay 

without prior calibration (case IIIb). Pseudorange data better 
define system timing offsets and constrain carrier phase range 

ambiguities. Uncertainties in these parameters tend to map 

mainly into the east baseline component. Clock errors are 

reflected in the east component due to the geometry of satel- 

lite trajectories and estimation of station positions on a rotat- 

ing Earth. With the addition of pseudorange data the east 

component repeatabilities improve by up to a factor of 5 rela- 
tive to values using only carrier phase data. For the Loreto to 

Cabo San Lucas baseline, east repeatability improves from 7.5 

to 2 parts in 108 (case IIb) and from 1.4 parts in 107 to 2.8 
parts in 108 (case IIIb); for the Mazatlan to Cabo San Lucas 
baseline, improvement is from 1.1 parts in 107 to 3.8 parts in 
108 (case IIb) and from 1.55 parts in 107 to 3.8 parts in 108 
(case IIIb). The Loreto to Mazatlan baseline shows no change. 

Case Ib shows similar improvements, except for Mazatlan to 

Cabo San Lucas where the east repeatability improves by 

almost a factor of 2 (from 1.45 parts in 107 to 8.4 parts in 108). 
North component repeatabilities show improvements by fac- 
tors of 1.5-2 for the Loreto to Cabo San Lucas and Mazatlan 

to Cabo San Lucas baselines for cases Ib and IIb. For case IIb 

the north repeatability for Loreto to Mazatlan improves by a 

factor of about 3, but the vertical gets slightly worse. North 

component repeatabilities for case IIIb show up to a factor of 
2 improvement. 

The vertical component becomes the most poorly deter- 
mined when combined carrier phase and pseudorange data 

are used (Figure 7). This is similar to high-precision VLBI- 

determined baselines, where tropospheric effects are also the 

dominant error source and map mainly into the vertical com- 

ponent [e.g., Kroger et al., 1986]. If only carrier phase data are 

used, east repeatabilities are most poorly determined (Figure 

2). Wet tropospheric calibration based on WVR data and esti- 

mation of a residual zenith delay as a correlated stochastic 

process {case IIb) improves the vertical repeatabilities by a few 

parts in 108, or about a factor of 2 for the 450 km Loreto to 

Cabo San Lucas baseline, compared to calibration based on 

SM (case Ib), and only slightly for the Loreto to Mazatlan 

baseline (650 km). The improvements in repeatability attribu- 

table to WVR calibration appear significant for both the east 

and vertical baseline components. Although the east repeata- 

bilities are improved overall with the addition of pseudorange 
data, the relative differences between WVR and SM calibra- 

tion generally remain the same. However, with combined car- 

rier phase and pseudorange data, stochastic estimation of the 

entire wet zenith delay without prior calibration (case IIIb) 

yields vertical component repeatabilities which are better than 
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text). 

those obtained with WVR calibration (by factors of about 1.5 
and 2 for the Loreto to Mazatlan and Loreto to Cabo San 

Lucas baselines, respectively). Horizontal repeatabilities are 

roughly equivalent. Given the high level of precision of a few 

parts in 108 achievable with combined carrier phase and pseu- 

dorange data [-e.g., Lichten and Border, 1987-1, it may be that 
errors in the WVR calibration and instrumental noise become 

the dominant error sources. Further stochastic analyses of re- 

sidual delays may allow these errors to be modeled. 

Throughout the study, data below 15 ø in satellite elevation 

angle have been excluded, as noted previously. GPS measure- 

ments to lower elevations may provide better estimates of 

tropospheric delays because of greater sensitivity to the eleva- 

tion angle function (i.e., longer propagation paths through the 

troposphere), as suggested by experience with VLBI. To assess 

this, a subset of baseline solutions using only carrier phase 

data were obtained including data down to a 5 ø elevation 

angle. Results based only on cases Ia and IIIb (Table 1) indi- 

cated that although uncertainties (standard errors) in baseline 

components decrease by a few millimeters due to the ad- 

ditional data, day-to-day repeatability is significantly wor- 

sened (by several centimeters), particularly in the east compo- 

nent. This is attributable to multipath effects. These effects 

would be worse for pseudorange data because of the higher 

sensitivity of this data type to multipathing [e.g., Evans, 1986-]. 

It is tentatively concluded that low elevation data do not yield 

improved troposphere estimates at this time, presumably be- 

cause the low-gain, omnidirectional receiver antennae used in 

this experiment are susceptible to multipath and below-the- 

horizon refraction. This differs from VLBI, where highly direc- 
tional antennae are used. 

System Precision and Accuracy 

In order to assess the maximum achievable precision at- 

tributable to correcting for tropospheric effects the optimum 

tropospheric calibrations demonstrated by this study are ap- 

plied to the entire eight station network. Thus WVR calibra- 

tion is used where possible, SM calibration is used elsewhere, 

and residual zenith delays at each station are estimated sto- 

chastically with correlation times of 8 or 16 hours and 2- or 

10-cm steady state deviations, respectively, depending on 

whether WVR or SM data are used for calibration (Table 1). 

Both carrier phase and pseudorange data are used where 

available. These results are shown in Figure 7. The baseline 

repeatabilities for east, north, and vertical components range 

from 2.2 to 3.8 parts in 10 8, 1 part in 10 9 to 1.2 parts in 10 8, 
and 5.6 to 7 parts in 10 8, respectively. These are improved 
relative to case IIb, where the optimum (WVR) calibration 

was applied only at the gulf sites. However, no effort was 

undertaken to optimize values of the stochastic parameters for 

the U.S. sites. Furthermore, only a subset of the data have 

high-quality WVR measurements available (section 4), sug- 

gesting that further improvements in system precision and ac- 

curacy might be possible if high-quality WVR data were avail- 

able at all humid sites (including Richmond, Florida). 

In addition to day-to-day repeatability, it is desirable to 

assess the accuracy of the gulf baselines. Of course, this is not 

possible rigorously without a well-established regional refer- 

ence frame and independent measurements. Site markers con- 

necting the GPS and satellite laser ranging (SLR) monuments 

at Cabo San Lucas and Mazatlan have not yet been surveyed. 

However, it is useful to look at potential systematic shifts in 

baseline solutions resulting from the various analytical meth- 

ods. A comparison of Mazatlan to Cabo San Lucas mean 

baseline solutions for cases Ib, IIb, and IIIb (see Table 1), 

using only carrier phase data and combined with pseudorange 

data, is shown in Figure 8. These results are typical of the 

other gulf baselines. The error ellipses are one standard devi- 

ation repeatabilities about the mean solution for each ap- 

proach, weighted by the corresponding errors of each daily 

solution, and are plotted about the mean of all cases shown. 

The agreement among the baseline solutions from each ap- 

proach is consistent with the previously noted agreement in 

the mean zenith wet path delay solutions (Figure 5). The addi- 

tion of pseudorange introduces a shift of about 3 cm in the 

east component solution. The significance of this will only 

become clearer with future accuracy assessments and compari- 

son to SLR data. However, this shift is within the uncer- 

tainties of the present solutions, and it is not unexpected given 

the better definition of system timing offsets with pseudorange 

data. The various methods agree at about 1 part in 10 7. 

The baseline from OVRO (fiducial) to Mojave (mobile), in- 

cluded in all the gulf baseline analyses, also allows for assess- 

ment of system accuracy since VLBI data are available for 

comparison. Estimates of this baseline ensures, to some extent, 

that there are no systematic errors in the analytical approach 

and that differences in the gulf baseline repeatabilities are a 

valid discriminant of the performance of a particular tropo- 

spheric calibration. Note that the OVRO-Mojave baseline re- 
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Fig. 9. Histogram of baseline component (E, N, V) and length (L) 
repeatabilities for the OVRO-Mojave baseline for SM and WVR cali- 

bration (cases la and Ila) and stochastic estimation (case Illb). Only 
carrier phase data are used, with a five-station network as described 

in text (i.e., Baja sites excluded). Repeatabilities with a full network 
(i.e., Baja sites included) tropospheric calibration, using cases lb and 
IIb and pseudorange data where available, are also shown. 

peatabilities are actually slightly worse if the gulf sites are 

excluded (Figure 9). Inclusion of gulf sites for OVRO-Mojave 

baseline estimates may strengthen network geometry and en- 

hance control of satellite orbital parameters even if the three 

gulf sites are treated as mobile (S. L. Lichten, personal com- 

munication, 1987). The agreement of these OVRO-Mojave 

baseline solutions with VLBI is within about 3 cm, similar to 

other results [Bock et al., 1986b]. This suggests a system accu- 

racy of about 1 part in 107 in southern California. Since the 
precision achieved on the OVRO-Mojave baseline (several 

parts in 108 for horizontal components) is comparable to that 
achieved in the Gulf of California, we suggest that the accu- 

racy of gulf baselines is also about 1 part in 107. 

Wet Tropospheric Calibration for Drier Sites 

A specific study of the OVRO-Mojave baseline was under- 

taken, with the gulf sites excluded, in order to test the various 

wet tropospheric calibration methods in a dry environment. 

The wet delay at zenith here is about 5-10 cm, much less than 

the values of up to 8-28 cm observed in the Gulf of California 

(Figure 5). IRIS stations and OVRO were used as fiducials, 

and Mojave was treated as mobile. Only carrier phase data 

were used. Furthermore, only the tropospheric calibration at 

OVRO was varied because WVR data at Mojave are limited 

TABLE 3. Correlation Times rp and Steady State Deviations %, 
Determined From WVR Tipping Curves Over Periods of About 24 

Hours for OVRO, California 

Day r.. hours %.. cm 

13 8.59 0.59 

14 10.25 0.67 

15 5.32 0.37 

16 3.55 0.63 

18 13.94 0.54 

19 40.46 1.12 

20 22.15 1.53 

21 37.27 2.20 

22 23.05 1.08 

23 19.79 0.97 

24 2.87 0.78 

Days correspond to November 1985. 

to 3 days [Dixon eta!., 1988]. The correlation times and 

steady state deviations obtained from WVR tipping curves for 

11 days of data at OVRO are given in Table 3. Although 

steady state deviations of 1-2 cm are comparable to those for 

gulf sites, the correlation times (particularly from November 

18-23) are longer, factors of 2-6 times the satellite observation 

periods. These values were obtained from approximately 24- 

hour periods of WVR data that are representative of any 

given observation period. The results of the analyses are 

shown in Figure 9 in terms of baseline repeatability and show 

agreement to within 0.25 cm. Figure 9 also shows OVRO- 

Mojave repeatabilities obtained from applying optimal tropo- 

spheric calibrations to the entire network, as previously dis- 

cussed. The baseline length repeatability is then about 5 parts 

in 108. Recall, however, that pseudorange data are not avail- 
able at these two sites. 

SM- and WVR-based zenith delays at OVRO for 1 day are 

shown in Figure 10. The agreement is representative of any 

given day. A figure similar to Figure 5 for the site at OVRO 
would show an increase from about 2 to 8 cm in the mean wet 

path delay at zenith over the ll-day observation period, with 

most values less than 5 cm. The tropospheric water content is 

much less than at the gulf sites, and the level of fluctuations in 

the zenith wet path delay is similarly small. Even when devi- 

ations reach 1-2 cm, the correlation times are sufficiently large 

(typically exceeding 10 hours, Table 3) that these values will 

not be evidenced in the span of a typical GPS observation 

session. It appears that the troposphere for these southern 

California locations can be adequately calibrated with SM 

measurements combined with stochastic models, at least at the 

current level of system accuracy and assuming conditions 

similar to this experiment. More analyses will be required to 

verify this, however. Thus WVR data may not be necessary in 

drier regions provided weather conditions are not severe. 

Discussion of WVR Utility 

WVR data for tropospheric path delay calibration in humid 

regions appear to be important for achieving optimum preci- 

sion and accuracy in GPS-based geodetic baseline measure- 

ments and for quantitatively characterizing the wet tropo- 

spheric path delay. However, WVRs may not be necessary in 

dry regions. Stochastic methods for tropospheric calibration 

may be an attractive alternative to WVR calibration even at 

20[-!'''' I''' ' I'''' I'' '' I' ' ' ' 
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Fig. 10. Zenith wet tropospheric delay at OVRO on November 
21 determined from SM measurements, the Chao [1974] atmospheric 
model (circles), and WVR tipping curves (triangles). Values are usu- 

ally less than 5 cm, in contrast to Gulf of California sites (Figure 3). 
Note the agreement between the WVR- and SM-based values, in 

contrast to Figure 3. Dry zenith tropospheric delays are also shown. 
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humid sites, at least for tropospheric conditions similar to 

those encountered in this experiment and particularly with 

combined use of carrier phase and pseudorange data. 

Two main factors limit the generality of these conclusions 

and suggest the need for further studies. First, during this 

experiment the wet troposphere at the gulf sites was remark- 

ably stable over periods of satellite visibility (4-8 hours). This 

is indicated by the WVR data, the ability to model the wet 

path delay at zenith simply as a constant at each site, and the 

overall agreement of the various zenith wet path delay solu- 

tions with the mean WVR-based values. Thus the relatively 

simple atmospheric and stochastic models used in this study 

can adequately characterize tropospheric effects. WVRs may 

prove more important in highly variable weather. Second, the 

WVR data used in this study were not optimum. Older two- 

channel WVRs were used at two of the gulf sites and may be 

more susceptible to systematic errors relative to the newer 

three-channel unit used at Cabo San Lucas (B. L. Gary, per- 

sonal communication, 1987). The older units are also labora- 

tory systems which were not designed for field use, resulting in 

lack of data on some days. In addition, WVR data were not 

available at the Richmond, Florida, fiducial site, which is lo- 

cated in a humid environment. Studies of baseline repeatabil- 

ity in the southern Gulf of California, as a function of fiducial 

network configuration, indicate that Richmond is a critical 

fiducial site, presumably because of the added geometric 

extent of the network [Dixon et al., 1988]. For these reasons, it 

is likely that tropospheric calibration with WVRs can be im- 

proved significantly relative to this experiment. Since tropo- 

spheric calibration may be the limiting error source when 

pseudorange data are available (yielding precision of a few 

parts in 108), it appears that further improvements in G PS 

system performance are achievable, even in humid environ- 

ments, if optimum WVR data are available. 

A rigorous assessment of WVR utility in GPS geodesy re- 

quires data precision of the order of several parts in 108 or 
better, depending on tropospheric water content. Otherwise, 

studies of WVR utility will yield ambiguous results if tropo- 

spheric water vapor contents are low or if data reduction 

techniques are not sufficiently precise to detect correspond- 

ingly small tropospheric calibration errors. In such cases, tro- 

pospheric errors may not be the limiting error, and other 

sources (e.g., orbit uncertainties) will likely dominate the error 

budget. In general, the appropriate treatment of the wet tropo- 

sphere will depend on the region of interest, on the stability of 

the troposphere or level of tropospheric fluctuations, and on 

whether pseudorange data are used in conjunction with car- 

rier phase data. 

7. CONCLUSIONS 

In a humid region such as the Gulf of California, where the 

wet path delay at zenith may exceed 20 cm, WVR data are 

important for characterization of the wet troposphere and pre- 
cise estimation of G PS baselines. Day-to-day horizontal base- 

line component repeatability of a few parts in 108 is demon- 
strated using WVR calibration and stochastic estimation of 

the residual zenith delay. The baseline accuracy appears to be 

about 1 part in 107 based on the internal consistency of base- 

line solutions using different tropospheric calibration schemes 

and comparison of the OVRO-Mojave baseline in southern 
California with VLBI solutions. 

SM measurements for wet tropospheric calibration can in- 

troduce significant errors in baseline solutions, but these are 

mitigated if residual zenith delays are modeled stochastically. 
However, stochastic estimation of the entire zenith wet tropo- 

spheric delay without prior calibration also yields good base- 

line repeatability, particularly if both carrier phase and pseu- 

dorange data are used. Stochastic modeling may thus be an 

acceptible alternative, at least for the type of conditions en- 

countered in this experiment. However, further analyses of 

stochastic estimation and WVR calibration are necessary to 

test the long-term validity of stochastic parameterization of 

the wet tropospheric delay at a given site. Results for the 

OVRO-Mojave baseline in southern California are not sensi- 

tive to the choice of tropospheric calibration scheme. Al- 

though the level of tropospheric fluctuations was comparable 
in southern California, the mean wet path delay at zenith was 

3-5 times smaller than in the gulf. Thus for dry locations, 

WVRs may not be required to model accurately tropospheric 
effects on G PS baselines. 

The high level of precision obtained in this first GPS experi- 

ment in the Gulf of California is encouraging in that the base- 

lines of interest are located outside the U.S. fiducial network, 

in a region where wet tropospheric delays are significant. Ex- 

pansion of the current network along the length of the gulf 

and into northern Baja California appears warranted and 

would help address problems related to the kinematics of the 

Pacific-North America plate boundary. 
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