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ABSTRACT 

 

Surface roughness is a variable often used to describe the quality of ground surfaces as 

well as to evaluate the competitiveness of the overall grinding system. The subject of this 

paper is a grinding process performed on P20 tool steel by changing the grinding 

conditions, including the depth of cut, the grinding passes, the type of wheel, and the 

cutting fluid supply in the experiment. The main objective was to investigate the effect of 

ZnO nanofluid on the grinding surface finishing and wheel wear. The machined surface 

of selected specimens underwent SEM to assess the surface integrity. An artificial neural 

network was used to predict the surface roughness and recognize the trend of the surface 

roughness. The result showed the reduction of 47 % surface roughness value in grinding 

with ZnO nanofluid.  The neural network made accurate predictions and could recognize 

the roughness trend. 

 

Keywords: ZnO; grinding; surface roughness; P20 tool steel. 

 

INTRODUCTION 

 

Grinding is a finishing machine operation to ensure final surface quality. During the 

grinding process, small chips are removed along with large amounts of material. Since 

grinding is mostly used as a finishing method to determine the functional properties of 

the surface, knowledge of the surface quality and its control are crucial [1, 2]. It is 

therefore a challenge to achieve high levels of surface quality, conditionally improved by 

the grinding process, and choose the appropriate cutting conditions. The issue of wear has 

been addressed primarily for materials prone to high adhesion [3]. The chemical and 

metallurgical mechanisms of adhesion of metal to grit have been studied with a view to 

assessing the blunting and attrition of the wheel. In terms of surface damage it has been 

suggested that the adhered material acts as a tool of large nose radius to tear and plough 

out large grooves on the surface [4]. These modes are clearly sensitive to material 

properties such as hardness, toughness and fatigue strength, and their operative values are 

dependent on the strain, strain rate and temperature generated in the contact zone. As 

stated above, the localization of heat influenced by thermal conductivity of material is a 

factor which is likely to affect wear and surface roughness [5]. The latter authors 

addressed the issue of material response to grinding, in generating surface roughness.  

 Cutting fluid is a term generally used to describe fluids used for cooling and 

lubrication in grinding. The main purpose of a grinding fluid is to minimize mechanical, 

thermal, and chemical impact between the active partners of the abrasion process. The 
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lubricating effect of a grinding fluid reduces friction between the abrasive grains and the 

workpiece, as well as between the bond and the workpiece [6]. Nanofluids are a relatively 

new class of fluids and consist of a base fluid with nano-sized particles (1 to 100 nm) 

suspended within them. These particles, generally a metal or metal oxide, increase 

conduction and convection coefficients, allowing for more heat transfer out of the coolant 

[7-10]. These features make the nanofluid very attractive for cooling or lubricating 

applications in many industries including manufacturing, transportation, energy, and 

electronics [6]. Nanofluids are defined as suspended nanoparticles in a base fluid. 

Compared with conventional solid-liquid suspensions for heat transfer intensification, 

nanofluids possess advantages such as a high specific surface area [2, 11, 12] and 

therefore more heat transfer surface between particles and fluids, reduced particle 

clogging compared with conventional slurries, thus promoting system miniaturization, 

and adjustable properties, including thermal conductivity and surface wettability obtained 

by varying particle concentrations to suit different applications [6, 8, 13, 14].  

Conventional heat conduction models for solid-liquid mixtures have long been 

established such as the Maxwell model [15], the Hamilton-Crosser model [16] and the 

Jeffrey model [17]. However, these conventional heat conduction models were confined 

to dispersions containing millimetre- or micrometer-sized particles. When applied to 

nanofluids, they usually underestimate the thermal conductivity [18-20]. Choi et al. [21] 

found that the effective thermal conductivity of ethylene glycol improved by up to 40% 

through the dispersion of 0.3 vol% Cu nanoparticles of 10 nm mean diameter, and Xuan 

and Li [22] demonstrated that the effective thermal conductivity of water increased by up 

to 78% with 7.5 vol% Cu nanoparticles of 100 nm mean diameter. Hong et al. [23] 

reported that the thermal conductivity of Fe nanofluids increased nonlinearly up to 18% 

as the volume fraction of particles increased up to 0.55 vol%. Patel et al.[24] studied the 

behavior of Au and Ag nanoparticles dispersed in water and found that water-soluble Au 

nanoparticles, 10 to 20 nm in mean diameter, derived from citrate stabilization showed 

thermal conductivity enhancement of 5 to 21% in the temperature range of 30 to 60ºC at 

a loading of 0.026 vol%. The early research work by Masuda et al. [25] reported 30% 

increases in the thermal conductivity of water with the addition of 4.3 vol% Al2O3 

nanoparticles (average diameter of 13 nm). A subsequent study by Lee et al. [20], 

however, observed only a 15% enhancement in thermal conductivity at the same 

nanoparticle loading (average diameter of 33 nm). Xie et al. [26] found an intermediate 

result, that is, the thermal conductivity of water was enhanced by approximately 21% by 

a nanoparticle loading of 5 vol% (average diameter of 68 nm). These differences in 

behavior were attributed to differences in the average particle size of the samples. 

Nanofluids consisting of CuO nanoparticles dispersed in water and ethylene glycol seem 

to have larger enhancements in thermal conductivity than those containing Al2O3 

nanoparticles [21]. The early research by Eastman et al. [21] showed that an increase in 

thermal conductivity of approximately 60% can be obtained for the nanofluid consisting 

of water and 5 vol% CuO nanoparticles with average grain size of 36 nm. Lee et al.[20] 

observed only a modest improvement of nanofluids containing CuO compared with those 

containing Al2O3,  but Zhou and Wang [27] observed a 17% increase in thermal 

conductivity for a loading of only 0.4 vol% CuO nanoparticles in water. Xie et al. [28] 

studied SiC (average diameter of 26 nm) in water suspension and reported that the thermal 

conductivity could be increased by about 15.8% at 4.2 vol%. Murshed et al. [29] showed 

that the measured thermal conductivity for water-based TiO2 nanofluids (average 

diameter of 15 nm) had a maximum enhancement of 30% for 5 vol% of particles.  
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The aim of this study is to investigate the performance of engineered nanofluid 

regarding the grinding process and the ability of neural networks to predict/recognize 

surface roughness. 

 

EXPERIMENTAL SETUP 

 

AISI P20 tool steel is a low carbon tool steel containing chromium and molybdenum 

alloying elements. The hardness of the AISI P20 tool steel has a Brinell hardness number 

of around 300. The ZnO nanofluid iwas prepared by a single-step dilute approach. ZnO 

nanofluid procured from SIGMA ALDRICH had 35wt % of nanoparticles of 100nm. The 

concentration of the nanofluid expressed in terms of volume percent  is estimated with 

Eq. (1).  

 

The expression for conversion of wt%  to vol%   is shown in Eq. (1):   

 

  wp

w







1
                          (1) 

 

where  is the volume concentration of the nanofluid,  is weight percentage of the 

nanoparticles, w is density of the distilled water,  p is density of the nanoparticles.  

The grinding processes were conducted by using two types of cutting fluid, water-

based coolant and ZnO nanofluid. For the water-based coolant, two different types of 

wheel were used, Al2O3 and SiC wheels. For each type of wheel, the grinding processes 

were conducted in conditions of single-pass and multi-pass grinding. For each type of 

grinding setup, a different depth of cut was manipulated to investigate the relationship 

between depths of cut and surface roughness. The manipulated depths of cut for each 

grinding setup were 5 µm to 21 µm. The arithmetic surface roughness, Ra, was then 

measured on the ground area. The total number of grinding experiments was 54.  

 

ARTIFICIAL NEURAL NETWORK 
 

In the current application, the objective was to use the supervised network with multilayer 

perceptrons and train with the back-propagation algorithm (with momentum). The 

components of the input pattern consisted of the control variables used in the machining 

operation (depth of cut), whereas the components of the output pattern represented the 

responses from sensors (surface roughness). The nodes in the hidden layer were necessary 

to implement nonlinear mapping between the input and output patterns.  During the 

training process, first all patterns in the training set were presented to the network and the 

corresponding error parameter (sum of squared errors over the neurons in the output layer) 

was found for each of them [30]. Subsequently, the pattern with the maximum error was 

obtained and used to change the synaptic weights. Once the weights were changed, all the 

training patterns were again fed into the network and the pattern with the maximum error 

was then found. This process continued until the maximum error in the training set was 

less than the allowable error specified by the user. This method has the advantage of 

avoiding a large number of computations, since only the pattern with the maximum error 

is used to change the weights [30-32]. First, a set of training data that consists of the 

normalized values of the input patterns and the corresponding output data is used to 

determine the connection weights.  
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Once the network is trained to such an extent that the maximum error of any 

training data is less than the allowable error, the weights and the threshold values are 

automatically saved by the program. As the input values from the validation experiments 

are given to the NN program, the program predicts the required output. The architecture 

transfer function of linear tanh axon and the learning rule function of online 

backpropagation were used for the output layer and hidden layers. The total number of 

epochs was 10000 and the MSE was 10-6 and was repeated for a higher number of neurons 

between 13 and 30 [33]. The heuristic method was used to find the best hidden layer with 

an evaluation of R2, as shown in Table 1. Three standard criteria R2, RMSE and MRE 

were selected to evaluate the various networks (R is the error, RMSE is the root mean 

square error, and MRE is the mean relative error) [30]. A regression analysis between the 

network response and corresponding targets was performed to investigate the network 

response in more detail. Different training algorithms were tested and online 

backpropagation was selected. Therefore, a network with one hidden layer and 17 neurons 

was selected as the preferred ANN. 

 

Table 1. Heuristic search. 

 

ID Network Fitness Train Error Validation Error Test Error Correlation R-Squared 

7 [1-17-1] 0.97889 0.685131 15.30876 3.041863 0.991344 0.97889 

5 [1-7-1] 0.976284 0.797528 15.92875 4.81254 0.988432 0.976284 

9 [1-8-1] 0.948303 1.065103 14.80459 3.110027 0.981339 0.948303 

6 [1-4-1] 0.948258 1.093678 15.35659 4.67719 0.995869 0.948258 

4 [1-11-1] 0.944728 1.065221 13.51954 2.117756 0.980786 0.944728 

2 [1-30-1] 0.897942 1.432887 14.38161 2.947662 0.978286 0.897942 

1 [1-1-1] 0.810318 2.012331 15.76841 6.931578 0.904002 0.810318 

8 [1-10-1] 0.654642 2.667532 16.34068 9.145041 0.812542 0.654642 

3 [1-18-1] 0.638024 2.701946 16.76851 9.617552 0.8018 0.638024 

         

Table 2. Summary of the training. 

 

 Target Output Absolute Error Absolute Relative Error 

Mean 33 33.04806 0.062858 0.002126 

Standard deviation 5.24404 5.199577 0.033662 0.001404 

Min 26 26.10577 0.029605 0.000777 

Max 39 39.03029 0.105766 0.004068 

 

Table 3. Summary of the overall network. 

 

 Target Output Absolute Error Absolute Relative Error 

Mean 38.8333 37.05355 1.853722 0.034803 

Standard deviation 9.82203 7.130522 3.434434 0.060891 

Min 26 26.10577 0.029605 0.000777 

Max 56 46.54702 9.452984 0.168803 

 

 An independent ANN test was conducted for a specific range of depth of cut for 

different parameters to establish confidence in the ANN model. Initial tests were 

conducted to predict the relationship between the depth of cut and surface roughness [25]. 

The training summary is shown in Table 2. The R2 is 0.9771 and correlation is 0.9784. 

The overall summary is shown in Table 3. The R2 is 0.9811 and correlation 0.9834. 
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RESULTS AND DISCUSSION 

 

Single-Pass Experiment  

Figure 1 shows the variation of surface roughness with different depth of cut for the 

single-pass experiment. Generally, the trend of the surface roughness, Ra, increases 

constantly when the depth of cut increases. The silicon carbide wheel obtained the highest 

value of surface roughness, which was 0.710µm for a cutting depth of 5µm. However, the 

surface roughness increased inconstantly until 1.748µm for a cutting depth of 21µm. On 

the other hand, the experiment which was conducted with a water-based coolant with an 

aluminum oxide wheel obtained a surface roughness slightly lower than in the first 

experiment. The surface roughness for a 5µm cutting depth was 0.622µm and it increased 

constantly until 1.687µm. The experiment conducted using zinc oxide nano-coolant 

obtained the lowest value of surface roughness, which was 0.446µm for a cutting depth 

of 5µm, and it increased to 1.120µm for a cutting depth of 21µm. In general, the 

measurements of surface roughness showed an increase in magnitude as the depth of cut 

increased. This is because the heat generation between the work piece and grinding tool 

zone was higher for the greater depths of cut. The higher heat generation in this zone 

contributed to the burning effect on the workpiece. Therefore, the higher the axial depth 

of the cut, the higher the surface roughness [6]. For lower cutting depth, more grains 

participated in material removal and hence the depth of engagement was lower and 

produced smooth surfaces. However, for higher cutting depth the grain that interacted 

with the workpiece perform the undeformed chip on the work piece surface which 

produces a rough surface [6, 34]. Hence, the surface roughness increases when the depth 

of cut increases in grinding machinability.  

 

 
 

Figure 1. Surface roughness versus depth of cut for single-pass grinding. 

 

 The experiment conducted using water-based coolant with an aluminum oxide 

wheel obtained lower surface roughness, Ra, compared with that conducted with the 

silicon carbide wheel. This is because of the different hardness of the wheels. Therefore, 

in a single-pass experiment with a silicon carbide wheel, first the grinding wheel grinds 

in the self-sharpening region where bond post fracture is predominant and later grinds in 

a zone of mixed conditions; for example, partly sharpening and partly blunting. In the 



 

 

Effect of ZnO nano materials on grinding surface finishing 

2834 
 

final range blunting becomes predominant [27]. This proves that workpieces ground with 

a silicon carbide wheel have high surface roughness compared with those ground with an 

aluminum oxide wheel. The experiment conducted using a zinc oxide nano-coolant 

obtained the lowest surface roughness, Ra. This is because zinc oxide nano-coolant has 

high thermal conductivity compared with water-based coolants. Therefore, nano-coolant 

has the ability to carry away the heat in the grinding zone [27]. Once the heat has been 

removed from the grinding zone, the burning defect does not appear on the surface of the 

workpiece. Therefore the surface roughness, Ra, of the workpiece is much higher than 

that provided by the water-based coolant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Surface roughness versus depth of cut for multi-pass grinding. 

 

Multi-Pass Experiment 

Figure 2 shows the variation of surface roughness with different depths of cut for the 

multi-pass experiment. Generally, the trend of the surface roughness, Ra, increases 

inconstantly when the depth of cut increases. First, the experiment conducted with water-

based coolant and a silicon carbide wheel obtained the highest value of surface roughness, 

Ra, which was 0.570µm for a cutting depth of 5µm. However, the surface roughness, Ra, 

increased inconstantly until 1.412µm for a cutting depth of 21µm. On the other hand, the 

experiment conducted with water-based coolant and an aluminum oxide wheel obtained 

slightly lower surface roughness than the first experiment. The surface roughness, Ra, for 

a 5µm cutting depth was 0.529µm and it increased inconstantly until 1.293µm. However, 

the experiment was conducted using a zinc oxide nano-coolant which obtained the lowest 

value of surface roughness, Ra, which was 0.225µm for a cutting depth of 5µm and 

increased to 0.541µm for a cutting depth of 21µm. As stated above, the reason for the 

trend of the graph for the multi-pass experiment is similar to that for the single-pass 

experiment. However, the surface roughness, Ra, result obtained for the former is lower 

than for the latter. This is because when the single-pass grinding experiment is conducted 

on the surface of the workpiece, the grain engages with the workpiece in up-cut grinding, 

and slides without cutting the workpiece surface because of the elastic deformation of the 

system. In the multi-pass grinding experiment, however, the workpiece material piles up 
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at the front and sides of the grain to form a groove and complete chips are performed [18]. 

Therefore, the multi-pass grinding experiment obtained a better surface roughness, Ra, 

than the single-pass grinding experiment.   

 

Metallographic Analysis of Water-Based Coolant  

Figure 3 shows the SEM results for experiments conducted using water-based coolant for 

a cutting depth of 5 µm. It can be seen in Figure 3(b) that there are little burnt areas on 

the workpiece surface. There are also some continuous smooth scratches on the grind 

surface. These scratches were produced by the interactions of abrasive cutting points with 

the workpiece. Since the interactions between the points and the workpiece were few for 

a cutting depth of 5 µm, the scratches are finer. On the other hand, the grinding grooves 

are almost the same in width and depth. In previous research, when the interface 

temperature was high enough, the workpiece material at the contact zone became ductile 

enough to cause strong welds to form between the abrasive grit and the workpiece, 

thereby resulting in the generation of plastically deformed coatings [26]. This supports 

the appearance of some burn-colored scratches on the workpiece surface. 

 

  
 

(a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 3. SEM result for a cutting depth of 5µm. 

 

Figure 4 shows the SEM results for experiments conducted using water-based 

coolant for a cutting depth of 11 µm. Figure 4(b) shows a lot of  burn-colored marks on 

the workpiece surface compared with Figure 3(b). The groove size is unequal in width 

and depth. There are also many more overlapping scratches compared with Figure 3(b). 

This is because when cutting depth is increased the heat generated in the grinding zone is 

higher. Therefore, the possibility of burns on the workpiece surface is higher. As stated 

before, when the grinding interface temperature is high enough, the workpiece material 

at the contact zone becomes ductile enough to cause strong welds to form between the 

abrasive grit and the workpiece, thereby resulting in the generation of plastically 

deformed coatings [26].  

Figure 5 shows the SEM results for experiments conducted using water-based 

coolant for a cutting depth of 21µm. In Figure 5(b) there are a lot of large burn marks on 

the workpiece surface compared with Figures 3(b) and 4(b). The scratches produced by a 

cutting depth of 21µm also overlap each other. Furthermore, the grooves are unequal and 

not continuous. On the othe hand, there are a lot of raised edges or small pieces of material 

Grooves 

Burning area 
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which remain attached to the workpiece; these are known as burrs on the surface. This 

contributes to a high value of surface roughness. It happens because of the plastic 

deformation on the surface of the material in conjunction with the thermal effect [35]. 

Also,the excessive heat penetrates the workpiece and contributes to the huge amount of 

burning on the workpiece surface.   

 

  
 

(a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 4. SEM result for a cutting depth of 11µm. 

 

  
 

(a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 5. SEM result for a cutting depth of 21 µm. 

 

Metallographic Analysis of Zinc Oxide Nano-Coolant  

Figure 6 shows the SEM results for experiments conducted using zinc oxide nano-coolant 

for a cutting depth of 5µm. In Figure 6(a) there are fewer burn marks on the workpiece 

surface compared with Figures 3(b) and 4(b) and scractches produced are very smooth 

compared with Figures 3(b) and 4(b). Furthermore, the grooves in the finished surface 

after grinding with zinc oxide nano-coolant are smoother, wider and shallower than with 

water-based coolant. No burrs occurred on this surface. The finest surface roughness is 

achieved compared with the other experiment because of the high thermal conductivity 

of zinc oxide nano-coolant which absorbs the heat that penetrates the workpiece during 

grinding. This phenomenon causes less burning and less plastic deformation than when 

water-based coolant is sused. On the other hand, zinc oxide nano-coolant's high viscosity 
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reduces the sliding friction  between the wheel and workpiece [6]. Reduction in sliding 

friction produces the smooth grooves on the workpiece surface shown in Figure 6.  

 

   
 

(a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 6. SEM result for a cutting depth of 5µm. 

 

Figure 7 shows the SEM results for experiments conducted using zinc oxide nano-

coolant for a cutting depth of 11µm.  The results show that the scratches produced are 

rough compared with those in Figure 7(a). Moreover, the grooves are inconsistent in size. 

There are some grooves that are wide and deep. There are also some grooves that are very 

shallow. However, compared with Figure 3(b) which used water-based coolant for a 

cutting depth of 11µm, this experiment produced many more fine scratches and grooves. 

This is because the zinc oxide nano-coolant carries away the heat generated in the 

grinding zone [27].Therefore, there are fewer plastic deformations on the material surface 

and a better surface roughness is produced.  

 

  
 

       (a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 7. SEM result for a cutting depth of 11µm. 

 

Figure 8 shows the SEM results for experiments conducted using zinc oxide nano-

coolant for a cutting depth of 21µm. The results show that the scratches produced are very 

rough compared with those in Figure 7(b). In addition, the grooves are unequal and not 
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continuous, but  there are fewer burrs than in Figure 7(b). This shows that there is some 

improvement on the surface microstructure when a zinc oxide nano-coolant is used. As 

stated before, this is owed to the high thermal conductivity of the nano-coolant. 

Nanoparticles tend to carry away the heat generated in the grinding zone [6]. However, 

the heat generated in the grinding zone for a cutting depth of 21µm are much higher than 

for cutting depths of 5µm and 11µm.  

 

   
 

       (a)   Magnification of 250x                         (b) Magnification of 1000x    

 

Figure 8. SEM result for a cutting depth of 21µm. 

 

Analysis of Wheel Wear 

Figure 9 shows the variation of wheel wear with different cutting depths using water-

based coolants and zinc oxide nano-coolant for grinding. Generally, the graph trend of 

wheel wear increases inconstantly when the depth of cut increases for water-based coolant 

grinding. No experiments obtained any wheel wear for a cutting depth of 5µm. The multi-

pass grinding using water-based coolant had the highest wheel wear compared with other 

experiments; it increased to 0.10 mm for a cutting depth of 21µm. However, the same 

experiment conducted with single-pass grinding resulted in slightly less wear. For a 

cutting depth of 21µm, the wheel wear was 0.08mm. Overall, the wheel wear increases 

when there is an increase in cutting depth of the grinding for water-based coolant 

grinding. This is because an increase in the depth of cut contributes to a rapid increase in 

normal force on the grinding wheel. Therefore the wheel fails to remove all the metal that 

is fed to it. Consequently, the down feed becomes interference and causes a rapid increase 

of the normal force and grinding becomes progressively less efficient and increases the 

wheel wear [6, 27]. Figure 9 also shows that experiments conducted using multi-pass 

grinding obtain a high value of wheel wear compared with experiments conducted with 

single-pass grinding. This is because, in single-pass grinding, there are only grain 

fractures, which occur on the wheel, but bond fracture starts to occur in multi-pass 

grinding which contribute to dulling the wheel and increase the wheel wear [18]. For 

multi-pass grinding, this contributes to higher wheel wear. Figure 9 shows there is no 

significant change in the wheel wear with zinc oxide nano-coolant. This shows that zinc 

oxide nano-coolant is better protection against wheel wear because of the thin slurry layer 

on the wheel which protects the bonding material from thermal mechanical damage, 

thereby causing insignificant wear [6]. 
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Figure 9. Wheel wear versus depth of cut for water-based coolant grinding. 

 

Prediction Modeling of Artificial Neural Network 

Figure 10 shows a prediction modeling graph using a neural artificial network for surface 

roughness versus depth of cut for single-pass grinding. Table 4 shows the prediction for 

grinding with water-based coolant with a silicon carbide wheel, which obtained the 

highest correlation between target and output of 0.996029. The R-squared is 0.929258. 

This figure shows there are strong relationships between the target and the output graph. 

Table 5 shows the prediction for grinding using a water-based coolant with an aluminum 

oxide wheel, which obtained a high correlation between the target and the output of 

0.992852. The R-squared is 0.985055. There are strong relationships between the target 

and the output graph. Table 6 shows the prediction for grinding using zinc oxide coolant 

with a silicon carbide wheel, which obtained the lowest correlation between the target and 

output of 0.966179. The R-squared is 0.894227 [30, 31]. This shows there are strong 

relationships between the target and the output graph.  

 

Table 4. Summary of predictions for water-based coolant with SiC wheel grinding. 

 

 Target Output Absolute Error Relative Error 

Mean 1.189 1.198313 0.073789 0.071605 

Standard Deviation 0.391572 0.31454 0.039421 0.052525 

Minimum Value 0.71 0.816886 0.000037 0.000037 

Maximum Value 1.748 1.635559 0.11893 0.164723 

Correlation 0.996029 

R-squared 0.929258 

 

 

 

Table 5. Summary of predictions for water-based coolant with Al2O3 wheel grinding. 

 

 Target Output Absolute Error Relative Error 

Mean 1.121444 1.125834 0.03617 0.033075 
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Standard Deviation 0.348127 0.342651 0.021128 0.020827 

Minimum Value 0.622 0.659391 2.09×10-8 2.94×10-8 

Maximum Value 1.687 1.625016 0.061984 0.060114 

Correlation 0.992852 

R-squared 0.985055 

 

Table 6. Summary of predictions for zinc oxide nano-coolant with SiC wheel grinding. 

 

 Target Output Absolute Error Relative Error 

Mean 0.804222 0.796192 0.05228 0.079059 

Standard Deviation 0.218861 0.188716 0.032153 0.062284 

Minimum Value 0.446 0.521369 0.003666 0.003998 

Maximum Value 1.12 1.025737 0.094263 0.185242 

Correlation 0.966179 

R-squared 0.894227 

 

 
 

Figure 10. Artificial neural network prediction for single-pass grinding. 

 

CONCLUSIONS 

 

These conclusions are drawn from the analysis of single-pass and multi-pass grinding 

experiments using SiC wheel and an Al2O3 wheel with water-based coolant and TiO2 

nanofluid as cutting fluids.  It can be concluded that the increments of the axial depth of 

cut increased the surface roughness of the grounded area. The surface roughness value is 

directly proportional to the depth of cut. The result indicates that better surface quality of 

the workpiece can be obtained at a lower depth of cut. Moreover, grinding with TiO2 

nanofluid produces better grinding surface quality than grinding with water-based 
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coolant. The reduction in surface roughness was observed to be from 20% to 40% in 

grinding condition with TiO2 nanofluid as the cutting fluid. An artificial neural network 

predicted the roughness accurately and recognized the pattern of roughness. 
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