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Abstract—The rapid increase in the number of text docu-
ments available on the Internet has created pressure to use
effective cleaning techniques. Cleaning techniques are needed
for converting these documents to structured documents. Text
cleaning techniques are one of the key mechanisms in typical
text mining application frameworks. In this paper, we explore
the role of text cleaning in the 20 newsgroups dataset, and report
on experimental results.

I. INTRODUCTION

While a variety of text mining applications seek to achieve
highly-accurate results, different cleaning methods should be
considered to achieve this effectively and efficiently. The
objective is to derive or concentrate organized representation
from unstructured plain textual data. Such representations
are then suitable for a particular reasoning and algorithm.
Cleaning techniques [1], [2], [3] include white space evacua-
tion, stop words removal, case collapsing, stemming, spelling
error correction, truncation extension, and negative handling.
Natural language processing procedures such as tokenization,
grammatical-feature labeling (part-of-speech) and linguistic
are a subset of these proceedings obliging the learning of the
language to be handled [5].

The dataset is a principle part of any experiment or eleva-
tion for a proposed techniques or methods. To date, there are
many benchmark datasets such as 20 Newsgroups [4], RCV1
[5], WebKB [6] available for research. The 20 Newsgroups
dataset, often called 20NG, is widely used in text mining,
information retrieval and machine learning research. In text
mining, there are various applications which used 20NG in
the literature, for example, classification [7], [8], [9], [10],
clustering [11], [12], [13], filtering[14] and sentiment analysis
[15]. Also, feature selection research papers have often used
20NG [16], [17], [18], [19], [20].

Text cleaning requires attention to numerous issues.
Newswire text corpora frequently contains misspelled words,
incorrect punctuation, erratic spacing and other irregularity fea-
tures. Punctuation generally compares to the use of phonemes
features in spoken language; to depend on all around framed
sentences delimited by unsurprising punctuation can be excep-
tionally dangerous. In some corpora, conventional prescriptive
standards are regularly overlooked.

The main purpose of document cleaning is to decrease
the dimensionality to control the number of terms in the

document [21]. Moreover, the cleaning stage will improve
the performance and efficiency by making the data uniform.
Different cleaning methods [2] widely used in text mining are
stop word removal, ignore the short terms, special character
removal, and stemming.

Stop words typically point to the most widely-recognized
words in a language. One of the challenges in natural language
processing (NLP) is that no universal stop word list exists.
Every language has its own list, and each may change over
time. There is more than one list for English, because the
way people communicate has changed. For instance, English
language has more than one list, because the communication
behaviour between people has changed over the years.

Words such as ”is”, ”which”, ”the”, ”and”, ”of” make
text data noisy, and that will reduce the efficient of text data
documents. Therefore, stop words removal play an important
role for document pre-processing steps for several reasons. The
first significant aspect is that reducing the noisy for the text
document and maintain the core term in document makes the
processing more efficient and effective.

Stemming is another effective technique. The main purpose
is to cut words down to their root. For example, in English,
the words ”smoker” and ”smoking” have the same root stem
”smoke”. The literature contains different algorithms for this
method. Porter stemming [22], [23] algorithm is a popular
technique. We used the GERS model [24] to evaluate the
cleaning algorithms for the first time. We choose GERS model
because it can integrate both terms and n-grams.

The rest of our paper is organized as follows. In the next
section, we will present the 20 Newsgroups dataset format.
Section III will present the methods we used for preparing the
data. In Section IV, we will evaluate the dataset and then, in
Section V, we state our conclusion.

II. DATA FORMAT IN 20 NEWSGROUPS

The 20 Newsgroups dataset is commonly used for text
mining applications. It was collected by Ken Lang [4]. The
20 Newsgroups data set is a test collection of approximately
20,000 newsgroups documents that 1000 documents were
taken from each of the newsgroups. It is divided across 20
different newsgroups. The category topics are related to com-
puters, politics, religion, sports, and science. Each document
belongs to exactly one newsgroup, but there is a small fraction



TABLE I. 20 NEWSGRROUPS CATEGORY

comp.graphics

comp.os.ms−windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

TABLE II. DOCUMENTS IN 20 NEWSGROUPS

Topic # documents in testing # documents in training # documents

alt.atheism 319 480 799

comp.graphics 389 584 973

comp.os.ms-windows.misc 394 591 985

comp.sys.ibm.pc.hardware 392 590 982

comp.sys.mac.hardware 385 578 963

comp.windows.x 395 593 988

misc.forsale 390 585 975

rec.autos 396 594 990

rec.motorcycles 398 598 996

rec.sport.baseball 397 597 994

rec.sport.hockey 399 600 999

sci.crypt 396 595 991

sci.electronics 393 591 984

sci.med 396 594 990

sci.space 394 593 987

soc.religion.christian 398 599 997

talk.politics.misc 310 465 775

talk.politics.guns 364 546 910

talk.politics.mideast 376 564 940

talk.religion.misc 251 377 628

Total 7532 11314 18846

of the articles belong to more than one category. The data
collection is the well-known 20-Newsgroups (20NG) dataset.
The categories of the dataset are shown in Table I. Some news-
groups, for example, the category comp.sys.ibm.pc.hardware
and comp.sys.mac.hardware are very similar to each other.
An example of the 20 newsgroups dataset document shown
in Fig1. From the example document, it contains more than
one headers such as subject and from. Subject header holds
the title of document and from header holds the email address
for the sender.

Moreover, different versions1 are available to use. In the
first version, the original dataset contained 19997 documents.
The second version that shown in Table II contains 18846
documents after removing some headers. In this version which
called ”bydate”, they organize the data into 60% for the
training and 40% for the testing. The last version that contains
18828 documents, they removed the duplicated and just remain
only the ”From” and ”Subject” header.

III. APPLIED METHODS FOR CLEANING

In this phase, the purpose is to make the unstructured
document more persistent to promote text representation. There
are different approaches using with text cleaning such as
stop word removal and stemming. Stop word removal or
stopping word aims to eliminate extremely common words
by using a stop word list that has partial predictive worth for
classification. In stemming, selected words are reduced to their
word stem such as the word ”waiting”, ”waits”, and ”waited”
would all to be reduced to single feature which is ”wait”.

1http://qwone.com/ jason/20Newsgroups/

Fig. 1. Sample Document

Since the 20 newsgroups dataset contains only e-mail
documents, the main issue we need to manage is the weight
connected to headers. The header contains a ”subject” and a
”from” field. The ”from” field contains the sender’s name or
email address (or both), along these lines no data about the
substance; hence, we disregard it. Weight is connected only to
the expressions of the ”subject” field.

The first step that we used was to remove special characters
such as ”#”, ”@”, and ”/” and irrelevant information such as
email addresses and numbers. In this stage, we used Java to
read all the dataset. Then, we used tokenization the text to
read words and check whether these were relevant or irrelevant
term. We ignored the subject header, email addresses, numbers,
and punctuation. We recognized the size of the dataset was
reduced to 32.5 MB (uncompressed folder).

The next step that we applied was the removal of stop
words. Stop words are fundamentally a situated of generally
utilized words as a part of any dialect, not just English. The
motivation behind why using stop words are basic to numerous
applications is that, on the off chance that we uproot the words
that are generally utilized as a part of a given dialect, we can
concentrate on the imperative words. Stop-word lists contain
function words such as articles, pronouns, conjunctions and
other non-informative terms that we applied at this stage. A
common stop word list that we used in our cleaning techniques
is in [25]. We also mention the size of the dataset was reduced
to 23.4 MB (uncompressed folder).

The third step was a word stemmer. In this stage, we
applied Porter algorithm [22] which is one of the popular
stemmer algorithm using in text mining research. The Porter



Fig. 2. Comparison the datasets size after using text cleaning techniques

algorithm is very fast and can handle removal of double letters
in words such as successful. It has five stages; during each step,
the rules are reviewed until the word passes all conditions. If a
rule is recognized, the prefix or suffix is deleted, and the next
step is performed, until finally the stemmed word is returned.
The Porter stemming algorithm is available online in Java2.

Finally, we eliminated 111 empty documents after we
finished the text prepossessing technicians. Fig 2 shows the
size of the dataset how decreased from 61.6 to 21.8 MB. The
documents totalled 18,734, with 7,467 in testing and 11,267
in training.

IV. EVALUATION

In this section, we will demonstrate the examination envi-
ronment and describe the experiment results and the discus-
sions. The principal model applied in to conducted the results
was the known method which is GERS.

In order to conduct the experiment, we used a popular
dataset which is 20 Newsgroups that we are describe it in
Section II.

GERS model [24] is a method to extract n-gram from text
documents. This method consists of two main stages: first,
selecting the best low-level terms, which attempts to improve
the quality of extracting n-grams and thereby reduce the com-
putational complexity and noisy features. Then these selected
features are used to extract high-level features (n-grams) using
Extended Random Set theory (ERS) to reweigh the extracted
n-grams by calculating the probability of extracted high-level
features and their low-level contents. Using the ERS theory
improves the system performance significantly compared with
other feature selection methods [26].

Before applying our technique, distinctive operations that
we showed in Section III have been led on the 20 newsgroups
dataset, for example, cleaning the data and eliminating a stop-
words list.

2http://tartarus.org/martin/PorterStemmer/java.txt

A. Measurements

The next measures are some broadly acknowledged and set-
tled assessment measurements. The evaluation metrics which
are the average precision of the top-20 return documents,
the break-even point (b/p) , interpolated Precision on 11-
points, Mean Average Precision (MAP), and F-scores the F1-
score measure are extensively used in information retrieval
and text mining research. As shown below, every measurement
emphases on an alternate part of the framework execution.

Precision p takes all retrieved documents into account. It
can also be evaluated at a given cut-off rank, considering only
the top-most results returned by the system. This measure is
also called top-n precision. In this paper, we used the top-20.
Another metric is the break-even point (b/p) which is used
when the precision and recall are equal. In addition, Mean
Average Precision (MAP) is figured by measuring the precision
of each relevant document then averaging the precision over all
the subjects. It consolidates precision, relevance ranking and
general review together to measure the nature of the retrieval
engines. Moreover, the Interpolated Average Precision (IAP)
was computed by measuring the precision relative to the recall.

The final measure is that the F-measure or often called
F1-score is the harmonic mean of Recall and Precision. It
is a measure of a test’s accuracy. The metric is computed as
follows:

F1 =
2pr

p+ r
(1)

B. Results

This section shows the results of the GERS method
employing the 20 Newsgroups dataset. Table III summarize
the results gained when GERS method is applied to the 20
Newsgroups dataset versions, respectively. In addition, the
results of the performances are shown in Fig 3.

Table III present a comparison result between the 20NG
versions where v.1 the dataset after removing irrelevant infor-
mation, v.2 after applied stop word removal, v.3 after applied
Stemmer algorithm, and v.4 after removing empty documents.
The results in the table show that the 20NG versions perfor-
mances are still keep the same as the original version. The
versions results that have applied text cleaning were very near
the original versions’ result.

Fig 2 shows the size of the dataset versions how were
reduced after applied text cleaning techniques. The size of the
original dataset was 61.6 MB. In v.1, the size of the dataset
reduced to 32.5 MB, about 50%. In addition, v.2 decreased
to 23.4 MB, and the v.3 size reduced to 21.8 MB as well as
the v.4. Therefore, irrelevant information removal and the stop
word removal are effective techniques to reduce the size of the
corps.



TABLE III. COMPARISON OF THE 20 NEWSGROUPS VERSIONS

DEPEND ON GERS METHOD

Dataset top-20 b/p MAP F score IAP

20NG Orginal 0.513 0.513 0.517 0.509 0.555

20NG v.1 0.513 0.504 0.513 0.508 0.549

20NG v.2 0.513 0.504 0.513 0.508 0.549

20NG v.3 0.510 0.505 0.513 0.508 0.548

20NG v.4 0.510 0.503 0.513 0.508 0.548

Fig. 3. Comparison results of GERS model on 20NG

V. CONCLUSION

This paper offerings methods for text cleaning 20
Newsgroups dataset for reorganized the document in structure
way. The first stage is to remove irrelevant information from
the dataset. The second step is to eliminate the stop word
list. The third phase is to convert the words to the root by
applying stemmer algorithm. Finally, it is to exclude the
empty documents from the dataset.

We conducted experiments the results show that text clean-
ing techniques have significantly reduced the dataset size. In
addition, the 20 Newsgroups dataset versions were tested via
a model which is GERS. The experimental results show that
the GERS method is still slightly effects.
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