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	is paper aims to study the performance of support vector machine (SVM) classi
cation in detecting asthma attacks in a wireless
remotemonitoring scenario.	e e�ect ofwireless channels on decisionmaking of the SVMclassi
er is studied in order to determine
the channel conditions under which transmission is not recommended from a clinical point of view. 	e simulation results show
that the performance of the SVM classi
cation algorithm in detecting asthma attacks is highly in�uenced by themobility of the user
where Doppler e�ects are manifested. 	e results also show that SVM classi
ers outperform other methods used for classi
cation
of cough signals such as the hidden markov model (HMM) based classi
er specially when wireless channel impairments are
considered.

1. Introduction

	e application of wireless telemedicine in monitoring
patients is seen as a useful and potentially powerful tool
to help patients seek medical treatment [1, 2]. In remote
monitoring systems of asthmatic patients, cough signals (as
well as other body vital signs) are collected by sensors
attached to the patient and sent to a PC located in a hospital
using wireless technology [3–7]. A classi
cation algorithm
is then applied to the received signals in order to decide
the state of the patient. Doctor intervention can then be
done by calling the patient to take precautions, take a certain
medication, or to go to a health care centre for proper
treatment.

One of the main purposes of such systems is to help
patients take precautions in the case of asthma attacks [4].
An asthma attack is a sudden worsening of asthma symptoms
caused by an exposure to allergens or irritants such as
inhaling dry and cold air and certain allergens such as pets,
pollen, dust, and smoke.	e symptoms of asthma attackmay
vary in severity and duration from person to person. 	e
main symptom that indicates an asthma attack is coughing
which has di�erent frequency and strength from regular
coughing [4]. Other signs of Asthma attack include headache,

blue colour in skin, di�culty in talking, and di�culty in
breathing. When these signs of asthma attack are noticed, a
patient should immediately seek medical treatment in order
to prevent severe asthma attacks which may cause death [5].

With wireless transmission, channel impairments such as
amplitude variations, time dispersion, and Doppler e�ects
result in degradation of the receiver ability to recover the
transmitted signal.	ismeans that the classi
cation accuracy
of medical signals transmitted over wireless channels will be
deteriorated as a result of errors in the received data. Unlike
voice data, medical signals are more in�uenced by channel
impairments because these signals have low bandwidths and
are very sensitive to channel impairments [8]. 	erefore, it
is important to relate the classi
cation accuracy and hence
diagnosability of body signs to channel parameters in order
to identify the channel conditions under which transmission
is not recommended from a clinical point of view.

	is problem has been investigated in the literature where
the objective was to determine the transmission conditions
where diagnosability of received signals is possible [8–11].
For example, it was shown in [8] that successful transmission
of ECG is highly in�uenced by the mobility of the trans-
mitter where it was shown that the receiver BER exceeds
the acceptable limit required for correct classi
cation and
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diagnosability of ECG signals at speeds above 50Km/Hr.
In [9], a wireless telemedicine system for transmission of
photoplethysmography (PPG) signals was analyzed where it
was shown that successful transmission of medical data over
the tested channels requires a receiver bit error rate of less
than 10−7.

In this paper, support vector machines (SVM’s) are used
for classi
cation of cough signals transmitted through a wire-
less channel in order to make decision about the occurrence
of asthma attacks of asthmatic patients who are free to move.
SVM classi
ers have extensively been used in classi
cation
of speech-like signals and were shown to provide higher
classi
cation capability for classi
cation of cough than other
techniques [12, 13].

	e performance of the SVM classi
cation algorithm
in detection of asthma attacks is evaluated by computing
the probability of correct classi
cation at di�erent channel
conditions (channel models) and is compared to the per-
formance of hidden markov model (HMM) classi
er [14].
	e classi
cation accuracy is related to the channel SNR in
order to determine the channel conditions under which the
classi
er produces acceptable results for detection of asthma
attacks.

2. Wireless Remote Health Monitoring
System for Asthma Patients

Figure 1 shows a system model for a wireless remote health
monitoring system which can be used for detection of
asthma attacks of patients who are free to move. In this
system, cough data are captured by a microphone and then
transmitted through a wireless channel. At the receiver side,
the received signal is demodulated and then entered into a
feature extraction block. Extracted features of the received
signal are used by the classi
cation algorithm which makes
a decision about the existence of an asthma attack.

One of the main challenges in the design of wire-
less remote health monitoring system is the reliability of
the communication channel [13]. Communication channels
introduce impairments to the transmitted signal which result
in the inability of the receiver to recover the original signal
correctly. Hence, errors introduced by the wireless channel
impact signal classi
cation and result in wrong interpretation
of medical data.

	ere are two main types of signal degradation intro-
duced by wireless channels: the 
rst is attenuation and
random variation of signal amplitude, and the second is
distortion of the signal spectrum. Signal attenuation results
from the degradation of the signal power level over distance
while random variation of signal amplitude results from
channel noise and multipath fading e�ects. Noise e�ects are
modelled by additive white Gaussian noise (AWGN) with a
power spectral density that depends on the channel signal-
to-noise ratio (SNR).

With AWGN channel model, white Gaussian noise is
added to the transmitted signal based on a speci
ed SNR;
therefore, the received signal can be expressed as

� (�) = � (�) + � (�) , (1)

where �(�) is transmitted signal and �(�) is a noise signal.
	e noise signal is assumed to be statistically independent
of �(�), stationary Gaussian noise process with zero mean
and two-sided PSD of �0/2Watts/Hz. 	e AWGN model is
particularly simple to use in the detection of signals and in the
design of optimum receiver in most communication systems.

Random variations of signal amplitude due to multipath
fading e�ects are usually modelled by the Rayleigh channel
model [14, 15]. In a Rayleigh channel model, signals from
di�erent paths having di�erent phases and similar signal
strengths are received to produce a Rayleigh distributed
signal amplitude. 	e received signal from a Rayleigh fading
channel is modelled as [13, 15]

� (�) = ℎ (�) � (�) + � (�) , (2)

where ℎ(�) is the fading amplitude which has a Rayleigh
probability density function (PDF) given by

�ℎ (ℎ) = ℎ	2 
−ℎ
2/2�2 , ℎ ≥ 0, (3)

where 	2 is the average received power and ℎ is the signal
magnitude.

Distortion of signal spectrum is usually attributed to
two main phenomena: the 
rst is multipath delay and
the second is the Doppler e�ects. Multipath delay results
from multipath phenomena in wireless channels where the
received signal consists of multiple re�ected signal compo-
nents which have di�erent delays. Delay distortion results
in intersymbol interference (ISI) where successive symbols
interfere and have signi
cant e�ects on transmitted signals
when their bandwidth is larger than the coherence bandwidth
of the fading channel (frequency selective channels) [16].	e
Doppler spread is a measure a spectral broadening caused
by time varying nature of the channel. Doppler spread is
usually related to the mobility of either the receiver or the
transmitter and is de
ned as the frequency range in which
the frequency of the received signal changes due to Doppler
e�ects. Doppler shi� leads to signal distortion which causes
errors in the received signal.	eDoppler power spectrum for
a narrowband fast fading channel is modelled as [16]

� (�) = 1
���√1 − (�/��)2

, ��������� ≤ ��, (4)

where �� is the maximum Doppler shi� introduced by the
channel which is linearly related to the speed of either the
transmitter or the receiver. 	e Doppler spectrum speci
es
the frequency spectrum of the Rayleigh fading signal and
hence its autocorrelation function.

Since medical signals usually have smaller bandwidths
than the channel coherence bandwidth, the delay spread
can be neglected. On the other hand, small variations in
signal spectrum due to Doppler spread can cause signi
cant
distortion to the transmitted signal when the signal band-
width is small. 	erefore, in the simulations that will follow,
delay spread will be neglected and the performance of the
classi
cation system will be tested under di�erent values of
the Doppler spread.
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Figure 1: Block diagram of a wireless monitoring system for asthma attack detection.

3. Support Vector Machine (SVM)
Classification

SVM classi
ers have extensively been used in classi
cation
of speech-like signals and were shown to provide higher
classi
cation capability for classi
cation of cough than other
techniques [12].

SVM is a classi
cation algorithm that performs a classi-

cation task by constructing a hyperplane in a multidimen-
sional space that separates data into two di�erent categories.
An SVM classi
er consists of � training points, where each
input x� has � dimensions and belongs to one of two classes�1 and �2 which correspond to �� = −1 or +1, where ��
denotes the classi
er output. Training data can be represented

in the form {x�, ��} where � = 1, 2, . . . , � and x ∈ �� [17].
If the data is linearly separable, then classi
cation of a data
point x is done bymaximizing themargin separating the two
hyperplanes, which results in a decision rule of the form [18]:

Decide Class 1 if sign ( �∑
�=1
��x��� ⋅ x + � ) = 1,

Decide Class 2 if sign( �∑
�=1
��x��� ⋅ x + � ) = −1,

(5)

where sign(⋅) is the sign function and �� are Lagrange
multipliers and are referred to as the support vectors (SV)
[18].

When data is not linearly inseparable, a kernel function is
used to map data to higher dimension such that the resulting
data is linearly separable [18]. 	e original formulation of
the SVM classi
er remains the same except that every dot
product in (5) is replaced by a nonlinear kernel function.
	erefore, with using a kernel function, the decision rule in
(5) is reformulated as [18]

Decide Class 1 if sign( �∑
�=1
���� (x�, x) + � ) = 1,

Decide Class 2 if sign( �∑
�=1
���� (x�, x) + � ) = −1,

(6)

where  (x�, x) is the kernel function which has di�erent
forms depending on the application. 	e most common
kernel functions are the polynomial, the radial basis function
(RBF), and the sigmoid kernel functions [19].

	e parameters of the SVM classi
cation algorithm
(including the parameters of the kernel function) can be
found using cross-validation of the available training data
where the parameters that give the best classi
cation accuracy
are selected [17].
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Figure 3: Block diagram of feature extraction process using MFCC
[20].

4. Asthma Attack Detection Using
SVM Classification

Figure 3 shows the SVM classi
cation model used in this
paper for detection of asthma attacks. 	e classi
cation pro-
cess involves extraction of features, generation of a classi
er
data base from a training set, and decisionmaking for a given
test signal.

4.1. Feature Extraction. In the classi
cation model in
Figure 2, features of cough signals are extracted and then
used by the classi
cation algorithm in order to reduce
the dimensionality of the classi
cation problem. Feature
extraction can be done using di�erent methods, such as
Fourier transform and Wavelet transform-based methods
[21].

One of the common Fourier transform-based methods is
the Mel Frequency Cepstral Coe�cient (MFCC) technique
which has been used extensively in feature extraction of
speech-like signals [22]. MFCC is a type of parametric
representation of speech-like signals and has been extensively
used in speech recognition because of its ability to capture
relevant information of human speech [20]. MFCC feature
extraction process is known for its robustness against time
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varying nature of speech signals which is a desired feature
when processing cough data from asthmatic patients.

MFCCs are the coe�cients that represent the short-term
power spectrum of a signal obtained from linear cosine
transform of the log power spectrum on a nonlinear “Mel”
scale of frequency [22]. 	e process of calculating MFCCs is
illustrated in Figure 3. Digitized cough data is 
rst processed
by the framing block which performs segmentation of the
cough signal samples into � frames. Windowing is applied
to the resulting frames before being spectrally analyzed using
the fast Fourier transform (FFT). 	e power spectrum is
mapped onto the Mel scale using the approximation [20]:

�� = 2595 log10 (1 + �700) , (7)

where � (Hz) is the normal frequency and �� is the Mel
frequency. MFCCs are calculated from the discrete cosine
transform (DCT) of the log of the signal spectrum which is
equivalent to passing the Mel scaled log spectrum through a
bank of triangular shaped bandpass 
lters, distributed along
a Mel scaled frequency band of interest [14].

4.2. MultiClass Classi�cation of Cough Signals. 	e initial
form of SVM classi
er is binary as clear from (1) and (2)
where the output of the learned function is either positive
or negative. Asthma attack detection requires classi
cation
of cough signals into 
ve classes: normal cough, cough
related to asthma attack, cough related to a regular asthma
episode, speech, and artefacts (sounds from patient daily
activity including drinking, laughing, clearing through, and
crying). To generate multiclass SVMs from binary SVMs,
a number of methods have been proposed in the literature
[23–25]. One of the most popular methods is the binary tree
support vectormachine (BTSVM)which combines SVM and
binary trees. BTSVM decomposes an N-class problem into
N–1 subproblem, each separating a pair of classes with SVM
classi
er. BTSVM has a number of characteristics such as
lower number of binary classi
ers and faster decision speed
[23].

Figure 5 shows a tree-based classi
cation process of
cough signals. 	e classi
er uses four stages of classi
cation
for classifying a sound signal into the 
ve classes mentioned
above. 	e training set for the tree classi
er is generated
by dividing the database into two disjoint groups at each
classi
cation stage.

4.3. Kernel Function Selection. Given the diversity of the
sound signals incorporated in the training set of the classi
er,
training data constitutes a linearly inseparable database.
	erefore, an RBF kernel function is used as in (2). 	e
RBF kernel has less hyperparameters and less numerical
complexity than other kernel functions [17]. 	e RBF kernel
function is described by [18]

 (x�, x�) = 
(−|x�−x�|2/2�2). (8)

	e parameter 	 determines the area of in�uence of the
support vector (SV) over the data space. Large value of 	 will

Table 1: MFCC parameters used in feature extraction of cough
signals.

Parameter Value

Number of MFCC
coe�cient

20

Window
Hamming:% (�) = 0.54 − 0.46 cos(2�/(� − 1))

Window length (N) 256

Frame size 25ms

FFT size 256

Feature vector dimension 69

allow a SV to have a strong in�uence over a large area and
reduces the SV, but reducing the SV results in increased error
[17].

5. Simulation and Verification

In the model shown in Figure 6, test signals are transmitted
through the wireless channel a�er performing analogue to
digital (A/D) conversion and digital modulation. At the
receiver, the signal is converted back to the analogue domain
a�er digital demodulation and then applied to the classi
er
to make a decision about the existence of asthma attacks.

	e performance of the classi
cation system under wire-
less channel impairments is quanti
ed by computing the
probability of correct classi
cation (&	) (the classi
cation
rate). 	e probability of correct classi
cation (&	) is de
ned
as the ratio of the number of correctly classi
ed samples and
the total number of the samples [19]:

&	 (%) = Numbr of correctly classi
ed samples

Total number of samples
× 100.

(9)

5.1. Data Collection. 	e classi
cation system was tested
using recordings of cough signals from real asthmatic
patients. 	e recordings were obtained from 18 patients at
the King Abdullah University Hospital (KAUH) in Jordan
in order to develop the training set of the classi
er (Data
was obtained a�er getting the consent of patients through
the hospital procedure and policies). 	e causes of cough
in these patients were as follows: 10 patients had cough
caused by asthma and 8 patients had cough caused by an
asthma attack. All recording were sampled at frequency
11025Hz and were divided into samples where each patient
produces at least 5 samples or 6 samples. On the other hand,
144 samples from normal subjects including normal cough,
speech, and artefacts (drink, laughter, clearing through, and
crying) were obtained from http://www.freesound.org/ [26].
Table 3 shows the 
ve types of sound signals used for training
the classi
ers.	e recordings were digitized at a frequency of
11025 samples/second and encoded at 16 bits per sample.

Table 1 shows the parameters used for feature extraction
of cough signals using MFCC as discussed in the previous
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Figure 4: (a) A cough signal of an asthmatic patient and (b) its MFCC.

Table 2: Fading channel parameters.

Modulation orderM 8

Fading sequence length (N) 180019

'
, *
 Uniformly distributed random
variables'
 = *
 = 2∗ pi ∗ rand (1,�) − pi;

Doppler shi� 0, 10, 100Hz

SNR 0–35 dB

Sound signal 

Classi�er 1 

Classi�er 2 

Artifact 

Classi�er 3 

Speech  Cough  

Non-Artifact 

Normal cough   Asthma cough   

Classi�er 4 

Asthma  Asthma attack   

Figure 5: Tree SVM classi
er for detection of asthma attacks.

section. Figures 4(a) and 4(b) show a cough signal and its
MFCC features.

5.2. Wireless Channel Models. Two channel models are con-
sidered: an AWGN channel model and a Rayleigh fading
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Figure 6: Block diagram of simulation model.

channel model. With AWGN channel, noise is simply added
to the transmitted signal using the Matlab function “awgn”
function where SNR can be speci
ed. A Rayleigh fading
channel model is generated using the sum-of-sinusoids
method in which complex Gaussian noise with a power
spectral density (PSD) that is equal to the Doppler power
spectrum in (8) is approximated by a 
nite sum of weighted
sinusoids as [27]:

ℎ (�) = √ 28
�∑

=1

cos (:�� cos�
 + '
)

+ ;√ 28
�∑

=1

cos (:�� sin�
 + '
) ,
(10)

where �
 = (2�� − � − *
)/48, � = 1, 2, . . . ,8, :�
is the maximum angular Doppler frequency, '
 and *

are independent random variables uniformly distributed on
[−�, �] for all �. With this formulation, the fading amplitude(|ℎ(�)|) approximates a Rayleigh random variable with a PDF
as in (7).	e parameters of the channel model in (10) used in
the simulations which will follow are shown in Table 2.
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Figure 7: Probability of correct classi
cation in AWGN channel
versus SNR; ∗SVM and ∘HMM.

Table 3: Sound signals used in generating the training set of the
classi
er.

Class Number of samples

Artefacts 48

Speech 48

Normal cough 48

Asthma cough 48

Asthma attack 48

Total 240

In the simulation model shown in Figure 6, test signals
are transmitted through both channel models at di�erent
SNRs and Doppler shi�s and the number of correctly clas-
si
ed samples is counted. 	e minimum SNR required for
an acceptable &	 is determined for both channel models.
Furthermore, in the case of Rayleigh fading channel, the
maximum Doppler frequency that results in acceptable clas-
si
cation rate is determined at a given SNR.

5.3. Simulation Results. Using the AWGNchannelmodel, the
average classi
cation rate of the SVM classi
er was computed
at di�erent SNRs and compared to the classi
cation rate
obtained from using the hidden markov models approach in
[14]. Figure 7 shows &	 versus SNR for the SVM classi
er and
compared to that of an HMM classi
er.

Under a Rayleigh channel model, &	 is calculated at
di�erent SNRs and di�erent values of the Doppler shi� of
the channel. Figures 8(a)–8(c) show&	 versus SNR atDoppler
shi�s of 0, 10, and 100Hz of the SVM classi
er and compared
to the HMM-based classi
er.

5.4. Discussion. In the case of AWGNchannel, the simulation
results show that a maximum &	 of 90% is obtained for the
SVM classi
er at SNR = 16 dB and 86% for the HMM-based
classi
er at SNR = 17 dB. 	e results show that the SVM
classi
er outperforms the HMM classi
er at all SNRs.
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Figure 8: Probability of correct classi
cation in Rayleigh fading
channel versus SNR (a) �� = 0Hz, (b) �� = 10Hz, and (c) �� =
100Hz; ∗SVM and ∘HMM.
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In Rayleigh fading channel, the simulation results show
that the SVM classi
er outperforms the HMM classi
er at
all Doppler frequency shi�s. From Figures 8(a)–8(c), the
maximum &	 of both classi
ers is obtained at SNRs above
33 dB which is about 14 dB higher than the case of using an
AWGN channel. 	is means that SNR needs to be increased
in order to overcome the loss in &	 due to the mobility
of the transmitter. In general, the simulation results show
that the SVM classi
er outperforms the HMM classi
er
when channel impairments are considered. 	e maximum
di�erence in &	 between the two classi
ers is about 17% at�� = 100Hz and SNR = 15 dB.
6. Conclusion

In this paper, classi
cation of cough signals in a wireless
remote health monitoring scenario using SVM classi
cation
algorithm has been analyzed. 	e reliability of the classi
ca-
tion system has been tested under di�erent wireless channel
models (AWGN and Rayleigh fading) where it has been
shown that channel impairments have a signi
cant e�ect
on the accuracy of the classi
cation system. 	e simulation
results show that SVM classi
cation is capable of detecting
asthma attacks from cough signals transmitted through a
wireless communication channel provided that the channel
SNR is increased to overcome the channel impairments
caused by noise, amplitude variations due to fading, and the
mobility of the wireless transmitter at the patient’s side. 	e
simulation results also show that SVM classi
er provides
better classi
cation accuracy than the HMM-based classi
er
under the same channel conditions. 	e results presented in
this paper can be used in the design of remote healthmonitor-
ing systems for asthmatic patients where system parameters
can be designed considering the minimum requirements for
channel SNR required for achieving the desired classi
cation
accuracy.
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[10] J. R. Gállego, Á. Hernández-Solana, M. Canales, J. Lafuente, A.
Valdovinos, and J. Fernández-Navajas, “Performance analysis of
multiplexed medical data transmission for mobile emergency
care over theUMTS channel,” IEEETransactions on Information
Technology in Biomedicine, vol. 9, no. 1, pp. 13–22, 2005.

[11] http://www.webmd.com.

[12] J.-C. Wang, J.-F. Wang, C.-B. Lin, K.-T. Jian, and W. Kuok,
“Content-based audio classi
cation using support vector
machines and independent component analysis,” in Proceedings
of the IEEE International Conference on Pattern Recognition
(ICPR ’06), pp. 157–160, Hong Kong, August 2006.

[13] J. Chol and M. Zhou, “Recent advances in wireless sensor net-
works for healthmonitoring,” International Journal of Intelligent
Control and Systems, vol. 15, pp. 49–58, 2010.

[14] M. Sergio, S. S. Birring, I. D. Pavord, and D. H. Evans,
“Detection of cough signals in continuous audio recordings
using hiddenMarkovmodels,” IEEETransactions on Biomedical
Engineering, vol. 53, no. 6, pp. 1078–1083, 2006.

[15] B. Sklar, “Rayleigh fading channels in mobile digital communi-
cation systems,” IEEE Communications Magazine, vol. 35, no. 7,
pp. 90–100, 1997.

[16] S. Popa, N. Draghiciu, and R. Reiz, “Fading types in wireless
communications systems,” Journal of Electrical and Electronics
Engineering, vol. 1, no. 1, pp. 233–237, 2008.

[17] C. Burges, A Tutorial on Support Vector Machines For Pattern
Recognition, Kluwer Academic Publishers, Boston, Mass, USA,
1998.

[18] D. Srivstain and L. Bhambu, “Data classi
cation using support
vector machine,” Journal of 
eoretical and Applied Information
Technology, vol. 12, no. 1, pp. 1960–1971, 2009.

[19] C. Hsu, C. Chang, and C. Lin, “A Practical Guide to Support
Vector Classi
cation,” http://www.csie.ntu.edu.tw/.



8 International Journal of Telemedicine and Applications

[20] A. Bala, A. Kumber, and N. Birla, “Voice command recognition
system based on MFCC and DWT,” International Journal of
Engineering Science and Technology, vol. 2, pp. 7335–7342, 2010.

[21] H.Chatrzarrin,A.Arcelus, R.Goubran, andF.Knoefel, “Feature
extraction for the di�erentiation of dry and wet cough sounds,”
in Proceedings of the IEEE International Symposium on Medical
Measurements and Applications (MeMeA ’11), pp. 162–166, Bari,
Italy, May 2011.

[22] R. Hasan, M. Jamil, and G. Rabbain, “Speaker identi
cation
using Mel frequency cepstral coe�cients,” in Proceedings of
the 3rd International Conference on Electrical & Computer
Engineering (ICECE ’04), pp. 565–568, Dhaka, Bangladesh,
2004.

[23] H. Hoa, T. An, and T. Dat, “Semi-supervised tree support vector
machine for online cough recognition,” in Proceedings of the
International Speech Communication Association (ISCA ’11), pp.
1637–1640, Florence, Italy, 2011.

[24] G. Sun, Z. Wang, and M. Wang, “A new multi-classi
cation
method based on binary tree support vector machine,” in
Proceedings of the IEEE International Conference on Innovative
Computing Information and Control, Liaoning, China, June
2008.

[25] M. Pal, “Multiclass approaches for support vector machine
based land cover classi
cation,” in Proceedings of the 8th Annual
International Conference, Map India, 2005, http://arxiv.org/
�p/arxiv/papers/0802/0802.2411.pdf.

[26] http://www.freesound.org/.

[27] N. Kostov, “Mobile radio channels modelling in MATLAB,”
Radio Engineering, vol. 12, pp. 12–16, 2003.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


