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The statistical analysis of mediation effects has become an indispensable tool for helping scientists

investigate processes thought to be causal. Yet, in spite of many recent advances in the estimation and

testing of mediation effects, little attention has been given to methods for communicating effect size and

the practical importance of those effect sizes. Our goals in this article are to (a) outline some general

desiderata for effect size measures, (b) describe current methods of expressing effect size and practical

importance for mediation, (c) use the desiderata to evaluate these methods, and (d) develop new methods

to communicate effect size in the context of mediation analysis. The first new effect size index we

describe is a residual-based index that quantifies the amount of variance explained in both the mediator

and the outcome. The second new effect size index quantifies the indirect effect as the proportion of the

maximum possible indirect effect that could have been obtained, given the scales of the variables

involved. We supplement our discussion by offering easy-to-use R tools for the numerical and visual

communication of effect size for mediation effects.
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Consider the case in which a researcher has established that

some regressor (X) explains some of the variance in a criterion or

dependent variable (Y) via regression. Equation 1 expresses the

model for individual i:

Yi � dY.X � cXi � eY.X
i

, (1)

where c is the regression coefficient quantifying the total effect of

X on Y, dY.X is the intercept of the model, and eY.Xi
is the error

associated with individual i. Mediation analysis consists of esti-

mating the indirect effect of X on Y via an intervening variable

called a mediator (M). In the simplest case, the researcher re-

gresses M on X and separately regresses Y on both X and M using

the following equations:

Mi � dM.X � aXi � eM.X
i

, (2)

where dM.X is the intercept for M, a is the slope of M regressed on

X, and eM.Xi
is the error and

Yi � dY.MX � bMi � c�Xi � eY.MXi
, (3)

where dY.MX is the intercept for Y, b is the slope of Y regressed on

M controlling for X, c� is the slope of Y regressed on X controlling

for M, and eY.MXi
is the error. The indirect effect, defined as â � b̂,

often is used as an index of mediation (where throughout a

circumflex [ˆ] above a parameter denotes a sample estimate).

In general, â � b̂ � ĉ � ĉ�, and thus ĉ � â � b̂ � ĉ�.

Structural equation modeling may also be used to obtain both â

and b̂ simultaneously, correct for the attenuating effects of mea-

surement error, and test more complex models, such as those

where X, M, and Y are latent. Here we focus on the simplest case

of a single mediator (unless otherwise stated) and no latent vari-

ables. Tests of mediation effects have become very popular in the

managerial, behavioral, educational, and social sciences because

they help researchers understand how, or by what means, effects

unfold. A path diagram showing a simple mediation model is

presented in Figure 1.

Many methods have been developed to facilitate significance

testing and/or confidence interval formation for indirect effects

(MacKinnon, 2008; MacKinnon, Lockwood, Hoffman, West, &

Sheets, 2002). We find the increased attention being devoted to

appropriate modeling and testing techniques highly encouraging.

On the other hand, we believe this emphasis on modeling and

statistical significance falls short of the ideal. Despite the recom-

mendation of Baron and Kenny (1986, p. 1177) to consider the

absolute size of relevant regression weights in addition to their

statistical significance, very little attention has been devoted to

quantifying and reporting the effect size of indirect effects in

mediation models.

The fourfold purposes of this article are to (a) outline some

general desiderata for effect size estimation, (b) review existing
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effect sizes proposed in the mediation context, (c) use the desid-

erata to evaluate how effect size has been quantified and reported

in the context of mediation, and (d) suggest new ways to commu-

nicate the magnitude of the indirect effect while avoiding the

shortcomings of existing methods. The development of quality

effect sizes will facilitate meta-analytic work on mediation, some-

thing currently lacking in the mediation literature. Finally, we

provide R code (R Development Core Team, 2010) with the

MBESS1 package (Kelley & Lai, 2010; Kelley, 2007b) to aid

researchers who wish to use the methods we describe in their own

research. Graphical methods are an important supplement to quan-

titative descriptions of mediation and can themselves be useful

ways of communicating results. We discuss graphical methods in

an online supplement.2

Conceptualizing Effect Size: A Definition

and Desiderata

Numerous methodologists have recommended that effect size

measures accompany reports of statistical significance and nonsig-

nificance. As a result, effect size reporting is now encouraged or

mandated by many journal editors, as well as many organizations

with scientific oversight, including the National Center for Edu-

cation Statistics (NCES, 2003), the International Committee of

Medical Journal Editors (via the Consolidated Standard of Report-

ing Trials [CONSORT; Moher et al., 2010]), and the American

Educational Research Association (AERA, 2006). Furthermore, as

the American Psychological Association (APA) Task Force on

Statistical Inference recommended, reporting some measure of

effect size is “essential to good research” and “enables readers to

evaluate the stability of results across samples, designs, and anal-

yses” (Wilkinson & the Task Force on Statistical Inference, 1999,

p. 599). In addition, “it is almost always necessary to include some

measure of effect size in the Results section” (American Psycho-

logical Association, 2010, p. 34). But even though researchers are

now urged to report effect size to supplement or replace statistical

significance, researchers who use mediation models have few

resources to which to turn. For researchers who desire to report

effect size for mediation effects, there simply is not much work

that can be referenced (Albert, 2008; MacKinnon, Fairchild, &

Fritz, 2007; Preacher & Hayes, 2008a), and many of the meth-

ods that do exist have limitations that often go unrecognized.

We begin by offering a general definition of effect size, outlin-

ing some desirable properties (desiderata) to which new effect

size measures should aspire, and delineating the issues that

warrant attention when reporting effect size for mediation ef-

fects. Ultimately, we recommend a new effect size measure,

developed in a later section, that we believe has desirable

properties that will be useful in quantifying the magnitude of

the indirect effect in the application of mediation models.

Defining Effect Size

There is almost universal agreement among methodologists that

effect size is very important to report whenever possible (Grissom

& Kim, 2005; Thompson, 2007; Vacha-Haase, Nilsson, Reetz,

Lance, & Thompson, 2000). Yet, there are inconsistencies in how

effect size is defined in the methodological literature, with the

preponderance of authors favoring either a definition based on the

magnitude of departure from a particular null hypothesis or a

definition relating effect size to practical importance. For example,

Cohen (1988) defined effect size as the “degree to which the

phenomenon is present in the population or the degree to which the

null hypothesis is false” (pp. 9–10). Similarly, Vacha-Haase and

Thompson (2004) defined effect size as a “statistic that quantifies

the degree to which sample results diverge from the expectations

. . . specified in the null hypothesis” (p. 473). Other major works

on effect size have similar definitions (Grissom & Kim, 2005). On

the other hand, some authors prefer to regard effect size as any

numeric quantity intended to convey the practical significance (or

importance) of an effect (Kirk, 1996). Practical importance, in

turn, is the substantive importance of an effect in real terms. That

is, practical importance is the degree to which scientists, practi-

tioners, executives, consumers, politicians, or the public at large,

for example, would consider a finding important and worthy of

attention. Yet other authors use both kinds of definition inter-

changeably (Henson, 2006). These two kinds of definitions—one

based on the size of an effect relative to a null hypothesis and the

other based on practical importance—imply related but separate

concepts.

1 Originally MBESS stood for Methods for the Behavioral, Educational,

and Social Sciences. However, MBESS is now an orphaned acronym,

meaning that what was an acronym is now literally its name.
2 The supplemental material on graphical methods may be found at the

Psychological Methods website and at the authors’ websites (http://quantpsy

.org and https://repository.library.nd.edu/view/5/Mediation_Effect_Sizes.pdf).

Figure 1. Diagram of models in which the effect of X on Y is (upper)

versus is not (lower) mediated by M. Circles represent residuals, single-

headed arrows represent regression weights, and double-headed arrows

represent variance parameters.
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In response to the need for a general, inclusive definition of

effect size, we define effect size as any measure that reflects a

quantity of interest, either in an absolute sense or as compared

with some specified value. The quantity of interest might refer to

variability, association, difference, odds, rate, duration, discrep-

ancy, proportionality, superiority, or degree of fit or misfit. It is

possible for an effect size measure conforming to this definition to

be used as an index of practical importance, although practical

importance is not tied to our definition of effect size.

Desiderata for Good Effect Size Indices

Some desirable properties for effect size measures, which we

term desiderata, are now outlined. First, virtually all effect size

indices should be scaled appropriately, given the measurement and

the question of interest. Without an interpretable scale, it is diffi-

cult to use effect size to communicate results in a meaningful and

useful way. Often effect size is associated with standardized effect

sizes; indeed, sometimes standardization is a defining characteris-

tic of effect size, and in many cases, standardization frees the

researcher from having to prepare a new set of interpretive bench-

marks for every new scale or application (Cohen, 1988). Through-

out, we define a standardized effect size as one that is not wedded

to a particular measurement scale. More formally, it is an effect

size that does not change in value based on linear transformations

of the variable(s) involved. Although standardized effect sizes can

be valuable, they are not always to be preferred over an effect size

that is wedded to the original measurement scale, which may

already be expressed in meaningful units that appropriately ad-

dress the question of interest (Baguley, 2009; Frick, 1999). For

example, group mean differences in scores on a widely understood

instrument for measuring depressive symptoms are already ex-

pressed on a metric that is understandable to depression research-

ers, and to standardize effects involving the scale would only

confuse matters.

Second, it should be emphasized that effect size estimates are

themselves sample statistics and thus will almost certainly differ

from their corresponding population values. Therefore, it is im-

portant to report confidence intervals for effect sizes because the

real interest lies not in the estimated value but in the population

value (Balluerka, Gómez, & Hidalgo, 2005; Bird, 2002; Cumming

& Finch, 2001; Fidler & Thompson, 2001; Henson, 2006; Kelley,

2007a; Kirk, 1996; Smithson, 2001; Thompson, 2002, 2007).

Third, although sampling error will affect the uncertainty in any

effect size estimate and sampling error will tend to decrease as

sample size (n) increases, the point estimate itself should be

independent of sample size. Effect sizes are usually considered to

have corresponding population values (parameters), so the estima-

tion of an effect should be independent of the arbitrary size of the

sample that is collected in order to estimate that population effect.

Two researchers should not come to different conclusions about

the size of an effect simply because their samples are of different

sizes, all other things being equal. None of the effect sizes in

common use depends on n for their respective definitions (r,

Cohen’s d, odds ratios, etc.) other than in a limited fashion that

quickly diminishes as n increases. More broadly, the sample esti-

mators of population effect sizes should be unbiased (i.e., the

expected value of the effect size should equal the parameter over

infinite repeated sampling), consistent (i.e., the effect size estimate

should converge on the population value as n increases), and

efficient (i.e., the effect size estimator should have reasonably low

sampling variability).

Effect Size in the Context of Mediation Analysis

The magnitude of the indirect effect can be informally signified

by the a and b coefficients themselves. MacKinnon (2008) and

MacKinnon et al. (2007) suggested that either the standardized

regression coefficient or the raw correlation can be used as an

effect size measure for the a coefficient, and a partial correlation

can be used as an effect size measure for the b coefficient. This

method is not entirely satisfactory, as a and b alone do not convey

the full meaning of an indirect effect. Therefore, it is important to

develop a way to gauge the effect size of the product term ab itself.

Unfortunately, the indirect effect does not fit any of the classic

effect size measures developed in methodological works or re-

ported in research, such as the standardized mean difference

(Cohen’s d, Hedges’ g), association (�, r, rbis), odds ratio (OR),

percentage of variance explained (intraclass correlation, R2, �2,

�2), or the coefficient of variation. In mediation models, the

primary effect of interest is an indirect effect. Such an effect is

complex because it is the product of (here) two regression coeffi-

cients and does not fit conveniently into the framework of existing

effect sizes. Thus, it is challenging to adapt existing effect size

measures for use in mediation analysis. In developing and evalu-

ating new methods of expressing effect size for indirect effects, it

will be important to do so in light of the definition and desiderata

outlined earlier. That is, effect sizes suggested for mediation

analysis should be on a meaningful metric, should be amenable to

the construction of confidence intervals, and should be indepen-

dent of sample size. A meaningful metric in this context is any

metric where the size of the effect can be interpreted in a mean-

ingful way vis-à-vis the constructs under study. Standardized ef-

fect sizes are on a meaningful scale in units of standard deviations.

For example, in a regression model with a single independent

variable and a single dependent variable that are both standardized,

a correlation coefficient can be interpreted as the number of

standard deviations that the dependent variable is expected to

increase for a change of one standard deviation in the independent

variable. Our suggestion for effect sizes to be on a meaningful

metric implies no preference for standardized or unstandardized

effect sizes. The metric that most effectively communicates the

particular effect size in the specific context is what we regard as

the preferred metric. This will vary by situation.

Illustrative Example

To make our discussion more concrete, we make use of a

publicly available data set, Jessor and Jessor’s (1991) Socialization

of Problem Behavior in Youth 1969–1981 (SPBY; Jessor & Jessor,

1991). The sample size is n � 432 with complete data. In the

applications to follow, the predictor variable is achievement values

(VAC), obtained by averaging 10 items from the Personal Values

Questionnaire (Jessor & Jessor, 1977) administered in 1969 to high

school students in the Boulder area of Colorado. Example items

ask respondents how much they like having good grades for

entering college and how much they like being on the honor roll.
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The mediator variable is attitude toward deviance (ATD), obtained

by averaging 30 items from the Attitude Toward Deviance Scale

(Jessor & Jessor, 1977) administered to the same students in 1970.

Example items ask respondents how wrong it is to break into a

locked place or to beat up another kid. Because of the manner in

which responses were scored, higher scores on ATD indicate

greater intolerance of deviant behavior. The outcome variable is

deviant behavior (DVB), obtained by averaging 30 items from the

Deviant Behavior Report Scale (Jessor & Jessor, 1977) adminis-

tered to the same sample in 1971. An example item asks respon-

dents how often they have threatened a teacher out of anger. Basic

results for the direct and indirect effects linking VAC, ATD, and

DVB are provided in Table 1, and covariances, correlations, and

means for the three variables are provided in Table 2. Figure 2 is

a Venn diagram depicting the variances of VAC, ATD, and DVB

as circles, overlapping to the degree that these variables are re-

lated.

Existing Methods of Expressing Effect Size for

Mediation Effects

In this section, we describe and evaluate existing measures of

effect size for mediation effects. Each method is evaluated in light

of the definition and desiderata identified above and illustrated

using SPBY data.

Verbal Descriptors

The literature about, and using, mediation is fraught with language

invoking the idea of effect size but not directly addressing it in a

rigorous, quantitative manner. The most popular way to express effect

size for mediation is through informal descriptors, such as complete,

perfect, or partial mediation (Mathieu & Taylor, 2006). James and

Brett (1984) described complete mediation as occurring when the

effect of X on Y completely disappears (i.e., c� � 0) when M is added

as a predictor of Y. Baron and Kenny (1986) asserted that “the

strongest demonstration of mediation occur[s] when Path [c�] is zero”

(p. 1176), effectively proposing a way to judge the effect size of an

indirect effect by examining the statistical significance of c�. The

condition in which c�� 0 after the detection of a statistically signif-

icant mediation effect they dub perfect mediation (p. 1177). In prac-

tice, a researcher may claim that a mediation effect is perfect or

complete if c� is not statistically significantly different from zero,

which is to say that perfect mediation exists when there is not

sufficient evidence to demonstrate that it does not. In other words, the

status quo is to claim perfect mediation when the null hypothesis that

c�� 0 is not rejected by the null hypothesis significance test, thus

using the absence of evidence (i.e., a failure to reject the null hypoth-

esis that c�� 0) as evidence of absence (of the direct effect exerted by

X on Y). For example, in the SPBY data, c�� �.0102 (p � .25, ns;

95% CI [�.028, .007]), and thus the statistically significant indirect

effect would signify complete mediation by Baron and Kenny’s

criterion. Of course, one could fail to reject the null hypothesis that

c�� 0 due to insufficient statistical power from an insufficiently large

n. Furthermore, it is not clear what should be done when c�� 0 by

Figure 2. Venn diagram showing the extent to which VAC, ATD, and

DVB share variance in common. Each circle represents the total variance

of a variable, and the overlap of two circles represents the portion of

variance shared in common by two variables. VAC � (higher) achieve-

ment values; ATD � (more intolerant) attitude toward deviance; DVB �

(more) deviant behavior.

Table 1

Regression Results for the Mediation of the Effect of

Achievement Values on Deviant Behavior by

Attitude Toward Deviance

Model Estimate SE p

CI
(lower)

CI
(upper)

Model without mediator

Intercept 1.9236 .0698 �.0001 1.7864 2.0608

VAC 3 DVB (c) �.0383 .0095 .0001 �0.0571 �0.0196

RY,X
2 .0361 0.0095 0.0779

Model with mediator

Intercept 2.2900 .0704 �.0001 2.1517 2.4282

VAC 3 ATD (a) .2916 .0462 �.0001 0.2008 0.3825

ATD 3 DVB (b) �.0963 .0088 �.0001 �0.1136 �0.0789

VAC 3 DVB (c�) �.0102 .0088 .2472 �0.0276 0.0071

Indirect effect (a � b) �.0281 �0.0390 �0.0189

RM,X
2 .0848 0.0408 0.1405

RY,MX
2 .2456 0.1750 0.3155

Note. Regression weights a, b, c, and c� are illustrated in Figure 1. RY,X
2

is the proportion of variance in Y explained by X, RM,X
2 is the proportion of

variance in M explained by X, and RY,MX
2 is the proportion of variance in Y

explained by X and M. The 95% CI for a � b is obtained by the
bias-corrected bootstrap with 10,000 resamples. The CIs for R2 indices are
obtained analytically. In this example, VAC (achievement values) is the
independent variable (X), ATD (attitude toward deviance) is the mediator
(M), and DVB (deviant behavior) is the outcome (Y). CI (lower) � lower
bound of a 95% confidence interval; CI (upper) � upper bound; 3 �
affects.

Table 2

Correlations, Covariances, and Means for Jessor and

Jessor’s (1991) Data

VAC (X) ATD (M) DVB (Y)

VAC (X) 2.268 .291 �.190

ATD (M) 0.662 2.276 �.493

DVB (Y) �0.087 �0.226 0.092

M 7.158 5.893 1.649

Note. Numbers on the diagonal are variances, those below the diagonal
are covariances, and those above the diagonal (italicized) are correlations.
VAC � (higher) achievement values; ATD � (more intolerant) attitude
toward deviance; DVB � (more) deviant behavior.
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even a small amount. Baron and Kenny cautioned that at least in

psychology, complete mediation is expected to be rare because of the

prevalence of multiple mediators. These descriptors are found in

common usage and are intended to denote either the practical impor-

tance of an effect (describing an effect as complete carries the impli-

cation that it is “large” or “important,” whereas, a partial mediation

effect is not as impressive) or the potential for identifying additional

mediators (complete implies that there is no room for further media-

tors, whereas partial potentially indicates a need to continue looking

for additional mediators).

The informal descriptors complete and partial do not fulfill the

desiderata identified earlier. First, they are not expressed in a mean-

ingfully scaled metric. Although the words complete and partial

invoke the idea of proportion, they are not numerical, so the impor-

tance attached to the terms is largely subjective. Second, because they

are not numerical, it is impossible to compute confidence intervals for

them. Third, these descriptors are defined in terms of the statistical

significance of c� and so are not independent of sample size. Because

of this, we argue that a researcher is implicitly rewarded for using a

small sample with a greater likelihood of obtaining “complete medi-

ation,” which runs counter to the universal recommendation to prefer

larger samples. Fourth, although they do convey something about

practical importance, they are highly imprecise. In general, holding

everything else constant, it is more likely that a mediator will com-

pletely mediate a relatively small total effect (c) than a relatively large

total effect, so an effect in which M partially mediates a relatively

large c may be more impressive than one in which M completely

mediates a relatively small c.

Ratio Measures of Relative Magnitude

Several quantitative measures of relative magnitude, in addition

to the verbal descriptors discussed earlier, have been proposed for

mediation effects. Alwin and Hauser (1975) proposed several such

measures in their classic article on the decomposition of effects in

path analysis (see also MacKinnon, 1994; MacKinnon & Dwyer,

1993; Sobel, 1982). Two measures that are relevant for simple

mediation models are the ratio of the indirect effect to the total

effect,

PM �

ab

ab � c�
�

ab

c
� 1 �

c�

c
, (4)

and the ratio of the direct effect to the total effect,

1 � PM � 1 �

ab

ab � c�
� 1 �

ab

c
�

c�

c
, (5)

where a is the slope linking X to M, b is the conditional slope

linking M to Y, c is the total effect of X on Y, and c� is the

conditional slope linking X to Y (Alwin & Hauser, 1975; Buyse &

Molenberghs, 1998; MacKinnon, 2008; MacKinnon et al., 2007;

MacKinnon, Warsi, & Dwyer, 1995; Shrout & Bolger, 2002;

Tofighi, MacKinnon, & Yoon, 2009; Wang & Taylor, 2002). The

sample statistic P̂M is obtained by substituting sample quantities

for their corresponding population values. PM is also known as

the validation ratio (Freedman, 2001) or mediation ratio

(Ditlevsen, Christensen, Lynch, Damsgaard, & Keiding, 2005)

in epidemiological research and as the relative indirect effect

(Huang, Sivaganesan, Succop, & Goodman, 2004) and is often

interpreted loosely as the proportion of the total effect that

is mediated. In the SPBY data, P̂M �

âb̂

âb̂ � ĉ�
�

	.2916
	�.0963


	.2916
	�.0963
 � .0102
� .733 (95% CI [.458, 1.357]),3

signifying, if P̂M is to be interpreted as a proportion (an assump-

tion we soon question), that attitudes toward deviance mediate

approximately three-fourths of the total effect of achievement

values on deviant behavior. The complement of P̂M, if in fact it

is interpreted as a proportion, is thus 1 � P̂M � .266.

Sobel (1982) proposed the ratio of the indirect effect to the

direct effect:

RM �

ab

c�
. (6)

A recent example of the use of RM is provided by Barreto and

Ellemers (2005), who reported that the ratio of the indirect to direct

effect of type of sexism (hostile vs. benevolent) on perceived

sexism through evaluation of the source was 1.7. In the SPBY data,

R̂M �
âb̂

ĉ�
�

	.2916
	�.0963


�.0102
� 2.742 (95% CI [�4.162, 147.689]),

indicating that the indirect effect of VAC on DVB is approximately

2.75 times the size of the direct effect, but this ratio is not statistically

significantly different from zero at the 5% level because 0 is contained

in the 95% confidence interval.

Although PM and RM are easy to estimate in samples, as measures

of effect size they suffer from several limitations; we discuss limita-

tions of PM first, followed by limitations of RM. First, consider that as

an index PM can convey misleading estimates of practical importance.

Depending on the context, obtaining PM � .9 for a relatively small but

statistically significant total effect may not necessarily be as impres-

sive as obtaining PM � .6 for a relatively large and statistically

significant total effect, yet the former sounds as if it is somehow more

important, whereas the latter seems as though it is less impressive

when quantified using a standardized effect size like P̂M. As we

discuss later, it is important to be mindful of the distinction between

the value of an effect size, even if it seems rather small or large, and

the practical importance of the effect size in the specific context.

Second, despite the fact that many researchers refer to it as a propor-

tion, P̂M is not a proportion and thus cannot be interpreted as such. The

quantity âb̂/	âb̂ � ĉ�
 can exceed 1.0 or be negative, depending on

the relation of ĉ� to ĉ (Albert, 2008; Alwin & Hauser, 1975; Mac-

Kinnon, 2008), which implies that it is not a proportion. The fact that

3 This and subsequently reported confidence intervals use bias-corrected

and accelerated (BCa) bootstrap confidence limits. Bootstrapping involves

treating the original sample as if it were a population and simulating the

sampling process assumed to have led to the original sample. An arbitrarily

large number B of bootstrap samples of size n are selected with replacement

from the original sample of size n. (B is recommended to be several thousand

for acceptable precision; we used B � 10,000.) Each of these B “resamples”

is used to compute the statistic of interest, resulting in B bootstrap estimates of

the statistic. The empirical sampling distribution of these bootstrap estimates

serves as a basis for obtaining confidence limits by referring to values at the

appropriate percentiles (e.g., 2.5 & 97.5) for what are termed percentile

confidence intervals. BCa confidence limits are obtained by adjusting the

limits from the percentile confidence intervals according to instructions pro-

vided by Efron (1987) and Efron and Tibshirani (1993).
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PM is not literally a proportion is not a limitation of PM per se but

rather of how PM has been discussed and used. Nevertheless, since PM

cannot be appropriately interpreted as a proportion, it is less useful

than its label implies. Measures of explained variance are better suited

to bear such proportion interpretations, which we discuss later. Third,

focusing on the overall value of PM may neglect additional mediators

in models where multiple mediators are plausible (MacKinnon et al.,

2007). It is easy to assume that if P̂M seems large (i.e., approaches 1.0,

which, as we indicated earlier, is not its upper limit), there is “no

room” for additional mediators, when in fact it is possible to identify

additional and/or better mediators. An additional mediator may well

be correlated with the one already included in the model, in which

case the indirect effect would be partitioned into parts unique to each

mediator. Fourth, P̂M and R̂M have large variances over repeated

samples, and thus they are not very efficient estimators. In fact,

MacKinnon (1994) showed that both ratio measures can be unstable

and commented that they “should be used only with relatively large

sample sizes” (p. 139). Simulation research has shown that P̂M is

unstable unless n � 500 (MacKinnon, 1994; MacKinnon et al., 1995).

Similarly, R̂M is unstable unless n � 5,000 (MacKinnon et al., 1995).

RM is so unstable because the numerator (ab) varies inversely with the

denominator (c�). Consequently, minor fluctuations in ab and c� can

lead to large fluctuations in their ratio. These large fluctuations can

become enormous when c� is near zero because RM approaches

infinity when c� approaches zero. Examination of Figure 3 shows this

sensitivity for specific situations, where the value of RM abruptly

approaches positive or negative infinity as the value of c is ap-

proached. Tofighi et al. (2009) similarly reported that very large

samples are required for stable estimation of ratio measures. Both of

these measures vary in bias and precision as a function of the size of

the effects, with larger effects imparting less bias and being more

precise. Taken together, these four limitations make us question the

usefulness of PM as a population value worth estimating and inter-

preting.

Although the ratio measure RM does not have any pretensions

toward being a proportion, it simply repackages the same infor-

mation as PM without conveying any additional information [RM �
PM/(1 � PM)]. Like PM, RM can assume values that exaggerate

relatively small effects or trivialize relatively large ones. Consid-

ering the reasonable case where ĉ � .63 and ĉ� � �.01, the ratio

of the indirect to direct effect will equal a nonsensical –64, yet if

ĉ � .63 and ĉ� � �.01, the ratio will equal �62. In addition, if ĉ

is relatively small but âb̂ is relatively large, the ratio can assume

extremely large values, as RM is an unbounded quantity. Con-

versely, if ĉ is relatively large and âb̂ is relatively small, small yet

substantively important effects can easily slip through the cracks.

Figure 3 shows that for a fixed value of the total effect (c � .4), RM

assumes small values for most indirect effects likely to occur

between .0 and .35 and then increases rapidly to �
 as c is

approached from below. For indirect effects above c, RM ap-

proaches �
 as c is approached from above.

Although the limitations of P̂M and R̂M we note above are

serious, estimates P̂M and R̂M are currently the most widely used

measures of effect size. There are perhaps four reasons why P̂M and

R̂M are so widely used. First, consistent with our third desideratum,

the estimates P̂M and R̂M are relatively unaffected by sample size.

Second, Alwin and Hauser (1975) noted that the proportionate

decomposition of effects into direct and indirect components can

facilitate interpopulation comparison of such effects, even when

the variables of interest are not measured on the same scales across

groups. Third, consistent with our second desideratum, both PM

and RM are amenable to the construction of confidence intervals.

Regarding confidence interval construction, Lin, Fleming, and

DeGruttola (1997) gave a confidence interval for PM based on the

delta method, and this interval and one based on Fieller’s method

are discussed by Freedman (2001) and Wang and Taylor (2002).4

Sobel (1982) provided derivations necessary for constructing an

asymptotic confidence interval for R̂M. MacKinnon et al. (1995)

and Tofighi et al. (2009) provided delta method standard errors for

both ratio measures, for the cases where b and c� are either

correlated or uncorrelated. However, because neither P̂M nor R̂M is

normally distributed except in very large samples, it is not advis-

able to use any of the above noted confidence interval methods but

rather to use the bootstrap approach, as we have discussed (e.g.,

Wang & Taylor, 2002). The fourth reason that P̂M and R̂M are so

widely used, we believe, is that there really have been no better

alternatives proposed in the literature for communicating the mag-

nitude of effect.

Buyse and Molenberghs (1998) suggested a ratio that we ab-

breviate as SM:

SM �
c

a
. (7)

4 The delta method is used to derive an approximate probability distribution

for a function g	�̂
 of asymptotically normal parameter estimates in the vector

�̂. It proceeds by first finding the first- or second-order (usually higher orders

are not necessary) Taylor series expansion of the function, g̃	�̂
, and then

applying the definition of a variance, var(g̃	�̂
) � E�	g̃	�̂

2� � �E	g̃	�̂

�2.

The delta method is commonly used to derive estimated standard errors for

functions of parameter estimates, which can then be used to construct confi-

dence intervals for estimates that are assumed normally distributed. Fieller’s

method involves linearizing the ratio, finding the values of the squared linear-

ized form that are less than or equal to the desired critical value under the �2

distribution, then solving for values of g	�̂
 satisfying the inequality.

ab
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R
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b
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c = .4

Figure 3. Plot of the ratio measure RM for total effect c � .4 and indirect

effects ab ranging from 0 to .7.
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SM is a measure of the success of a surrogate endpoint, a measure

of an intermediate variable that may be related to an important

clinical endpoint. For example, gum inflammation may be treated

as a surrogate endpoint for tooth loss, and LDL cholesterol is often

treated as a surrogate for heart disease. Thus, although surrogate

endpoints share much in common with mediators, the emphasis is

on coefficients a and c rather than a and b. The ratio c/a should be

about 1.0 if X predicts M to the same extent that it predicts Y

(MacKinnon, 2008; Tofighi et al., 2009). Tofighi et al. (2009)

provided a delta method standard error for this ratio measure and

recommend a sample size of at least 500 for accurate SEs when the

regression weights are small. In the SPBY data, ŜM �
ĉ

â
�

�.0383

.2916
�

�.131 (95% CI [�.195, �.077]). However, we caution that SM has

at least two flaws that limit its usefulness as an effect size measure

for mediation. First, it does not incorporate b, a crucial component

of the indirect effect. Thus, the indirect effect could be quite small

or even zero for even a respectably sized ŜM. Second, because it is

a ratio, SM depends on the relative size of the component param-

eters rather than their absolute magnitudes. As an example of why

this might be problematic, consider the case of standardized coef-

ficients â � .0001 and ĉ � .0001. In a situation in which ĉ � .0001

is a trivial effect (even if statistically significant), we probably

should not be impressed by ŜM � 1.

Unstandardized Indirect Effect

It often is not appreciated that statistics in their original metrics

can be considered effect sizes if they are directly interpretable

(Abelson, 1995; Baguley, 2009; Frick, 1999; Ozer, 2007). The

most obvious method of expressing the magnitude of the indirect

effect is to directly interpret the sample âb̂ as an estimate of the

population ab. The unstandardized indirect effect âb̂ is indepen-

dent of n and can be interpreted using the original scales of the

variables in the model. The product ab has a straightforward

interpretation as the decrease in the effect of X on Y when M is

added to the model or as the amount by which Y is expected to

increase indirectly through M per a unit change in X. In the SPBY

data, for example, âb̂ � �.0281 (95% CI [�.039, �.019]), im-

plying that DVB is expected to decrease by .0281 units (on its

4-point scale) for every one-unit increase in VAC (on its 10-point

scale) if one considers only the indirect influence via ATD.

If the variables X and Y are already on meaningful metrics,

simply reporting ab and interpreting it may suffice to communicate

effect size and practical importance. As has been discussed in the

mediation literature, there are multiple ways to construct confi-

dence intervals for ab, the product term does not depend on n, and

the product conveys information about practical importance if the

units of X and Y bear meaningful interpretation. If, however, the

metric of either X or Y (or both) is arbitrary (as is the case in much

applied work), not easily interpretable, or not well calibrated to the

phenomenon of interest, it may not be sensible to directly interpret

ab. Without knowing more about the scales of VAC and DVB,

how they are applied in certain areas, or what should be considered

“impressive” in the specific context of predicting deviant behavior

using the Deviant Behavior Report Scale, it is difficult to know

whether to be impressed by the finding that DVB is expected to

decrease by .0281 units per unit change in VAC indirectly through

ATD. A disadvantage of using ab as an effect size measure is that

it is not robust to changes in scale, which limits its usefulness in

meta-analysis.

Partially Standardized Indirect Effect

MacKinnon (2008) suggested that indirect effects may be stan-

dardized in the following way:

abps �

ab

�Y

, (8)

which is the ratio of the indirect effect to the standard deviation of

Y. This index represents the size of the indirect effect in terms of

standard deviation units in Y. Because ab is interpreted in raw units

of Y, dividing by �Y removes the scale of Y, leaving a metric

standardized in Y but not X or M. The interpretation of abps is the

number of standard deviations by which Y is expected to increase

or decrease per a change in M of size a. Coefficient a, in turn,

remains unstandardized. In the SPBY example, âb̂ps �
âb̂

sY

�

	.2916
	�.0963


.3036
� �.092 (95% CI [�.125, �.064]), implying

that DVB is expected to decrease by .092 standard deviations for

every one-unit increase in VAC (on its 10-point scale) indirectly

via ATD.

Completely Standardized Indirect Effect

Carrying MacKinnon’s (2008) logic further, we could fully

standardize the indirect effect by multiplying abps by sX. The

resulting index would be fully insensitive to the scales of X, M, and

Y. Preacher and Hayes (2008a) suggested the term index of medi-

ation for this effect size measure:

abcs � ab
�X

�Y

. (9)

Alwin and Hauser (1975, p. 41) and Cheung (2009) discussed

this index as well, noting that it can be used to compare indirect

effects across populations or studies when variables use different

metrics in each population. Thus, standardized indirect effects may

be useful in meta-analysis. However, as we note later, many

authors point out that the standardization factor varies from study

to study, implying that standardized effect sizes may be less useful

than is generally thought. Bobko and Rieck (1980) also considered

indirect effects using standardized variables, and Raykov, Bren-

nan, Reinhardt, and Horowitz (2008) advocated a scale-free cor-

relation structure modeling approach to estimating mediation effects. In

the SPBY example, âb̂cs � âb̂
sX

sY

� (.2916)(�.0963)
1.5061

.3036
� �.139

(95% CI [�.187, �.097]), indicating that DVB decreases by .139

standard deviations for every 1 SD increase in VAC indirectly via

ATD.

To summarize the three effect size measures just described, note

that all three may be expressed in terms of standardized regression

weights (�) and standard deviations:

ab � �MX�YM��Y

�X
�; (10)
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abps � �MX�YM� 1

�X
�; (11)

abcs � �MX�YM
. (12)

It is interesting to note that the metric of M is absent from all

three indices. The formula for coefficient a includes a ��M

�X
� term,

and the formula for b includes a ��Y

�M
� term; the �M terms cancel

when a and b are multiplied (MacKinnon, 2000; Preacher &

Hayes, 2008b). It is a simple matter to construct confidence inter-

vals for any of these indices (the bootstrap is recommended;

Cheung, 2009), and none of them depend on sample size. Even

though abps is partially standardized, the fact that it relies in part

on the metric of X prevents it from being used to compare indirect

effects across multiple studies, even though it can be used to

quantify effect size for a given study if the scale of X can be

meaningfully interpreted. Of the three indices above, only abcs can

generally be used in other situations where it is important to

compare indirect effects across situations using different metrics

for X and/or Y. A possible limitation of abcs is that it is not

bounded in the way that a correlation or a proportion is—either

component may be negative, and �YM may exceed 1.0. Neverthe-

less, unlike PM, abcs retains its interpretability when this happens.

On the other hand, not all methodologists support the use of

standardized effect sizes. Bond, Wiitala, and Richard (2003),

for example, strongly cautioned against the use of standardized

mean differences in meta-analysis. Achen (1977), Baguley

(2009), Greenland (1998), Greenland, Schlesselman, and Criqui

(1986), Kim and Ferree (1981), King (1986), and O’Grady

(1982) are decidedly pessimistic about the use of correlations

and r2 and other standardized effect sizes for expressing effects,

as they depend on the variances of the measured variables.

Indices of Explained Variance

A common type of effect size is expressed in terms of explained

variance. That is, the researcher often seeks to include predictors

of a criterion such that the variance of residuals is reduced by some

nontrivial amount. For example, �2 and �2 in the analysis of

variance framework, intraclass correlation in the mixed-model

framework, and R2 in the regression framework all can be inter-

preted as proportions of explained variance. These indices equate

effect size with the proportion of the total variance in one variable

shared with, or explained by, one or more other variables. They are

popular as effect size estimates in part because they use an easily

interpretable standardized metric, namely, a proportion metric.

Therefore, it is not surprising that such measures should be con-

sidered in the mediation context as well.

MacKinnon (2008) suggested three such measures for use in the

mediation context. Here they are referred to by his equation

numbers (4.5, 4.6, and 4.7) to distinguish among them.

R4.5
2

� rYM
2

� 	RY,MX
2

� rYX
2 
; (13)

R4.6
2

� 	rMX
2 
	rYM.X

2 
; (14)

R4.7
2

�

	rMX
2 
	rYM.X

2 


RY,MX
2

. (15)

The RY,MX
2 term in the expressions for R4.5

2 and R4.7
2 is the proportion

of variance in Y together explained by X and M; visually, RY,MX
2

corresponds to the proportion of the DVB circle in Figure 2 that is

also covered by the VAC or ATD circles. The term rYX
2 is the

squared correlation of X and Y (the proportion of the DVB circle

occluded by VAC), and rYM.X
2 is the squared partial correlation of Y

with M, partialling out X (the proportion of the DVB circle not

shared with VAC that is shared with ATD). Alternative expres-

sions yielding each of these indices purely in terms of multiple R2

(for ease of computation) are

R4.5
2

� RY,M
2

� 	RY,MX
2

� RY,X
2 
; (13b)

R4.6
2

�

RM,X
2 	RY,MX

2
� RY,X

2 


1 � RY,X
2 ; (14b)

R4.7
2

�

RM,X
2 	RY,MX

2
� RY,X

2 


RY,MX
2 	1 � RY,X

2 

. (15b)

An equivalent expression for R4.5
2 is

R4.5
2

� rYM
2

� rY(M.X)
2 , (16)

where rY(M.X)
2 is the squared semipartial correlation of Y with the

part of M from which X has been partialed. R4.5
2 has a straight-

forward interpretation as the overlap of the variances of X and

Y that also overlaps with the variance of M, or “the variance in

Y that is common to both X and M but that can be attributed to

neither alone” (Fairchild, MacKinnon, Taborga, & Taylor,

2009, p. 488). Overall, R4.5
2 has many of the characteristics of a

good effect size measure: (a) It increases as the indirect effect

approaches the total effect c and so conveys information useful

in judging practical importance; (b) it does not depend on

sample size; and (c) it is possible to form a confidence interval

for the population value. In the SPBY data example,

R4.5
2

� rYM
2

� 	RY,MX
2

� rYX
2 
 � (�.4932)2 � (.2456 �

(�.1901)2) � .034 (95% CI [.010, .064]). In some situations,

R4.5
2 can be negative, as it is not literally the square of another

value. Fairchild et al. (2009) noted that a negative R4.5
2 can

indicate that suppression rather than mediation is occurring.

However, because negative values can occur, R4.5
2 is not tech-

nically a proportion of variance as the label R2 would seem to

imply (Fairchild et al., 2009). We believe this limits the use-

fulness of R4.5
2 as an effect size, but we do not rule out that it

may have heuristic value in certain situations.

Unlike R4.5
2 , R4.6

2 is a product of two squared correlations, in

this case the squared correlation between X and M and the

squared partial correlation of M and Y, partialling for X. In other

words, R4.6
2 is the proportion of Y variance that is not associated

with X but is associated with M, weighted by the proportion of

variance explained in M by X. Like R4.5
2 , it increases roughly as

the indirect effect increases. Like R4.5
2 , it is standardized and

does not depend on n, and it is possible to form confidence

intervals for it. However, even though the lower bound is 0, and
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it cannot exceed 1,5 R4.6
2 is difficult to interpret because it is the

product of two proportions of variance. Because it is the prod-

uct of two R2 measures that are computed for different vari-

ables, it is not itself a proportion of variance as the label R2

would imply.6 Therefore, it is not appropriate to interpret it on

an R2 metric. Of the three R2 indices suggested by MacKinnon,

R4.6
2 bears the closest resemblance to ab, and regardless of its

interpretability as a proportion, it mirrors effect size very well.

In the SPBY data example, R4.6
2 � (rMX

2 )(rYM.X
2 ) �

(.2911)2(�.4662)2 � .018 (95% CI [.009, .032]). That is, .018

is the proportion of variance in deviant behavior that is not

associated with achievement values but is associated with atti-

tude toward deviance, weighted by the proportion of variance in

attitude toward deviance explained by achievement values.

R4.7
2 is simply R4.6

2 divided by RY,MX
2 , the proportion of variance in

Y together explained by X and M. Because it divides by a number

that is between 0 and 1, R4.7
2 represents a simple rescaling of R4.6

2 .

Correspondingly, we find R4.7
2 difficult to interpret. Whereas it is

bounded from below by 0, it can exceed 1, but not in situations

likely to correspond to mediation. Because of this, it (like the other

two R2 indices) cannot be interpreted on a standardized proportion

metric. In the SPBY example, R4.7
2 � (rMX

2 )(rYM.X
2 )/RY,MX

2 �
.0184/.2456 � .075 (95% CI [.041, .119]).

We present plots to enable readers to anticipate the behavior of

various R2 statistics. We do not suggest that similar figures be

produced in applied research. These figures are intended to help

readers better understand the ranges that the values can assume.

Each plot was created by generating 15,000 random 3 � 3 corre-

lation matrices,7 denoted R; fitting a simple mediation model to

each R; and plotting relevant statistics and effect size indices. For

example, Figure 4 displays plots of R4.5
2 plotted against ab for

15,000 randomly generated negative and indirect effects, holding

the standardized total effect c constant at .2 (top) and .8 (bottom).

From Figure 4 we can tell that when c is held constant, the most

extreme positive score of R4.5
2 is c2. The effect size cannot exceed

the square of the standardized total effect. R4.6
2 is plotted as a

function of ab in Figure 5 for 15,000 randomly generated indirect

effects, holding the standardized total effect c constant at .2 (top)

and .8 (bottom). R4.7
2 is plotted as a function of ab in Figure 6 for

15,000 randomly generated indirect effects, holding the standard-

ized total effect c constant at .2 (top) and .8 (bottom).

A related index was suggested by Lindenberger and Pötter

(1998). Their shared over simple effects (SOS) index is the ratio of

the variance in Y explained by both X and M divided by the

variance in Y explained by X:

SOS �

1

rYX
2 �rYM

2
� 	1 � rYX

2 
rYM.X
2 �, (17)

where rYM.X
2 is the partial correlation of M and Y after partialling out

X. A simpler expression for SOS in terms of indices already

presented is

SOS �

R4.5
2

rYX
2

. (18)

The authors describe SOS as the proportion of X-related vari-

ance in Y that is shared with M. Positive values of SOS indicate

mediation, a value of 0 indicates no indirect effect, and negative

values indicate suppression. In the SPBY example, SOS �

.034/.036 � .934 (95% CI [.727, .999]). Because SOS can assume

values less than zero or greater than one, it is not strictly a

proportion, but it does tend to increase with ab.

To summarize the R2 indices suggested by MacKinnon (2008)

and Lindenberger and Pötter (1998), none can be interpreted as

proportions. On the other hand, R4.6
2 does fall between 0 and 1

inclusively, and its magnitude does correspond to that of ab (the

relationship is slightly concave up). All of the indices suggested by

MacKinnon (2008) are standardized and amenable to confidence

interval construction.

Despite the obvious appeal of R2 indices as effect size indices,

Fichman (1999) reviews several reasons why researchers may

wish to be cautious when using R2 indices to compare theories.

According to Fichman (1999), R2 indices are not always useful for

comparing rival theories, can easily be misapplied or used incon-

sistently, leading to overinterpretations or underinterpretations of

effect size, are context-dependent (Balluerka et al., 2005), and are

often less intuitive and more difficult to evaluate than one might

think. Researchers often focus on explained variance, but in so

doing they often neglect to understand the underlying process

itself. Furthermore, explained variance depends on how much

variance there is to explain (Fern & Monroe, 1996; Henson, 2006;

Nakagawa & Cuthill, 2007), and this quantity may differ between

studies, between populations, and between manipulated versus

observed versions of the same variable, precluding the use of R2

indices for meaningfully comparing effects. Ozer (1985) cautioned

that R2 may not be interpretable as a proportion of variance in

many circumstances, which undermines any effect size index that

depends on this interpretation. Further, Sechrest and Yeaton

(1982) pointed out that researchers often assume that the amount

of variance to be explained is 100%. However, this assumption is

rarely met in practice because few variables are measured without

error. The explainable variance in Y is often much less than 100%.

Sechrest and Yeaton (1982) also pointed out that it is often difficult

to decide on the appropriate effect size to use, and different

treatment strengths can result in very different effect sizes.

Finally, it could be argued that because population, rather than

sample, effect sizes are the true quantities of interest, then the

researcher ought to adjust these R2 indices for positive bias (re-

sulting from using sample values to estimate population quantities)

if they are to be used at all. For example, Ezekiel (1930) described

an adjusted R2 index R̃Y.X
2 � 1�(1�RY.X

2 )� n � 1

n � m
�, where n is the

sample size, m is the number of regression parameters (intercept

5 In order for R4.6
2 to exactly equal 1, X and M would have to be perfectly

correlated, and the squared semipartial correlation of Y with M would have

to be exactly 1. Because this cannot occur without introducing perfect

collinearity, 1 is a limiting value and is not actually obtainable in practice.
6 Tatsuoka (1973, p. 281) reminded us that “the product of two propor-

tions is itself a meaningful proportion only when the second proportion is

based on that subset of the universe that is ‘earmarked’ by the first

proportion.”
7 Matrices were generated using a fast Markov chain neighborhood

sampling method that retains generated matrices meeting a positive mini-

mum eigenvalue criterion. For more information, see Preacher (2006). We

selected 15,000 matrices to visually convey the relative density of points in

different regions of the plots.
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and slopes), and X is a vector of regressors. The formula for R4.5
2

incorporating these adjustments would thus be

R̃4.5
2

� �1 � 	1 � rYM
2 


n � 1

n � 2� � ��1 � 	1 � RY,MX
2 


n � 1

n � 3�
� �1 � 	1 � rYX

2 

n � 1

n � 2��
� 1 � 	1 � RY,MX

2 

n � 1

n � 3
� 	rYX

2
� rYM

2
� 2


n � 1

n � 2
. (19)

Owing to the moderately large sample size of n � 432 in the

SPBY data, R̃4.5
2

� .0333—not very different from the unad-

justed value of R4.5
2

� .0338. In smaller samples, such adjust-

ments would be more noticeable. Bias adjusted versions of R4.6
2 and

R4.7
2 are

R̃4.6
2

� �1 � 	1 � rYM
2 


n � 1

n � 2��1 � �1 � RY,MX
2

1 � rYX
2 �n � 2

n � 3�,

(20)

and

R̃4.7
2

�

�1 � 	1 � rYM
2 


n � 1

n � 2��1 � �1 � RY,MX
2

1 � rYX
2 �n � 2

n � 3�
�1 � 	1 � RY,MX

2 

n � 1

n � 3�
,

(21)

respectively. See Wang and Thompson (2007) for an extended

discussion of Ezekiel’s (1930) and other potential adjustments to

r2 and R2.

Hansen and McNeal’s (1996) Effect Size Index for

Two Groups

Many applications of mediation analysis involve a binary X

(such as gender or experimental condition), where the purpose of

the analysis is to determine whether and to what extent the mean

Figure 4. Plots of R4.5
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).

Figure 5. Plots of R4.6
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).
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difference in Y can be attributed to X indirectly through a mediator

M. Hansen and McNeal (1996) suggested an effect size index for

mediation that can be obtained by applying a sample size adjust-

ment to Sobel’s (1982) test statistic in such two-group designs.

When X is a binary variable,

ES �

ab

�a2sb
2

� b2sa
2�1

n1

�

1

n2

, (22)

where n1 and n2 are the sample sizes of Group 1 and Group 2,

respectively, and sa and sb are the standard errors of the regression

coefficients a and b, respectively. Sample values are substituted for

their population counterparts. Note that sample size is introduced

in the denominator of Sobel’s statistic by including the s2 terms.

The intent of the multiplier added by Hansen and McNeal is to

remove that influence of sample size, rendering an index that does

not depend on n. ES (effect size) is, in fact, relatively robust to

large shifts in sample size. However, use of the ES index is limited

to settings in which X is binary. In addition, because the statistic is

not bounded, standardized, or robust to changes in scale, it is

unclear how to interpret it.

New Methods of Expressing Effect Size for

Mediation Effects

Two alternative approaches avoid some of the problems inher-

ent in informal descriptors and ratio measures. These effect sizes

conform more closely to the definition and desiderata of good

effect size measures identified earlier than do the measures de-

scribed in the previous section.

A Residual-Based Index

The first new effect size we consider elaborates on a method

proposed by Berry and Mielke (2002) for effect size computation

in univariate or multivariate regression models. Their original

method involves computing functions of residuals for models

conforming to a null and alternative hypothesis, obtaining their

ratio, and subtracting the result from 1. We propose an index that

combines information about the variance in M explained by X and

the variance in Y explained by both X and M.

Berry and Mielke consider regression models conforming to

null and alternative hypotheses. In the univariate case where M is

regressed on a number of X variables, the null and alternative

models are, respectively (for case i’s data),

Mi � �
j�1

m
0

Xij�0j � e0i and Mi � �
j�1

m
1

Xij�1j � e1i
,

(23, 24)

where m0 is the number of regressors under the null hypothesis,

m1 is the number of regressors under the alternative hypothesis

(m1�m0), i indexes cases, �0j and �1j are coefficients for the Xij

regressors in the null and alternative models, respectively,

and all variables are mean-centered so that intercepts can

be omitted. Residuals for the null and alternative models are

given by

e0i � Mi � �
j�1

m0

Xij�0j and e1i � Mi � �
j�1

m1

Xij�1j
,

(25, 26)

respectively. The effect size is then computed as 1 �

�
i�1

n

�e1i
2 / �

i�1

n

�e0i
2

� 1 � �
i�1

n

�e1i�/ �
i�1

n

�e0i�. Because the denominator

sum will always exceed the numerator sum, Berry and Mielke’s

(2002) effect size necessarily lies between 0 and 1.

Mediation analysis, on the other hand, involves residuals for the

M equation and the Y equation. Researchers often expect that X

will explain a large amount of variance in both M and Y and that

M will explain the same variance in Y that X explains. Therefore,

the null scenario in mediation analysis is one in which there is no

explanation of variance in M or Y. The limiting alternative sce-

nario, on the other hand, is one in which X explains all of the

variance in M, while X and M each explain all of the variance in

Y. The observed effect size will lie between these two extremes (0

and 1). These extreme values suggest a basis for defining the

residuals to be used in a modification of Berry and Mielke’s (2002)

index appropriate for mediation analysis.

First, we define the null model residuals for the M and Y

equations (in which no variance is explained in either) as

e0Mi
� Mi � M (27)

Figure 6. Plots of R4.7
2 plotted against ab for 15,000 indirect effects,

holding the total effect c constant at .2 (top) and .8 (bottom).
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and

e0Yi
� Yi � Y, (28)

respectively, where M and Y are the means of M and Y. Second, we

define alternative model residuals for the M and Y equations

(conforming to the estimated model) as

e1Mi
� eM.Xi

� Mi � dM.X � aXi (29)

and

e1Yi
� eY.Xi

� eY.Mi
� eY.XMi

� 	Yi � dY.X � cXi
 � 	Yi � dY.M � dMi
 � 	Yi � dY.XM

� bMi � c�Xi


� Yi � dY.X � cXi � dY.M � dMi � dY.XM � bMi � c�Xi,

(30)

respectively, where a, b, and c� are as defined earlier and d is the

slope relating M to Y with no other regressors in the model. The

residuals e1Yi
correspond to that part of Y not explained jointly by

X and M. Therefore, e1Yi
is the part of Y not explained by X, plus

the part of Y not explained by M, minus the part these two

quantities share (so that it is not counted twice). Equation 30 is

analogous to the way in which a joint probability is determined,

where two probabilities are added and their intersection removed

[i.e., P(A or B) � P(A) � P(B) – P(A and B)]. Ideally, the e1Yi
s will

be as small as possible. These residuals are then combined to

produce �, a residual-based effect size index:

� � 1 �

�
i�1

n ��e1Mi

2
� �e1Yi

2 �
�
i�1

n ��e0Mi

2
� �e0Yi

2 �
�

�
i�1

n

	 �e1Mi
� � �e1Yi

� 


�
i�1

n

	 �e0Mi
� � �e0Yi

� 


(31)

� can be interpreted as a measure of the extent to which variance

in M is explained by X, and variance in Y is explained jointly by

X and M. It has the advantages of being directly interpretable and

lying on a meaningfully scaled metric; � is bounded above by 1

and is very rarely less than 0 when mediation is in evidence. G, the

sample estimate of �, is also independent of sample size. Whereas

confidence intervals may be constructed for � using bootstrap

methods, as of yet, no exact analytic confidence interval formula-

tion procedure is known to us. In the SPBY example, G � �̂ �
.049 (95% CI [.024, .081]).

One complicating factor should be noted with respect to G: The

value of G is influenced by the scales of M and Y. If these scales

differ, then G will be unduly influenced by either the residuals

associated with M or those associated with Y. Therefore, we

suggest a standardized version, � (g in samples), that has the same

formula but draws residuals from standardized regressions rather

than unstandardized regressions (i.e., replaces the errors in Equa-

tion 31 with those obtained from using standardized scores instead

of raw scores in the regression model). That is, � (or g) is Equation

31 applied to the residuals of regression models in which all of the

variables have been standardized. In the SPBY example, g � �̂ �

.044 (95% CI [.023, .072]).

A second complicating factor associated with � and � is that

they can be nonzero in situations where the indirect effect is

absent (i.e., ab � 0 but � and � are nonzero). Nevertheless, we

do not consider nonzero residual-based effect sizes (� or �)

necessarily problematic. If one considers the theoretically ideal

mediation effect as one in which X explains all the variance in

M and both X and M explain all the variance in Y, then it is

sensible to quantify how close to that ideal we have come. The

effect sizes � and � quantify this idea. This is one case in which

the effect size measure does not coincide with the way in which

the effect itself is commonly operationalized—it is a measure of

total variance explained rather than a product of regression

coefficients. Therefore, we suggest that � and � can serve as

useful supplementary measures to report along with the indirect

effect and other effect sizes, such as the unstandardized and

standardized maximum possible indirect effect, which we now

discuss.

Maximum Possible Indirect Effect and Its

Standardized Version

The second effect size we propose, and ultimately recommend, is

the magnitude of the indirect effect relative to the maximum possible

indirect effect. In general, an effect that may seem trivial in absolute

size may in fact be relatively large when one considers the range of

potential values the effect could have assumed, given characteristics

of the design or distributional characteristics of the variables. Even

under ideal distributional conditions and linear relationships, there are

real limits on the values that regression weights (and thus indirect

effects) can take on, given certain characteristics of the data.

For example, consider a multiple regression model that accounts

for “only” .125 (raw) units of variance in the dependent variable.

Initially, accounting for only .125 units of variance may seem

trivial. However, if the variance of the dependent variable were

only .15 units to begin with, the model accounts for 83.33%

(.125/.15 � .8333) of the variance that it could have possibly

accounted for. Thus, looking at the raw value of the amount of

variance accounted for does not necessarily give an accurate

portrayal of the effectiveness of a regressor.

As another example, this time in the context of mediation,

consider the hypothetical situation in which sX
2 � sM

2 � sY
2 � 1.0

and the total effect c � .6. Given these constraints, ab is not

bounded because b is not bounded. However, consider the case in

which we hold a fixed to some conditional value, like .3. When this

is true, b is bounded (in fact, b must lie between �.84), and

therefore ab is also bounded (here, to �.25). Similarly, for a given

value of b under the above constraints, the absolute value of a must

lie within a certain range, and therefore ab is again bounded. The

range of possible standardized indirect effects is presented graph-

ically on the vertical axis of Figure 7 for c � �.19 (the standard-

ized c coefficient from the SPBY example). From Figure 7 it can

be seen that in the neighborhood of a � 0, the possible range of ab

is restricted to the neighborhood of ab � 0. As a departs from 0 in

104 PREACHER AND KELLEY

Preacher
Line

Preacher
Text Box
"1 - "



either direction, larger values of b become possible, in turn per-

mitting a greater potential range for values of ab.

A logical question, then, is how can these bounds on a, b, and ab

be determined? Hubert (1972) demonstrated how to obtain lower and

upper boundaries for elements of a covariance matrix. Consider the

3 � 3 symmetric matrix S (which in the present case may be

considered the covariance matrix of X, M, and Y), partitioned as

S � �A G

G� var(Y)� � � �X
2 �MX �YX

�MX �M
2 �YM

�YX �YM �Y
2
�. (32)

S is nonnegative definite if and only if G�A�1G � var	Y
. This

restriction implies the following permissible range for the a coef-

ficient of a mediation model if b and c are held fixed:

a � ��YM�YX � ��M
2 �Y

2
� �YM

2 ��X
2�Y

2
� �YX

2

�X
2�Y

2 	 (33)

(where � here means “is contained in”) and the following per-

missible range for the b coefficient if a and c are held fixed:

b � ��
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2 	. (34)

Given these restrictions, it is possible to derive boundaries for

the indirect effect ab given a fixed a and c or a fixed b and c. First,

let 	·
 be an operator that returns the most extreme possible

observable value of the argument parameter with the same sign as

the corresponding sample parameter estimate. For example, if b̂ �
�.10 and the bounds identified for b in Equation 34 are �.21 and

.21, (b) � �.21. (b) would not be .21 because b̂ is negative,

necessitating that 	b
 also be negative. Holding b and c constant,

the bounds on ab can be derived by beginning with the bounds

implied for a and multiplying by the 	b
 identified in Equation

34 by the most extreme possible value with the same sign as ab.

This yields (after a few algebraic steps)

ab � � 	b

�YM�YX � ��M

2 �Y
2

� �YM
2 ��X

2�Y
2

� �YX
2

�X
2�Y

2 	. (35)

Taking the most extreme limit of the two limits from Equation

35 that is of the same sign as ab provides the maximum possible

indirect effect. Holding a and c constant, the equivalent bounds on

ab can be derived by beginning with the bounds implied for b and

multiplying by 	a
 obtained from Equation 33, yielding

ab � �� (a)
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2 	. (36)

As above, taking the most extreme of the two limits from

Equation 36 that is of the same sign as ab provides the maximum

possible indirect effect. Rather than determining the possible range

of ab, the maximum possible indirect effect is obtained by the

product of 	a
 and 	b
:

	ab
 � (a) 	b
. (37)

Full derivations of these results can be found in Appendix A.

The obtained indirect effect âb̂ can be interpreted in light of this

range. 	ab
 will be identical for both of these methods. Notice

also that 	ab
 can itself be used as an effect size, even though we

primarily suggest that it be used as the standardizer in the calcu-

lation of another effect size we present below.

In sum, if the research question involves the effect size of an

indirect effect, it is sensible to ask what the maximum attainable

value of the indirect effect (in the direction of the observed indirect

effect) could have been, conditional on the sample variances and

on the magnitudes of relationships among some of the variables.8

Reporting that an indirect effect is ab � .57 tells us little in

isolation (much like the amount of variance accounted for in the

previous example), but when it is considered that the most extreme

value ab could possibly have attained (given the observed c and

conditioning on either a or b) is .62, the effect size may be

considered larger than if (ab) were .86.9

As an example of computing 	ab
 in the SPBY data, first note

that the covariance matrix of VAC, ATD, and DVB is

S � � 2.2683 0.6615 �0.0869

0.6615 2.2764 �0.2259

�0.0869 �0.2259 0.0922
�. (38)

The permissible ranges of a and b are thus

8 In addition to restrictions imposed by the magnitudes of certain vari-

ances and coefficients, there is a further restriction on the possible size of

an indirect effect. Carroll (1961) and Breaugh (2003) pointed out that,

unless the two variables have equivalent distributions (e.g., both normal),

their correlation cannot equal 1.0. Because variables are rarely perfectly

normally (or even equally) distributed in real applications, the maximum

possible effect usually will be lower in practice than in theory.
9 If only c is held to be known (rather than either {a and c} or {b and c}),

these results imply a bounded region for ab.

Figure 7. Plot of the indirect effect ab versus a and b when X, M, and Y

are standardized and c � –0.19.
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a � �sYMsYX � �sM
2 sY

2
� sYM

2 �sX
2sY

2
� sYX

2

sX
2sY

2 	

� 
�
�.2259 � �.0869 � �	2.2764
	.0922
 � 	�.2259
2

� �	2.2683
	.0922
 � 	�.0869
2�
	2.2683
	.0922


�
� ��.762, .950�, (39)

making 	a
 � .950, and

b � �� �sX
2sY

2
� sYX

2

�sX
2sM

2
� sMX

2 	
� ���	2.2683
	.0922
 � 	�.0869
2

�	2.2683
	2.2764
 � 	.6615
2 	
� ��.207, .207�, (40)

making 	b
 � �.207. The sample bounds for ab are obtained

using Equation 35 and the outer bound for b:

ab � � 	b
�sYMsYX � �sM
2 sY

2
� sYM

2 �sX
2sY

2
� sYX

2

sX
2sY

2 �	
� ��.2065	�.7618, .9495
�

� ��.196, .157�, (41)

making (ab) � �.196. Instead, using Equation 36 and the outer

bound for a, the sample bounds are

ab � �� 	a

��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2 	
� ��.9495

�	2.2683
	.0922
 � 	�.0869
2

�	2.2683
	2.2764
 � 	.6615
2 	
� ��.196, .196�, (42)

making (ab) � �.196, which was already known from Equation

41. Regardless of whether 	ab
 is calculated directly based on

Equation 37 or indirectly based on Equation 35 or Equation 36, the

value will always be the same.

Given that (ab) � �.196, the observed âb̂ of �.028 implies

that even though the indirect effect is statistically significant, it is

much smaller than it could have been. This is a key point: Bound-

ing values of parameters often are not appreciated when interpret-

ing the magnitude and importance of effect sizes.

Rather than considering the maximum value of the indirect

effect as an effect size, per se, we use (ab) to define a

standardized effect size that compares the value of ab to (ab).

That is, we define the standardized effect size, which we de-

note �2,

�2
�

ab

	ab

. (43)

�2 is interpreted as the proportion of the maximum possible

indirect effect that could have occurred, had the constituent effects

been as large as the design and data permitted. �2
� 0 implies

that there is no linear indirect effect, and �2
� 1 implies that the

indirect effect is as large as it potentially could have been. We use

the notation kappa-squared (i.e., �2) to denote that like the squared

multiple correlation coefficient, it (a) cannot be negative, (b) is

bounded (inclusively) between 0 and 1, and (c) represents the

proportion of the value of a quantity to the maximum value it could

have been. Otherwise, �2 and the population squared multiple

correlation coefficient have generally different properties. In order

to estimate �2, we suggest that sample values of the variances and

covariances replace their population counterparts. �2 is a standard-

ized value, as it is not wedded to the original scale of the variables,

allows (at least) bootstrap confidence intervals to be formed, and is

independent of sample size. We find these qualities to be advan-

tageous. For the SPBY example, the proportion of the maximum

observed indirect effect that was observed is

k2
� �̂2

�

âb̂

	âb̂

�

�.0281

�.1961
� .143, (44)

with bootstrap 95% CI [.100, .190].

R Tools

To encourage and facilitate the application of the methods we

have advocated for communicating the effect size of mediation

effects, we have developed a set of easy to use R functions, which

are contained in the MBESS (Kelley & Lai, 2010; Kelley, 2007a,

2007b) R (R Development Core Team, 2010) package. The

specific MBESS functions are mediation(), mediation

.effect.bar.plot(), and mediation.effect.plot(),

which implement the mediation model and all of the mediation

effect sizes we have discussed, with or without bootstrap confi-

dence intervals. The functions mediation.effect.bar

.plot() and mediation.effect.plot() can be used to

create effect bar plots and effect plots, respectively—two graphical

methods of communicating mediation effects (discussed on the

website). The mediation() function accepts either raw data or

summary statistics (i.e., means and variances/covariances) for sim-

ple mediation models, as we have described. The mediation()

function reports the results of the three separate regression models

and all of the effect sizes, optionally with percentile and/or bias

corrected accelerated bootstrap confidence intervals. Documenta-

tion for the functions is contained within the MBESS package.

Discussion

Researchers should consider not only the statistical significance

of indirect effects but also the effect size of a given effect. We

reemphasize the growing consensus that reporting effect size is

crucial to the advancement of psychological science. As Cumming

et al. (2007) wrote,

It is important and urgent that psychology change its emphasis from the

dichotomous decision making of NHST to estimation of effect size . . .

Effect sizes must always be reported—in an appropriate measure, and

wherever possible with CIs—and then interpreted. To achieve this goal,
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researchers need further detailed guidance, examples of good practice,

and editorial or institutional leadership. (pp. 231–232)

It is hoped that this discussion has been a step in the right

direction in the context of reporting and interpreting mediation

effects. This is an especially important type of statistical model in

which to apply effect sizes, as mediation models are so widely

used in research.

We have discussed many effect sizes with potential application

in mediation analysis. The researcher may be at somewhat of a loss

when choosing an appropriate effect size measure, given that there

are so many choices. We offer two suggestions that may render the

choice easier. First, there is no reason to report only one effect size.

If circumstances permit, reporting multiple effect sizes can yield

greater understanding of a given effect, with the added benefit that

more effect size measures are available for possible use in meta-

analysis. As an analogy, regression results are often reported in a

table containing unstandardized regression coefficients, standard-

ized regression coefficients, and �R2 for each regressor, R2, and

RAdj.
2 —five different types of effect sizes, with the first three effect

size measures being repeated for each regressor in the model. Each

of these effect sizes measures communicates different information

in different units. Additionally, a researcher desiring to communi-

cate the meaning of an indirect effect in a mediation analysis might

also report the unstandardized indirect effect (ab) and the residual-

based index �, or some other combination of effect sizes.

Second, earlier we presented three desiderata for good effect

size measurement: A good effect size should be scaled on a

meaningful, but not necessarily standardized, metric; it should be

amenable to the construction of confidence intervals; and it should

be independent, or nearly so, of sample size. The researcher should

remain cognizant of these desiderata when selecting an appropriate

effect size. We suggest that if the researcher wishes to use an effect

size that does not fulfill all the desiderata we have outlined, it

should be supplemented with additional effect sizes.

We encourage researchers to think about the most important

aspects of the effects they wish to report and seek effect size

measures that address those aspects. To aid researchers in deciding

which effect size measure(s) to report, in Table 3 we note, for each

effect size measure, whether it fulfills the three desiderata. More

concretely, we recommend researchers report, at a minimum, the

estimated value of �2, the ratio of the obtained indirect effect to the

maximum possible indirect effect. The benefits of using �2 are that

it is standardized, in the sense that its value is not wedded to the

particular scale used in the mediation analysis; it is on an inter-

pretable metric (0 to 1); it is insensitive to sample size; and with

bootstrap methods, it allows for the construction of confidence

intervals. We do not rule out an analytic method of confidence

interval formation for �2, but for practical purposes, the bootstrap

confidence interval is advantageous.

An obvious question regarding �2 is “what constitutes a large

value?” As we have previously noted, a “large” value need not

constitute an important value, and an important value need not be

a “large” value. We also are very hesitant to put any qualitative

descriptors on a quantitative value. However, if one were forced to

attach such labels to �2, we believe it makes sense to interpret them

in the same light as squared correlation coefficients are often

interpreted, that is, with Cohen’s (1988) guidelines. In particular,

after some hesitation on the part of Cohen to define benchmarks

for various effect sizes (1988, section 1.4), he ultimately concludes

that such benchmarks can be beneficial. For the proportion of

variance accounted for in one variable by another (i.e., rxy
2 ), Cohen

defines small, medium, and large effect sizes as .01, .09, and .25

Table 3

Characteristics of 16 Effect Size Measures for Mediation Analysis

Effect size Standardized? Bounded?
Desideratum 1: Interpretable

scaling?
Desideratum 2: Confidence

interval available?
Desideratum 3: Independent

of sample size? 

    Verbal descriptors

PM ✓ ✓ ✓

RM ✓ ✓ ✓

SM ✓ ✓

ab ✓ ✓ ✓

abps Partially ✓ ✓ ✓

abcs ✓ ✓ ✓ ✓

R4.5
2 ✓ ✓ ✓

R4.6
2 ✓ ✓ ✓ ✓

R4.7
2 ✓ ✓ ✓

SOS ✓ ✓ ✓

ES ✓ ✓ ✓

� Partially ✓ ✓ ✓

� ✓ Partially ✓ ✓ ✓

(ab) ✓ ✓ ✓

�2 ✓ ✓ ✓ ✓ ✓

Note. SOS � shared over simple effects; ES � effect size.
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(pp. 79–81). Because of the similar properties of rxy
2 and �2, we

believe that the benchmarks for rxy
2 are similarly applicable for �2.

Recalling that in the SPBY data �2
� .143 with 95% CI [.100,

.190], one could argue that the mediation effect in the SPBY data

is at least medium (because the 95% confidence interval excludes

.09) but smaller than large (because the confidence interval ex-

cludes .25). Thus, the size of the mediation effect in the SPBY data

may be appropriately labeled as lying in the medium range. How-

ever, we emphasize that the best way to describe �2 is with its

quantitative value, estimated to be .143 for the SPBY data.

To truly understand the value of �2 in a given context, compre-

hensive studies describing the typical values of �2 in well-defined

research areas would be very useful. Further, such effect sizes

could be treated as dependent variables with various regressors/

explanatory variables in a meta-analytic context, where an expla-

nation of various values of effect sizes is attempted.

Limitations and Cautions

It is appropriate at this point to identify several limitations

and cautions in the application of effect sizes for mediation

effects. First, as is the case with virtually any effect size,

relatively small effect sizes may be substantively important,

whereas relatively large ones may be trivial, depending on the

research context. An objectively small effect in high-stakes

research may be deemed very important by the scientific com-

munity, whereas an objectively large effect in other fields may

not reach a noteworthy level. Because of this, we caution

researchers to not rigidly interpret effect size measures against

arbitrary benchmarks. Snyder and Lawson (1993) emphasized

that using benchmarks to judge effect size estimates ignores

judgments regarding clinical significance, the researcher’s per-

sonal value system, the research questions posed, societal con-

cerns, and the design of a particular study. Although we do not

argue against setting benchmarks, it is important that the field of

application to which the benchmarks apply should be clearly

delineated. Further, a strong rationale should be given for why

a particular value is given for a benchmark. Probably the safest

route is to simply report the effect size without providing

unnecessary and possibly misleading commentary about its size

(Robinson, Whittaker, Williams, & Beretvas, 2003).

Second, we caution that it is a mistake to equate effect size with

practical importance or clinical significance (Thompson, 2002).

Certainly some values of some effect sizes can convey practical

importance, but depending on the particular situation, what is and

what is not practically important will vary. Fern and Monroe

(1996, pp. 103–104) cautioned that importance or substantive

significance should not be inferred solely on the basis of the

magnitude of an effect size. Several features of the research

context should be considered as well. Ultimately, the practical

importance of an effect depends on the research context, the cost

of data collection, the importance of the outcome variable, and the

likely impact of the results. Consequently, researchers are cau-

tioned to avoid generalizing beyond the particular research design

employed. Effect sizes should serve only as guides to practical

importance, not as replacements for it, and are at best imperfect

shadows of the true practical importance of an effect.

Third, outliers and violations of assumptions of statistical meth-

ods compromise effect size estimates, p-values, and confidence

intervals. Correspondingly, it is vitally important that researchers

perform diagnostic checks to ensure that the assumptions of their

inferential techniques are not obviously violated. It is well known

that outliers can spuriously inflate or deflate statistical significance,

Type II error rates (Wilcox, 2005), and confidence interval cover-

ages, but they can also inflate or deflate estimates of effect size.

Consequently, it is wise to determine the extent to which assump-

tions are met and to examine one’s data for outliers. If problems

are detected, remedial steps should be taken, or appropriate caveats

should be included with the reported results.

Fourth, all of the effect sizes we have discussed have limita-

tions. It is important to keep those limitations in mind when using

them. For example, the effect sizes discussed have not yet been

extended for use in models involving multiple mediators. No effect

size is universally applicable or meaningful in all contexts. Cor-

respondingly, researchers will need to decide which effect size

most appropriately conveys the meaning of the results in the

particular context.

Fifth, effect sizes can depend on variability. Brandstätter (1999)

pointed out that the “degree of manipulation” can affect the value

of the effect size. Cortina and Dunlap (1997) and Dooling and

Danks (1975) made similar points. This realization is important for

effect sizes in the context of mediation because X frequently is

manipulated, yet the strength of the manipulation often is made

arbitrarily large to maximize power for detecting an effect. The

effect size for such effects does not imply that a “large” effect

would be similarly astounding had X merely been observed rather

than manipulated. In fact, McClelland (1997) and McClelland and

Judd (1993) advocated an “extreme groups” approach for detecting

effects, such that extremes are oversampled at the expense of

central scores. Oversampling extreme groups is a worthwhile

approach when the goal is to maximize power in order to infer that

differences exist. However, trustworthy and generalizable esti-

mates of standardized effect size require (a) random sampling or

(b) manipulation strength that matches what one would expect to

find in nature (see Cortina & DeShon, 1998, for a summary of

some of these points).

Future Directions

The methods we have discussed here are hardly definitive. For

example, results here are limited to the simple mediation model.

Extension to more complex mediation models, such as those for

panel data (Cole & Maxwell, 2003), moderated indirect effects

(Edwards & Lambert, 2007; Preacher, Rucker, & Hayes, 2007), or

multiple mediators (MacKinnon, 2000; Preacher & Hayes, 2008b)

should be devised and investigated. As Maxwell and Cole (2007)

pointed out, P̂M is a biased estimate of effect size if one uses

cross-sectional data when the effect of interest is one that takes

time to unfold. They go on to show that when X has greater

longitudinal stability than M, P̂M will be biased downward relative

to the corresponding longitudinal index. Conversely, when M is

more stable than X, P̂M will be biased upward. This criticism is

valid, and similar criticisms apply to any effect size measure based

on the analysis of cross-sectional data when the process under

study is a longitudinal one. The lesson here is that any effect size

estimate must be interpreted in the context of the specific research

design used. The specific lags chosen to separate the measurement
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of X, M, and Y are part of that context, so generalizing results

beyond that context should be done with extreme caution.

Particularly useful would be studies conducted to establish

defensible benchmarks for different effect size measures denot-

ing small, medium, and large effects in particular research

contexts. For example, a study could be conducted to establish

what values of abcs or �2 should be considered small, medium,

and large for alcoholism treatment studies to help determine

what mechanisms are primarily responsible for explaining the

effectiveness of intervention programs. The establishment of

generally accepted benchmarks based on published research for

different effect sizes in a variety of research contexts would

facilitate meta-analysis. We believe �2, in addition to other

effect sizes, will be a useful measure in meta-analyses of

mediation effects when the proportion of the maximum possible

indirect effect obtainable across different samples is an inter-

esting research question. �2 fulfills the desiderata for good

effect size estimates, and it is standardized (and therefore

independent of the scaling of variables) and bounded.

We have not discussed sample size planning methods for

mediation models, but it is an important issue. The power

analytic (e.g., Cohen, 1988) and the accuracy in parameter

estimation (AIPE) approaches to sample size planning (e.g.,

Kelley & Maxwell, 2003, 2008) should be considered. Theo-

retically, for any effect of interest, sample size can be planned

so that there is a sufficiently high probability to reject a false

null hypothesis (i.e., power analysis) and/or sample size can be

planned so that the confidence interval is sufficiently narrow

(i.e., accuracy in parameter estimation; see Maxwell, Kelley, &

Rausch, 2008, for a review). “Whenever an estimate is of

interest, so too should the corresponding confidence interval for

the population quantity” (Kelley, 2008, p. 553). The goal of

AIPE is to obtain a sufficiently narrow confidence interval that

conveys the accuracy with which the population value has been

estimated by the point estimate of the effect size. If that

confidence interval is wide for an effect size of interest, less is

known about the value of the population parameter than would

be desirable. Moving forward, the power and AIPE approaches

to sample size planning should be fully developed for effect

sizes used in a mediation context.

Prescriptions for Research

Research on effect size for mediation effects is relatively new

and thus not fully developed. We nevertheless end by offering

some concrete recommendations for researchers wanting to report

effect size for mediation effects. We reiterate the “Three Reporting

Rules” suggested by Vacha-Haase and Thompson (2004) for re-

porting effect size estimates; these rules are just as applicable in

the mediation context as in many other contexts:

1. Be explicit about what effect size is being reported. Of-

ten we see “effect size” reported with no indication as to whether

the reported index is a correlation coefficient, mean difference,

Cohen’s d, �2, and so on, or why one measure was chosen over

competing measures. The particular effect size cannot always be

accurately inferred from the context in which it was reported.

2. Interpret effect sizes considering both their assumptions

and limitations. All of the effect sizes discussed here require

certain assumptions to be satisfied in order to obtain trustworthy

confidence intervals. Specifically, observations should be inde-

pendent and identically distributed, or the researcher risks ob-

taining confidence intervals with incorrect coverage. In addi-

tion, we have discussed limitations associated with each of the

effect sizes we presented. It is important to explicitly consider

the assumptions and limitations when reporting and interpreting

effect size.

3. Report confidence intervals for population effect sizes.

Confidence intervals are necessary to communicate the degree of

sampling uncertainty associated with estimates of effect size and

are a valuable adjunct to any point estimate effect size measure.

Our most emphatic recommendation, however, is that meth-

odologists undertake more research to establish meaningful,

trustworthy methods of communicating effect size and practical

importance for mediation effects. Tests of mediation have pro-

liferated at an unprecedented rate in recent years, with a heavy

emphasis on establishing statistical significance and very little

attention devoted to quantifying effect size and/or practical

importance. We fear that this lack of balance has led to a

proliferation of nonchance but trivially important mediation

effects being reported in the literature. In addition, the lack of

effect size reporting for mediation analyses has seriously lim-

ited the accumulation of knowledge in some fields. Conse-

quently, we strongly urge researchers to consider not only

whether their effects are due to chance (i.e., is statistical sig-

nificance reached?) but also how large the effect sizes are and

how relevant they are to theory or practice.
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Appendix A

Derivation of Boundaries for Maximum Possible Indirect Effect

Correlations within a correlation matrix set limits on the ranges of the remaining correlations because of the

necessity to maintain positive definiteness. These range restrictions, in turn, imply range restrictions on

unstandardized regression weights subject to the variables’ variances. Beginning with correlations in a 3�3

matrix,

�21�32 � �1 � �21
2 �1 � �32

2
� �31 � �21�32 � �1 � �21

2 �1 � �32
2 , (A1)

�31�32 � �1 � �31
2 �1 � �32

2
� �21 � �31�32 � �1 � �31

2 �1 � �32
2 , (A2)

�21�31 � �1 � �21
2 �1 � �31

2
� �32 � �21�31 � �1 � �21

2 �1 � �31
2 . (A3)

For the simple mediation model considered in this article, in which X, M, and Y are variables 1, 2, and 3,

the corresponding standardized regression weights are

a � �21
, (A4)

b �

�32 � �21�31

1 � �21
2

, (A5)

c� �

�31 � �21�32

1 � �21
2

. (A6)

The unstandardized regression weights are

a � �21

�M

�X

, (A7)

b �

�32 � �21�31

1 � �21
2

�Y

�M

, (A8)

c� �

�31 � �21�32

1 � �21
2

�Y

�X

. (A9)

The unstandardized indirect effect is therefore

ab � �21

�32 � �21�31

1 � �21
2

�Y

�X

�

�XM	�X
2�MY � �XM�XY


�M
2 	�X

2
2	1 � �XM
2 


. (A10)
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Now, consider the partitioned matrix:

� � �A G

G� var(Y)�. (A11)

� is nonnegative definite if and only if G�A�1G � var(Y). Hubert (1972) showed the special case where

��P, a correlation matrix:

P � �A G

G� var(Y)� � � 1 �21 �31

�21 1 �32

�31 �32 1
�. (A12)

In this special case, the theorem implies

1

1 � �21
2

[�31 �32]� 1 ��21

��21 1 ���31

�32
� � 1,

1

1 � �21
2

[�31 � �21�32 �32 � �21�31]��31

�32
� � 1,

�31	�31 � �21�32
 � �32	�32 � �21�31


1 � �21
2 � 1,

�21
2

� �31
2

� �32
2

� 2�21�31�32 � 1 � 0, (A13)

which can be solved algebraically (by completing the square) to obtain any of the three ranges from above

(Equations A1, A2, and A3). In the more general case of �, we can obtain bounds for, say, �MX:

� � � A G

G� var(Y)��� �X
2 �MX �YX

�MX �M
2 �YM

�YX �YM �Y
2
�, (A14)

implying

1

�X
2�M

2
� �MX

2
[�YX �YM]� �M

2 ��MX

��MX �X
2 ���YX

�YM
� � �Y

2,

1

�X
2�M

2
� �MX

2

��YX�M
2

� �MX�YM ��MX�YX � �YM�X
2���YX

�YM
� � �Y

2,

�MX
2 �Y

2
� 2�MX�YM�YX � �X

2�M
2 �Y

2
� �YM

2 �X
2

� �YX
2 �M

2 ,

�MX
2

�

2�MX�YM�YX

�Y
2 �

�X
2�M

2 �Y
2

� �YM
2 �X

2
� �YX

2 �M
2

�Y
2 ,

�MX
2

�

2�MX�YM�YX

�Y
2 � ��YM�YX

�Y
2 �2

�

�X
2�M

2 �Y
2

� �YM
2 �X

2
� �YX

2 �M
2

�Y
2 � ��YM�YX

�Y
2 �2

,

��MX �

�YM�YX

�Y
2 �2

�

�X
2�M

2 �Y
2

� �YM
2 �X

2
� �YX

2 �M
2

�Y
2 � ��YM�YX

�Y
2 �2

,

�MX � ��YM�YX

�Y
2 � ��X

2�M
2 �Y

2
� �YM

2 �X
2

� �YX
2 �M

2

�Y
2 � ��YM�YX

�Y
2 �2	,

�MX � ��YM�YX � ��M
2 �Y

2
� �YM

2 ��X
2�Y

2
� �YX

2

�Y
2 	, (A15)
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with � meaning “is contained in.” Ranges for the other two covariances are of similar form. The correlation

case is a special case of this more general treatment for covariances.

The bounds implied for regression coefficient a can be derived from the above result by simply isolating

a using its expression in covariance metric:

�MX � ��YM�YX � ��M
2 �Y

2
� �YM

2 ��X
2�Y

2
� �YX

2

�Y
2 	,

�MX

�X
2 � ��YM�YX � ��M

2 �Y
2

� �YM
2 ��X

2�Y
2

� �YX
2

�X
2�Y

2 	,

a � ��YM�YX � ��M
2 �Y

2
� �YM

2 ��X
2�Y

2
� �YX

2

�X
2�Y

2 	. (A16)

Another method for obtaining the bounds for a, using its correlation metric expression and altering the central

term until it equals the formula for a and simplifying, is

�31�32 � �1 � �31
2 �1 � �32

2
� �21 � �31�32 � �1 � �31

2 �1 � �32
2 ,

�31�32

�M

�X

� �1 � �31
2 �1 � �32

2
�M

�X

� �21

�M

�X

� �31�32

�M

�X

� �1 � �31
2 �1 � �32

2
�M

�X

,

�YX�YM

�X
2�Y

2 � �1 � � �YX

�X�Y
�2�1 � � �YM

�M�Y
�2 �M�X�Y

2

�X
2�Y

2 � a �

�YX�YM

�X
2�Y

2 � �1 � � �YX

�X�Y
�2�1 � � �YM

�M�Y
�2 �M�X�Y

2

�X
2�Y

2 ,

�YX�YM

�X
2�Y

2 � �1 �

�YX
2

�X
2�Y

2 �1 �

�YM
2

�M
2 �Y

2

�M�X�Y
2

�X
2�Y

2 � a �

�YX�YM

�X
2�Y

2 � �1 �

�YX
2

�X
2�Y

2 �1 �

�YM
2

�M
2 �Y

2

�M�X�Y
2

�X
2�Y

2 ,

�YX�YM � ��Y
2�X

2
� �YX

2 ��M
2 �Y

2
� �YM

2

�X
2�Y

2 � a �

�YX�YM � ��Y
2�X

2
� �YX

2 ��M
2 �Y

2
� �YM

2

�X
2�Y

2 ,

a � ��YX�YM � ��Y
2�X

2
� �YX

2 ��M
2 �Y

2
� �YM

2

�X
2�Y

2 	. (A17)

For b, a similar procedure could be followed:

�21�31 � �1 � �21
2 �1 � �31

2
� �32 � �21�31 � �1 � �21

2 �1 � �31
2 ,

� �1 � �21
2 �1 � �31

2
� �32 � �21�31 � �1 � �21

2 �1 � �31
2 ,

�

�1 � �21
2 �1 � �31

2

1 � �21
2 �

�32 � �21�31

1 � �21
2 �

�1 � �21
2 �1 � �31

2

1 � �21
2 ,

�

�Y�1 � �31
2

�M�1 � �21
2

� b �

�Y�1 � �31
2

�M�1 � �21
2

, (A18)
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b � 
�

�Y�1 �

�YX
2

�Y
2�X

2

�M�1 �

�MX
2

�M
2 �X

2
�,

b � ��
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2 	.

Now that bounds are known for b (given a and c) and for a (given b and c), the bounds for ab can be

determined. For given a and c, the bounds on ab can be derived by beginning with the bounds implied for b

and multiplying all terms by the conditional value 	a
, the most extreme possible observable value of a with

the same sign as â (from Equation A16 or A17):

�
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2
� b �

��X
2�Y

2
� �YX

2

��X
2�M

2
� �MX

2
,

� (a)
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2
� b 	a
 � 	a


��X
2�Y

2
� �YX

2

��X
2�M

2
� �MX

2
,

ab � �� (a)
��X

2�Y
2

� �YX
2

��X
2�M

2
� �MX

2 	. (A19)

For given b and c, the bounds on ab can be derived by beginning with the bounds implied for a and

multiplying all terms by the conditional value 	b
:

�YX�YM � ��Y
2�X

2
� �YX

2 ��M
2 �Y

2
� �YM

2

�X
2�Y

2 � a �

�YX�YM � ��Y
2�X

2
� �YX

2 ��M
2 �Y

2
� �YM

2

�X
2�Y

2 ,

	b

�YX�YM � ��Y

2�X
2

� �YX
2 ��M

2 �Y
2

� �YM
2

�X
2�Y

2 � a 	b
 � 	b

�YX�YM � ��Y

2�X
2

� �YX
2 ��M

2 �Y
2

� �YM
2

�X
2�Y

2 ,

ab � � 	b

�YX�YM � ��Y

2�X
2

� �YX
2 ��M

2 �Y
2

� �YM
2

�X
2�Y

2 	. (A20)

The maximum possible indirect effect is obtained by the product of 	a
 and 	b
:

(ab) � 	a
 	b
. (A21)
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