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The prevalent affirmative action policy in school choice limits the number of ad-
mitted majority students to give minority students higher chances to attend their
desired schools. There have been numerous efforts to reconcile affirmative action
policies with celebrated matching mechanisms such as the deferred acceptance
and top trading cycles algorithms. Nevertheless, it is theoretically shown that un-
der these algorithms, the policy based on majority quotas may be detrimental to
minorities. Using simulations, we find that this is a more common phenomenon
rather than a peculiarity. To circumvent the inefficiency caused by majority quo-
tas, we offer a different interpretation of the affirmative action policies based on
minority reserves. With minority reserves, schools give higher priority to minor-
ity students up to the point that the minorities fill the reserves. We compare the
welfare effects of these policies. The deferred acceptance algorithm with minority
reserves Pareto dominates the one with majority quotas. Our simulations, which
allow for correlations between student preferences and school priorities, indicate
that minorities are, on average, better off with minority reserves while adverse
effects on majorities are mitigated.

K. School choice, affirmative action, deferred-acceptance algorithm,
top trading cycles algorithm.
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1. I

Affirmative action is a popular, albeit controversial, scheme that is implemented to
close socioeconomic gaps that exist between groups as a result of historic discrimina-
tion. To this end, it involves policies designed to increase the representation of some
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groups in public areas such as employment, education, and business contracting. This
paper studies affirmative action in school choice, the so-called controlled choice prob-

lem (Abdulkadiroğlu and Sönmez 2003), where the goal of affirmative action is to main-
tain diversity at schools by giving underrepresented groups (usually minorities) higher
chances to attend better schools.

Many members of the minorities who are targets of affirmative action policies live
together in isolated, economically challenged neighborhoods that lack good schools.
The better schools tend to be located in wealthier neighborhoods, increasing the
chances of wealthier students, who are often majorities, to attend those schools. To cir-
cumvent this shortcoming, some school districts employ affirmative action policies that
impose quotas (e.g., historically in Seattle (WA), Jefferson County (KY), Louisville (KY),
Minneapolis (MN), and White Plains (NY)). Alternatively, some school districts employ
affirmative action because of court orders enforcing desegregation (e.g., historically in
Boston (MA), St. Louis (MO), and Kansas City (MO)).1

In a seminal paper, Abdulkadiroğlu and Sönmez (2003) approach the school choice
problem from a mechanism-design perspective. They illustrate that the mechanisms
used in practice had shortcomings, and propose as alternatives two celebrated algo-
rithms, the student-proposing deferred acceptance algorithm (DA) and the top trading

cycles algorithm (TTC). Abdulkadiroğlu and Sönmez (2003) extend their analysis to ac-
commodate a simple affirmative action policy with type-specific quotas. In a recent
paper, Kojima (2012) investigates the consequences of these proposed affirmative ac-
tion policies on students’ welfare in a setup where there are two student types (minority
and majority) and quotas for majority students only. Surprisingly, he shows that these
policies may hurt minority students, the purported beneficiaries. To be more explicit,
he finds examples in which all minority students are made worse off under these mech-
anisms, and he concludes that caution should be exercised when implementing such
policies.

Although Kojima (2012) gives some specific scenarios to show that minority students
could be worse off under affirmative action policies with majority quotas, in our simula-
tions, we find that this might be a more common phenomenon rather than a peculiarity
(see Section 5 for more detail). In some instances, up to 25% of minority students are
worse off along with 55% of majority students under such policies with rigid quotas.

The reason that a quota for majority students can have adverse effects on minority
students is simple. Consider a situation in which a school c is mostly desired by ma-
jorities. Then having a majority quota for c decreases the number of majority students
who can be assigned to c even if there are empty seats.2 This, in turn, increases the
competition for other schools and thus can even make the minority students worse off.

1Historically, the affirmative action policies in public school admissions took the form of racial quotas.
In 2007, the Supreme Court banned the use of race-based admissions policies (Parents Involved in Com-
munity Schools v. Seattle School District No. 1 and Meredith v. Jefferson County Board of Education). This
decision shifted the framing of affirmative action policies to promote other measures of diversity, which are
not solely based on race or ethnicity.

2In fact, this is not only a theoretical possibility, but also a reality. A parent in Louisville (KY) sued a
school district exactly because of just such a situation: “There was room at the school. There were plenty of
empty seats. This was a racial quota” (http://abcnews.go.com/Politics/SupremeCourt/story?id=2693451).

http://abcnews.go.com/Politics/SupremeCourt/story?id=2693451
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The problem, however, is not just about setting the appropriate quotas for ma-
jorities. The number of minority students who prefer one school to another is not
known a priori by the policymakers. Even most intelligent guesses of quota levels are
prone to small deviations in minority students’ realized desire to attend a particular
school, which might cascade inefficiencies throughout the system. Indeed, in our sim-
ulations, when we set the majority quotas to the expected levels of majority students,
small variations translate into adverse welfare effects in the simulated society. More-
over, these quotas are usually set by third parties such as courts or school districts,
which means that they cannot be readjusted easily if schools have empty seats. There-
fore, we are in dire need of revisiting the issue of affirmative action for the school choice
problem.

In this paper, we circumvent these inefficiencies caused by majority student quo-
tas by offering minority student reserves. More specifically, schools assign minority re-
serves such that if the number of minority students in a school is less than its minor-
ity reserves, then any minority is preferred to any majority in that school. If there are
not enough minority students to fill the reserves, majority students can still be admit-
ted to fill up that school’s reserved seats. Therefore, minority reserve mechanisms also
avoid wasting the capacity in schools on top of resolving inefficiencies. Minority re-
serves can also be interpreted as majority quotas, but with a big difference: the number
of majority students can be more than its allotted share, which is the capacity of the
school less the minority reserves, as long as there are no minority students who veto this
match. To study the effects of affirmative action with minority reserves policies in the
school choice context, we first adapt the deferred acceptance and the top trading cy-
cles algorithms to our model, and then prove that each algorithm preserves its desirable
properties.

1.1 Main results

First, for any stable matching under the affirmative action with majority quotas policy,
there exists a stable matching under the corresponding affirmative action with minority

reserves policy that is better for all students (Theorem 1).3 Next, the student-proposing
deferred acceptance algorithm (DA) with minority reserves is never strictly Pareto dom-
inated by DA with no affirmative action for minority students (Theorem 2).4 When all
schools and all students have the same priorities/preferences, then the stable match-
ings under minority reserves and majority quotas Pareto dominate the stable matching
under no affirmative action for minority students (Proposition 2). Furthermore, if mi-
nority reserves for all schools are greater than the number of minority students assigned
to those schools in DA with no affirmative action, then DA with minority reserves Pareto
dominates DA with no affirmative action for minorities (Proposition 4).

3Stability, which is a fairness notion, requires that each student prefers her assignment to her outside
option and that there is no school–student pair (c� s) such that s prefers c to her assignment and that either
c has an empty seat or that there exists a student assigned to c who has a lower priority at c than s. The
second property is also called no justified envy in the school choice context.

4This is in contrast to the result of Kojima (2012) that all minorities can be hurt by an affirmative action
policy with majority quotas.
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We then analyze the performance of these three policies in the top trading cycles
algorithm (TTC). We first show that there is no mechanism that is weakly preferred by
all students to TTC with majority quotas and satisfies the desirable properties of TTC
(Theorem 3). Next, we introduce TTC with minority reserves that keeps the properties
of TTC while giving minorities an edge. Similar to our result for the deferred acceptance
algorithm, TTC with minority reserves is never strictly Pareto dominated by TTC with
no affirmative action for minority students (Theorem 4). However, there is no Pareto
dominance relationship between TTC with minority reserves and majority quotas, and
TTC with minority reserves and no affirmative action (Proposition 7).

To complement our theoretical results, we devise computer simulations that quan-
tify the differences between outcomes of the aforementioned affirmative action policies
by examining how much better/worse off both minorities and majorities are in com-
parison to other policies. In our simulations, we allow for correlations between student
preferences over schools and correlations between school priorities over students. The
simulations indicate that, on average, (i) minority reserves make minorities better off
(but can also make majorities worse off) than no affirmative action, in both DA and
TTC, (ii) DA with minority reserves not only Pareto dominates DA with majority quotas,
but also benefits both minorities and majorities significantly, (iii) majority quota-based
mechanisms are very sensitive to quota size, especially for majority welfare, whereas
minority reserve-based mechanisms moderate the adverse effects of affirmative action
policies on majorities, (iv) TTC with minority reserves results in better matchings for mi-
norities than TTC with majority quotas, and (v) students on average prefer TTC over DA
for all affirmative action policies.

1.2 Related literature

To study controlled choice, we build on the work of Abdulkadiroğlu and Sönmez (2003),
who were the first to approach the school choice problem from a mechanism-design
perspective.5 They propose two celebrated algorithms, the student-proposing deferred
acceptance algorithm (DA) and the top trading cycles algorithm (TTC) as alternatives to
some popular mechanisms. DA, introduced by Gale and Shapley (1962), produces sta-
ble outcomes and assigns the best outcome among all stable outcomes to one side of
the market and the worst to the other side. Moreover, the student-proposing deferred
acceptance algorithm is weakly group strategy-proof, i.e., there exists no group of stu-
dents who can jointly manipulate their preferences such that all of them are strictly bet-
ter off (Dubins and Freedman 1981, Roth 1982a). The TTC was first studied by Shapley
and Scarf (1974), who attribute it to David Gale. The TTC is Pareto efficient, hence one
cannot make any student better off without hurting others. Moreover, it is also strongly

group strategy-proof, so there exists no group of students who can jointly manipulate
their preferences such that all of them are weakly better off and at least one of them

5See also Balinski and Sönmez (1999) for a preliminary study. In general, there is a large literature on
matching theory and its applications to real-life markets including school choice. We refer the reader to
Roth and Sotomayor (1990) for background reading in matching, and to three excellent reviews for recent
applications (Roth 2008, Pathak 2011, Sönmez and Ünver 2011).
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is strictly better off (Roth 1982b, Bird 1984, Pycia and Ünver 2011). The main choice

between these two algorithms boils down to whether one prefers Pareto efficiency or

stability. If a school district puts more weight on Pareto efficiency, then they should

implement TTC; if they do not want to violate stability, then DA is the right choice.6,7

Abdulkadiroğlu and Sönmez (2003) also model a simple affirmative action policy

with quotas and show that modified versions of the two aforementioned mechanisms

maintain their desirable properties. Subsequently, Abdulkadiroğlu (2005) considers col-

lege admissions with affirmative action policies where colleges have preferences rather

than given priorities. He shows that two assumptions on school preferences are suffi-

cient to recover the desirable properties of the deferred acceptance algorithm.

In an independent work, Westkamp (forthcoming) studies the German university

admissions system in which there are transferable quotas on different subpopulations.

In this matching with complex constraints problem, affirmative action with minority re-

serves can be accommodated as a special case. However, Westkamp (forthcoming) does

not study the welfare effects of affirmative action policies, which is the main question of

our work. In another recent paper, Kamada and Kojima (2011) study the Japanese Resi-

dency Matching Program, where there are quotas (regional caps) on the number of resi-

dents that each region can admit. In the current mechanism, the government sets target

capacities for hospitals to implement regional quotas. Instead, Kamada and Kojima pro-

pose a new algorithm based on deferred acceptance in which hospitals can admit more

than their target capacities as long as regional caps are not violated. They demonstrate

that imposing target capacities to satisfy regional quotas may result in avoidable effi-

ciency losses that can be corrected by violating these target capacities. Although the

idea of their paper is similar to ours, the setups are completely different (for instance,

there are no doctor types in their model) as are the suggested solutions.

In a subsequent paper, Ehlers et al. (2011) consider a controlled school choice model

with multiple student types. In their model, each type has floors and ceilings as en-

rollment targets. They consider these targets both as hard bounds (i.e., feasibility con-

straints), and as soft bounds that regulate school priorities.8 With hard bounds, the ex-

istence of stable (fair) matchings is not guaranteed. Therefore, they introduce a weaker

stability notion and provide an algorithm that finds such matchings. Alternatively, they

adapt the deferred acceptance algorithm to soft bounds to get the student-optimal sta-

ble matching. However, they do not offer detailed welfare comparison results or simu-

lations as we have done in this paper.

6Kesten (2006) shows that these two mechanisms are the same if and only if school priorities are acyclic.
Acyclicity is a strong condition and usually is not satisfied. Haeringer and Klijn (2009) study a preference
revelation game when students can submit limited lists and show that both mechanisms may have equilib-
ria that produce unstable or inefficient matchings.

7Kesten (2010) recognizes the efficiency loss caused by DA and proposes a modified algorithm where
students give up their priorities in certain schools to correct for the loss. Similarly, Erdil and Ergin (2008)
introduce a new mechanism to improve the welfare losses created by random breaking of ties in priorities
caused by DA. In contrast, Kesten and Ünver (2013) approach the problem from an ex ante perspective
instead of randomly breaking ties.

8Abdulkadiroğlu (2010) considers only hard bounds in the same model.
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From a general perspective, affirmative action has been a source of debate in phi-
losophy, law, and economics since its introduction. It is of great importance that we
understand the social and economic effects of affirmative action policies, yet the con-
sequences of these policies receive surprisingly little attention (Sowell 2004). Although
there is no consensus on whether affirmative action policies result in overall efficiency
gains or losses, affirmative action seems to offer significant redistribution of welfare to-
ward women and minorities with relatively small efficiency consequences (Holzer and
Neumark 2000). In the economics of education literature, it has been shown that minor-
ity students give importance to the presence of affirmative action policies while deciding
on their higher education (Loury and Garman 1993, Arcidiacono 2005). More recently,
Bertrand et al. (2010) and Bagde et al. (2011) examine affirmative action programs for
lower-caste groups in Indian engineering colleges. They show empirically that affirma-
tive action benefits targeted students.9

The main objective of affirmative action policies is to increase diversity of the
schools by setting up targets for minority representation. Minority reserve-based af-
firmative action policies resemble the “soft” quota-based ones where the soft quotas
are targets that institutions try to reach but inevitably may fail (Jencks 1992). However,
Fryer (2009) states that when the auditors have imperfect information about the hiring
or admission process, soft quotas or goals become hard quotas. But in the school choice
context, the process is transparent (preferences of both students and schools can be ac-
cessed by an auditor): all admissions are simultaneously done by a central authority
and the system is open to legal actions. Hence, the implementation of minority reserves
would not lead to hard quotas in the school choice problem because the school districts
can openly justify the admission process. The system might fail if some schools dis-
courage minority students applications by other means. This is beyond the scope of our
paper, but we believe that the provisions in the legal system prevent such discriminatory
practices.10

The rest of the paper is organized as follows. Section 2 sets up the model and in-
troduces formal definitions of different affirmative action policies. Section 3 defines the
deferred acceptance algorithm with minority reserves and compares outcomes of the
algorithm under different policies. Similarly, Section 4 adapts the top trading cycles al-
gorithm to minority reserves. Section 5 describes our simulation model and presents
the simulation results. Section 6 concludes. All proofs are given in Appendix A and all
supplementary figures are provided in Appendix B.

2. M

Let S and C be finite and disjoint sets of students and schools. For each student s ∈ S, ≻s

is a strict preference relation over C ∪ {s}, where s denotes the outside option.11 School

9In India, affirmative action policies have been used since the 1930’s and there is an intense debate over
them. In May 2006, the government announced a plan to extend reservations of low-caste groups in uni-
versities, which resulted in massive protests (http://www.time.com/time/world/article/0,8599,1198102,
00.html). For a comparison of affirmative action in the United States and India, see Deshpande (2005).

10Please see footnotes 1 and 2 for examples.
11This could be attending a private school or being home-schooled.

http://www.time.com/time/world/article/0,8599,1198102,00.html
http://www.time.com/time/world/article/0,8599,1198102,00.html
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c is acceptable to student s if c ≻s s. The list of preferences for a group of students S′

is denoted by ≻S′ ≡ (≻s)s∈S′ . For each school c ∈ C, ≻c is a strict priority order over S.

Following Kojima (2012), students can be one of two types: minority or majority. The set

of minority students is denoted by Sm and the set of majority students is denoted by SM ,

so S = Sm ∪ SM . For all c ∈ C, qc is the capacity of c or the number of seats in c. There are

enough seats for all students, so
∑

c∈C qc ≥ |S|. The vector of capacities is denoted by q.

A school choice problem or simply a problem is a quadruple 〈C�S� (≻i)i∈C∪S� (qc)c∈C〉.

A matching µ is a mapping from C ∪ S to the subsets of C ∪ S such that

1. µ(s) ∈ C ∪ {s} for every s ∈ S

2. µ(c) ⊆ S and |µ(c)| ≤ qc for every c ∈ C

3. µ(s) = c if and only if s ∈ µ(c) for every c ∈ C and s ∈ S.

A matching µ Pareto dominates matching ν if µ(s) �s ν(s) for all s ∈ S and µ(s) ≻s ν(s)

for at least one s ∈ S. A matching is Pareto efficient if it is not Pareto dominated by an-

other matching. Affirmative action policies are implemented to improve the matches

of minorities, sometimes at the expense of majorities. Therefore, we also need an effi-

ciency concept to analyze the welfare of minority students. A matching µ Pareto dom-

inates matching ν for minorities if µ(s) �s ν(s) for all s ∈ Sm and µ(s) ≻s ν(s) for at least

one s ∈ Sm. A matching is Pareto efficient for minorities if it is not Pareto dominated for

minorities by another matching.

A matching is stable if it is individually rational and does not have a blocking pair.

Individual rationality is the same regardless of the affirmative action policy employed

and can be defined as µ(s) �s s for all s ∈ S. However, whether a pair (c� s) can block

a matching depends on the affirmative action policy. Below, we define three different

affirmative action policies; for each one, we also consider the notion of blocking.

The first affirmative action policy is really the absence of one, or no affirmative ac-

tion. To be more explicit, schools do not discriminate students based on their types.

Therefore, a matching µ does not have a blocking pair if for all c ≻s µ(s), we have

|µ(c)| = qc and s′ ≻c s for all s′ ∈ µ(c).

The second affirmative action policy is called affirmative action with majority quotas

or simply majority quotas. It is implemented by prohibiting schools to admit more than

a certain number of majority students. That is, given a vector of majority quotas qM ≡

(qMc )c∈C , a matching µ is feasible with majority quotas if for all c, |µ(c) ∩ SM | ≤ qMc .

Moreover, a matching µ does not have a blocking pair if for all c ≻s µ(s), we have either

(i) |µ(c)| = qc and s′ ≻c s for all s′ ∈ µ(c) or (ii) s ∈ SM , s′ ≻c s for all s′ ∈ µ(c) ∩ SM and

|µ(c)∩ SM | = qMc .

These quotas can not only make the majority students worse off, but also the mi-

nority students (Kojima 2012). To avoid this inefficiency, we introduce a new affirmative

action policy, which gives priority to minority students up to the reserve numbers. More

specifically, each school c is assigned a minority reserve rmc such that if the number of

minority students admitted to c is less than rmc , then any minority applicant is preferred

to any majority applicant in c. The vector of minority reserves is denoted by rm.
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Hence, the last affirmative action policy is called affirmative action with minority

reserves or simply minority reserves. For minority reserves, a matching µ does not have
a blocking pair if for all c ≻s µ(s), then |µ(c)| = qc and either

(i) s ∈ Sm and s′ ≻c s for all s′ ∈ µ(c)

(ii) s ∈ SM , |µ(c)∩ Sm|> rmc , and s′ ≻c s for all s′ ∈ µ(c)

(iii) s ∈ SM , |µ(c)∩ Sm| ≤ rmc , and s′ ≻c s for all s′ ∈ µ(c)∩ SM .

Condition (i) describes a situation where (c� s) does not form a blocking pair because
s is a minority student and c prefers all students in c to s. In condition (ii), whereas block-
ing does not happen because s is a majority student, the number of minority students
in c exceeds minority reserves and c prefers all students in c to s. Finally, in condition
(iii), (c� s) does not form a blocking pair because s is a majority student, the number of
minority students in c does not exceed minority reserves, and c prefers all majority stu-
dents in c to s. Note that in the last case there can be a minority student s′ assigned to c

such that c prefers s to s′. If c had no affirmative action, then (c� s) would have formed a
blocking pair.

Throughout the paper, we perform welfare comparisons between these affirmative
action policies. Whenever we compare the effects of minority reserves rm and majority
quotas qM , we assume that rm + qM = q.

A matching mechanism φ (or algorithm) is a mapping from school choice problems
into matchings. In a school choice problem 〈C�S� (≻i)i∈C∪S� (qc)c∈C〉, we assume that
everything is known except (≻s)s∈S .12 Therefore, students are the only strategic agents
in the problem and can manipulate the mechanism by misreporting their preferences.
When other components of the problem are clear, we represent the problem just by ≻S

and represent the outcome of the mechanism by φ(≻S).
A matching mechanism φ is strategy-proof if for each student s and for any ≻S ,

there exists no ≻′
s such that φs(≻

′
s�≻S\{s}) ≻s φs(≻S). If a mechanism is strategy-proof,

each student finds it optimal to report her preferences truthfully regardless of the pref-
erences of other agents. Similarly, a matching mechanism φ is weakly group strategy-

proof if for any group of students Ŝ ⊆ S and for any ≻S , there exists no ≻′

Ŝ
such that

φs(≻
′

Ŝ
�≻

S\Ŝ
) ≻s φs(≻S) for all s ∈ Ŝ. If a mechanism is weakly group strategy-proof, then

there exists no group of students who can jointly change their preference profiles to
make each student in the group better off. In addition, φ is strongly group strategy-

proof if for any group of students Ŝ ⊆ S and for any ≻S , there exists no ≻′

Ŝ
such that

φs(≻
′

Ŝ
�≻

S\Ŝ
) �s φs(≻S) for all s ∈ Ŝ and φs(≻

′

Ŝ
�≻

S\Ŝ
) ≻s φs(≻S) for some s ∈ Ŝ. If a mech-

anism is strongly group strategy-proof, then there exists no group of students who can
jointly change their preference profiles to make each student in the group weakly bet-
ter off and at least one of them strictly better off. A matching mechanism φ is Pareto

efficient if φ(≻S) is Pareto efficient for all ≻S . Finally, a matching mechanism φ Pareto

dominates another matching mechanism ψ if for all ≻S , either φ(≻S) = ψ(≻S) or φ(≻S)

Pareto dominates ψ(≻S).

12The priority orders of schools are usually determined by a public rule.
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3. D     

We first adapt the student-proposing deferred acceptance algorithm to our setup when
schools have minority reserves.

Step 1. Start with the matching in which no student is matched. Each student s

applies to her first-choice school. Each school c first accepts as many as rmc minority
applicants with the highest priorities if there are enough minority applicants. Then it
accepts applicants with the highest priorities from the remaining applicants until its ca-
pacity is filled or the applicants are exhausted. The rest of the applicants, if any remain,
are rejected by c.

Step k. Start with the tentative matching obtained at the end of step k − 1. Each
student s who got rejected at step k − 1 applies to her next-choice school. Each school
c considers the new applicants and students admitted tentatively at step k − 1. Among
these students, school c first accepts as many as rmc minority students with the highest
priorities if there are enough minority students. Then it accepts students with the high-
est priorities from the remaining students. The rest of the students, if any remain, are
rejected by c. If there are no rejections, then stop.

The algorithm terminates when no rejection occurs and the tentative matching at
that step is finalized. Since no student reapplies to a school that has rejected her and at
least one rejection occurs in each step, the algorithm stops in finite time.13

We first show that the above algorithm produces a stable matching that assigns each
student to the best outcome among all stable matching outcomes, and is weakly group
strategy-proof for students.

P 1. The student-proposing deferred acceptance algorithm with minority re-

serves produces a stable matching that assigns the best outcome among the set of stable

matching outcomes for each student and is weakly group strategy-proof.

In the proof, we show that an equivalent way to implement the deferred acceptance
algorithm with minority reserves is first to create a new matching problem with no af-
firmative action and then to apply the original deferred acceptance algorithm to this
market.14 The new problem is created by replicating a school c with minority reserves
rcm, capacity qc , and priorities ≻c by two schools c1 (“original”) with capacity qc − rmc and
priorities ≻c , and c2 (“minority favoring”) with capacity rmc and priorities ≻′

c , where

s ≻′
c s

′ ⇐⇒

⎧
⎨
⎩
s ∈ Sm and s′ ∈ SM

s� s′ ∈ Sm and s ≻c s
′

s� s′ ∈ SM and s ≻c s
′�

For each student s, we replace school c with its copies in the same order to get the
new preference ≻′

s . For example, if c1 ≻s c2, then c2

1
≻′
s c

1

1
≻′
s c

2

2
≻′
s c

1

2
. Less formally,

13Note that this algorithm is not equal to the standard deferred acceptance algorithm where for each
school c, we modify ≻c as follows: If minority student s is one of the top rmc ranked minority students with
respect to ≻c , then she has higher priority than all majority students.

14This result also follows from Theorem 2 of Westkamp (forthcoming).
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each student keeps the relative rankings of schools the same and prefers the minority-
favoring schools over the originals.15 Therefore, the student-proposing deferred accep-
tance algorithm with minority reserves preserves the properties of the original one.

Next, we show that for any stable matching under majority quotas, there exists a
stable matching under the corresponding minority reserves that Pareto dominates it.

T 1. Consider majority quotas qM and minority reserves rm such that rm = q −

qM . Take a matching µ that is stable under majority quotas qM . Then either µ is stable

under minority reserves rm or there exists a matching that is stable under minority reserves

rm that Pareto dominates µ.

If µ is stable under minority reserves, then there is nothing to prove. Otherwise,
that is, if µ is not stable under minority reserves, then there exists a blocking pair (c� s)
such that s is a majority student and c has not filled its capacity yet. Whenever there is
school c with empty seats that a student prefers to her current assignment, we execute
the following improvement algorithm.

Step 1. For school c defined above, find S1 ≡ {s ∈ S : c ≻s µ(s)}. Among the students
in S1, match the best students according to ≻c up to the capacity. Define µ1 to be the
new matching.

Step k. If there is no school with an empty seat that a student prefers to her match
in µk−1, then stop. Otherwise consider one such school, say ck. Let Sk ≡ {s ∈ S :

ck ≻s µk−1(s)}. Among the students in Sk, first match the most-preferred minority stu-
dents according to ≻ck until the minority reserves are filled or minority students are
exhausted. Then match the best students according to ≻ck if there are more seats and
students available. Define µk to be the new matching.

The algorithm ends in a finite number of steps since it improves the match of at least
one student at every step of the algorithm. Moreover, it produces a stable matching un-
der minority reserves (see Appendix A for the proof) because the starting point is a stable
matching under majority quotas. If it starts from an arbitrary matching, then it does not
produce a stable matching. Surprisingly, if it starts from the matching in which no agent
is previously matched, then it proceeds like the school-proposing deferred acceptance
algorithm with the exception that offers are made randomly. Since the order of pro-
posals does not change the outcome of the deferred acceptance algorithm (McVitie and
Wilson 1970), the improvement algorithm starting from the matching in which no agent
is matched produces the same outcome as the school–proposing deferred acceptance
algorithm.16

In our simulations, we found that the positive welfare effects on minority students
are substantial, with improvements for up to 30% of minority students (see Section 5 on
our simulations). But even more drastic welfare benefits are achieved for majority stu-
dents, with up to 50% better off under the deferred acceptance algorithm with minority
reserves compared to the one with majority quotas.

15The relative ranking of the two copies of the same school is not important. All our results hold with the
alternative choice.

16When each school has a quota of 1, the algorithm corresponds to the decentralized process of offers
and acceptances studied in Blum et al. (1997).
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R 1. Theorem 1 is equivalent to the statement that the student-proposing de-

ferred acceptance algorithm with minority reserves Pareto dominates the algorithm

with majority quotas. To see this, note that for each affirmative action policy, the

student-optimal stable matching Pareto dominates any other stable matching. There-

fore, the Pareto domination relationship in Theorem 1 holds if and only if it holds for the

student-optimal stable matchings under the corresponding policies.

Kojima (2012) shows that using majority quotas may hurt all minority students in

some settings. Specifically, in Theorem 1 of his paper, he gives an example in which the

only minority student is made strictly worse off by implementing majority quotas. We

next show that this is not possible with minority reserves.

T 2. Consider minority reserves rm. Let µr and µ be the matchings produced by

the student-proposing deferred acceptance algorithm with or without minority reserves

rm, respectively, for a given preference profile. Then there exists at least one minority stu-

dent s such that µr(s) �s µ(s).

The outline of the proof is as follows. Suppose, to the contrary, that µ(s) ≻s µ
r(s) for

all s ∈ Sm. If each minority student reports µr(s) as the only acceptable school, then µ(s)

can be shown to be stable under minority reserves rm. Since the student-proposing de-

ferred acceptance algorithm with minority reserves is student-optimal (Proposition 1),

µr(s) �s µ(s) for all s ∈ Sm. This contradicts the fact that the algorithm is weakly group

strategy-proof (Proposition 1).

Even though Theorem 2 guarantees only one minority to be weakly better off un-

der the deferred acceptance algorithm with minority reserves compared to that with no

affirmative action, in our simulations we found that the number of minority students

who are better off is, on average, around 50 times more than those who are worse off un-

der minority reserves. Alternatively, on very peculiar cases, such as the example below,

imposing minority reserves can make some minorities worse off while leaving the rest

indifferent.

E 1. Consider the problem C = {c1� c2� c3}, SM = {s1}, and Sm = {s2� s3}. All

schools have a capacity of 1: q = (1�1�1). Students’ preferences and schools’ priorities

are given by the table

≻s1
≻s2

≻s3
≻c1

=≻c2
=≻c3

c1 c3 c1 s1

c3 c1 c2 s2

c2 c2 c3 s3

Minority reserves are given by rm = (0�0�0). In this case, the unique stable matching,

which is also the outcome of the deferred acceptance algorithm, is

µ(c1)= s1� µ(c2) = s3� µ(c3) = s2�
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However, when minority reserves are rm = (1�0�0), then the unique stable matching,
which is also the outcome of the deferred acceptance algorithm, is

µ′(c1) = s2� µ′(c2) = s3� µ′(c3)= s1�

With minority reserves, s1 gets rejected from c1 because of the presence of minority
reserves at the first step of the algorithm. Then s1 applies to c3 and c3 rejects s2 in return.
Next, s2 applies to c1 and c1 rejects s3. Finally, s3 applies to c2, which accepts her. There-
fore, the introduction of minority reserves creates a rejection chain that makes some
minority students worse off. Hence an increase in the minority reserves of c1 makes s2

worse off and s3 indifferent. ♦

Example 1 shows that, in general, having minority reserves does not necessarily im-
prove the outcome for minorities without making further assumptions about minor-
ity preferences and/or reserve sizes. In the next two subsections, we provide two posi-
tive results that guarantee that minorities are better off with minority reserves policies.
The first one is obtained by considering common preferences of students together with
common priorities of schools, whereas the second one is obtained by considering smart
reserves.

3.1 Common preferences and priorities

In some countries, such as India (Bertrand et al. 2010), China (Chen and Kesten 2011),
and Turkey (Balinski and Sönmez 1999), and some schools in the United States (such as
EdOpt schools in New York (Abdulkadiroğlu et al. 2005a)), students take a centralized
exam that determine common school priorities over students. Similarly, students may
have the same preferences over schools as evidenced by Abdulkadiroğlu et al. (2011).
In the next proposition, we consider this case and show that the student-proposing de-
ferred acceptance algorithm with minority reserves Pareto dominates those with no af-
firmative action and majority quotas.

P 2. Consider majority quotas qM and minority reserves rm such that rm =

q − qM . If students have the same preferences over schools and schools have the same

priority orders over students, then each affirmative action policy results in a unique stable

matching. Let µ, µr , and µq be the stable matchings with no affirmative action, minority

reserves rm, and majority quotas qM , respectively, for a given preference profile. Then

µr(s) = µq(s) �s µ(s) for any s ∈ Sm and µr(s) �s µ
q(s) for any s ∈ SM .

With each affirmative action policy, the unique stable matching can be attained by
a serial dictatorship of schools: Each school chooses the best students, taking affirma-
tive action policies into account. Since both affirmative action policies favor minorities
in the same way when schools are over-demanded, minorities are matched to the same
schools with minority reserves and majority quotas. Also, matches of the minority stu-
dents are at least as good as the schools they are matched with under no affirmative
action. The stable matchings with minority reserves and majority quotas can differ only
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for majority students. This happens when minority students are exhausted at some step
of the serial dictatorship. After this step, more majority students can be admitted with
minority reserves than can be with majority quotas, and this makes majority students
better off.17

3.2 Smart reserves

In the absence of assumptions about agents’ preferences and priorities, we can guaran-
tee only that at least one minority student is not going to be worse off in the student-
proposing deferred acceptance algorithm if colleges set minority reserves arbitrarily.
However, we now argue that if the reserves are chosen by calculating the number of
admitted minority students in a stable matching with no affirmative action, all minority
students can be made better off. More specifically, (i) if all schools’ reserves are smaller
than the number of minority students assigned to those schools in a stable matching
under no affirmative action, then that stable matching remains stable under minority
reserves, and (ii) if all schools’ reserves are greater than the number of minority stu-
dents assigned to those schools in a stable matching under no affirmative action, say µ,
then there exists a stable matching under minority reserves that Pareto dominates µ for
minorities.

P 3. Suppose that µ is a stable matching under no affirmative action. Let

rmc be such that rmc ≤ |µ(c) ∩ Sm| for all c. Then µ is a stable matching under minority

reserves rm.

The intuition behind this result is simple. Since minority reserves are already filled
in each school with µ, if there is any blocking pair (c� s) for µ under minority reserves,
then it would also block µ under no affirmative action. Alternatively, if the minority
reserves are not filled, then there could be a blocking pair under minority reserves with
a minority student since minority reserves give preferential treatment to minorities until
they are filled. For this case, we establish the following proposition.

P 4. Suppose that µ is a stable matching under no affirmative action. Let rmc
be such that rmc ≥ |µ(c) ∩ Sm| for all c. Then either µ is stable under minority reserves rm

or there exists a stable matching under minority reserves rm that Pareto dominates µ for

minorities.

In Appendix A, we show that whenever minority reserves exceed the number of mi-
nority students in µ, then the outcome of the deferred acceptance algorithm with mi-
nority reserves is at least as good as the outcome of µ for all minority students.

This result shows the importance of choosing minority reserves carefully. Although
minorities can be made weakly worse off by affirmative action, if the school districts use
past data to figure out what the matching would be without affirmative action, then by

17The result that all minority students are weakly better off with minority reserves instead of no affir-
mative action cannot be made stronger by assuming only common preferences of students or common
priorities of schools. Indeed, one can come up with examples showing the contrary.
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making sure that schools have at least that much reserve for minority students, they can
guarantee that all minority students would be made better off by minority reserves.18

We have the following corollary to Propositions 3 and 4.

C 1. Suppose that µr and µ are the matchings produced by the student-

proposing deferred acceptance algorithms for a given preference profile with or without

minority reserves rm, respectively, where either rmc ≤ |µ(c)∩Sm| for all c or rmc ≥ |µ(c)∩Sm|

for all c. Then either µr = µ or µr Pareto dominates µ for minorities.

Therefore, if minority reserves are set by calculating the number of admitted minor-
ity students in a stable matching with no affirmative action, DA with minority reserves
can guarantee better results for minorities (as compared to no affirmative action).

R 2. If we set minority reserves to be the capacities for all schools (rm = q), then
Proposition 4 implies that the student-proposing deferred acceptance algorithm with
minority reserves Pareto dominates the student-proposing deferred acceptance algo-
rithm for minorities. This is an exogenous affirmative action policy that guarantees that
all minorities are better off.

4. T      

In the previous section, we introduced the deferred acceptance algorithm with minor-
ity reserves that improves on the deferred acceptance algorithm with majority quotas
(Theorem 1) and keeps the desirable properties of the deferred acceptance algorithm
(Proposition 1). Unfortunately, the corresponding result for the top trading cycles algo-
rithm does not hold.

T 3. There exists no Pareto efficient and strongly group strategy-proof mecha-

nism that is weakly preferred by all students to the top trading cycles algorithm with ma-

jority quotas.

In the proof, provided in Appendix A, we give an example in which either students
can jointly manipulate their preferences to get better outcomes or the mechanism as-
signs an inefficient matching.

In light of Theorem 3, we must give up at least one of the stated properties to get a
positive result. Therefore, we keep the desirable properties of the top trading cycles algo-
rithm, namely, strongly group strategy-proofness and Pareto efficiency, while using the
minority reserves to give minorities an edge over majorities. We provide the following
adaptation of the top trading cycles to minority reserves. Even though the top trading
cycles algorithm with minority reserves does not Pareto dominate its majority quotas
counterpart, students, on average, are better off (see Section 5).

Step 1. Start with the matching in which no agent is matched. If a school has minority
reserves, then it points to its most preferred minority student; otherwise it points to the
most preferred student. Each student points to the most preferred school if there is an
acceptable school and otherwise points to herself. There exists at least one cycle. Each

18We do not propose a scheme in which DA without affirmative action is run first and then minority
reserves are assigned. This scheme may be manipulable. Hence, it is important to use past data.
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student in any of the cycles is matched to the school she is pointing to (if she is pointing
to herself, then she gets her outside option). All students in the cycles and schools that
have filled their capacities are removed. If there is no unmatched student, then stop.

Step k. If a school has not filled its minority reserves, then it points to the most
preferred minority student if there is any minority student left. Otherwise, it points to
the most preferred student. Each student points to the most preferred school if there
is an acceptable school and otherwise points to herself. There exists at least one cycle.
Each student in any of the cycles is matched to the school she is pointing to (if she is
pointing to herself, then she gets her outside option). All students in the cycles and
schools that have filled their capacities are removed. If there is no unmatched student,
then stop.

The algorithm terminates in a finite number of steps since there is at least one stu-
dent matched and removed in any step of the algorithm.

If a school has minority reserves, then it points to minorities until the reserves are
filled. Therefore, having minority reserves empowers minorities by facilitating cycles
that are otherwise impossible. Alternatively, even if the school points to minority stu-
dents, it may receive majority students in some cycles.

P 5. The top trading cycles algorithm with minority reserves is Pareto effi-

cient and strongly group strategy-proof.

For Pareto efficiency, note that at each step of the algorithm, students point to the
school with empty seats they like the most. Therefore, any student who is matched at
a particular step cannot be made better off without making students who are matched
before her worse off. Hence, the algorithm is Pareto efficient. In contrast, the top trading
cycles with majority quotas is only constrained efficient since quotas add extra feasibility
constraints (Abdulkadiroğlu and Sönmez 2003). For strongly group strategy-proofness,
we use an invariance property that the outcome of the algorithm remains the same if
the top choice of a student is changed in a certain way; see Appendix A for the detailed
proof.

Next, we compare the top trading cycles algorithm with minority reserves to that
with no affirmative action.

T 4. Suppose that ψr and ψ are the matchings produced by the top trading cycles

algorithm with or without minority reserves rm for a given preference profile. Then there

exists s ∈ Sm such that ψr(s) �s ψ(s).

The proof is by induction on the number of agents. If a minority exists among the
set of students who are matched at the first step of ψr , then we are done since she will
be matched to her top-choice school. Otherwise, all students matched at the first step
of ψr , say Ŝ, are majority students. Therefore, all schools, say Ĉ, who are matched at this
step must have zero minority reserves. Moreover, in the first step of ψ, we see the same
matchings. Now we can look at a smaller problem with Ŝ removed and the capacities
of schools in Ĉ reduced by 1. Both ψr and ψ produce the same matching in the smaller
problem that they produce in the larger one. The conclusion follows from this induction
argument.
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Theorem 4 tells us only that we cannot make all minority students worse off by hav-
ing minority reserves.19 However, in our simulations, we found that, on average, up to
80% of minorities are better off compared to less than 1% who are worse off (see Sec-
tion 5). In addition, we establish that if each school sets a positive minority reserve size
then we obtain a stronger result and guarantee that at least some minority students are
matched with their top-choice schools.

P 6. Suppose that rmc ≥ 1 for all c ∈ C. Then there exists a minority student

who is matched with her top-choice school in the top trading cycles algorithm with mi-

nority reserves rm.

Under this assumption, all schools point to minorities in the first step of the algo-
rithm, so all cycles in this step consist of schools and minority students. These minori-
ties are then matched to their top-choice schools.

It turns out that the top trading cycles algorithm with minority reserves does not
Pareto dominate the top trading cycles algorithm with or without majority quotas for
minorities. Similarly, the top trading cycles algorithm with or without majority quotas
does not Pareto dominate that with minority reserves for minorities.

P 7. Consider majority quotas qM and minority reserves rm such that rm =

q − qM . There exists no Pareto dominance relationship for minorities between the top

trading cycles algorithm with minority reserves rm and the top trading cycles algorithm

with or without majority quotas qM .

For each pair of mechanisms, we show an example in Appendix A for which one
mechanism outcome Pareto dominates the outcome of the other mechanism. A brief
discussion about the different results of Proposition 7 and Theorem 1 is in order.
Roughly, Theorem 1 obtains by noting that minority reserves does not waste capacity,
thus it Pareto improves on majority quotas. The same intuition does not hold in TTC.
While applying TTC, although having minority reserves may help minorities by facili-
tating cycles that are otherwise impossible (since a school with minority reserves points
to minorities and not to majorities), some cycles formed earlier in the procedure may
involve majority students. That is, some majority students can be assigned to a school
in which he/she has a very low priority. This in turn can make some minority students,
who are not in earlier cycles, worse off. Alternatively, TTC with majority quotas prevents
majority students from pointing to a school that has no majority quotas, assuring that
some majority students are worse off, and might make minority students better off. For
a specific example, see Example 5 in Appendix A.

19The corresponding result does not hold for majority quotas. Consider the example C = {c1� c2}, SM =

{s2}, and Sm = {s1}. All schools have a capacity of 1, q = (1�1). Preferences and priorities are given as c1 ≻s1

c2, c2 ≻s2
c1, s2 ≻c1

s1, and s1 ≻c2
s2. With no affirmative action, both students get their top choices in the

top trading cycles algorithm. Now consider majority quotas qM = (1�0). Then in the top trading cycles
algorithm with majority quotas, both students get their second choices, making the only minority student
worse off.
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Next, we provide an example in which although all seats are reserved for minorities,
there are some minorities who are worse off (than they would be with no affirmative
action) because of the minority reserves. This is in contrast to our result for the student-
proposing deferred acceptance algorithm (Remark 2).

E 2. Consider the problem C = {c1� c2� c3}, SM = {s3}, and Sm = {s1� s2}. All
schools have a capacity of 1, q = (1�1�1). Students’ preferences and schools’ priorities
are given by the table20

≻s1
≻s2

≻s3
≻c1

≻c2
≻c3

c2 c2 c3 s2 s3 s1

c1 c3 s1 s2 s3

c3 c1 s1

When minority reserves are rm = (0�0�0), the outcome of the top trading cycles algo-
rithm is

µ(c1)= s2� µ(c2) = s1� µ(c3) = s3�

However, when minority reserves are given by rm = (1�1�1), the outcome of the top trad-
ing cycles algorithm is given by

µ′(c1)= s1� µ′(c2) = s2� µ′(c3)= s3�

Therefore, in this example, one of the minorities (s1) is worse off because of a minority
reserves policy with rm = q. ♦

5. S

Our theoretical results show that the student-proposing deferred acceptance algorithm

(DA) with minority reserves (DAMiR) Pareto dominates DA with majority quotas (DAMaQ)
(Theorem 1) and is not strictly Pareto dominated by DA with no affirmative action
(DANAA) for minority students (Theorem 2). Such Pareto dominance statements can-
not be made in between the top trading cycles algorithms (TTC) employing minority
reserves (TTCMiR), majority quotas (TTCMaQ), or no quotas (TTCNAA). Nevertheless, it is
important to quantify how much better/worse each policy makes minorities compared
with other policies. Furthermore, it is ultimately desirable to increase the representa-
tion of minorities without imposing severe effects on the majority welfare. Therefore,
how many majorities improve and how many drop in their matches should also be taken
into account while determining which policy to use.

To this end, we devise computer simulations to quantify the differences between
outcomes of the aforementioned policies by examining how much better/worse off both
minorities and majorities are in comparison with other policies.21 We defined utility

20In all of the examples, unlisted schools/students are unacceptable to the corresponding agents.
21Similar experiments are employed in the school choice literature; see Chen and Sönmez (2006) and

Erdil and Ergin (2008).
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functions for students and schools to get strict preference relations over schools and
students, respectively. In real-life school choice problems, some schools are in greater
overall demand than others. To reflect this phenomenon, we allowed for correlations be-
tween student preferences. Conversely, schools might also have correlated preferences
over students. For instance, in many districts or countries, there are centralized exams
that are integral to the school admissions process. Our school utility function takes into
account the presence of such correlations.

Suppose there are n students and m schools in the district. Students are denoted by
s1� � � � � sn and schools are denoted by c1� � � � � cm. Proportion p of the students are mi-
norities. Each school has M seats and allocates proportion r of their seats as minority
reserves or proportion 1 − r as majority quotas. Let Z denote independent and identi-
cally distributed normally distributed random variables with zero mean and variance 1.
We define Z(cj) [Z(sj)] to reflect the overall preference of students [schools] for a partic-
ular school cj [a particular student sj], whereas Zsi(cj) [Zci(sj)] is the student- [school-]
specific preference distribution over the schools [students]. Initially, we did not assume
any differences in terms of preferences between minorities and majorities except the re-
serve or quota allocations. We can formalize the utility function for student si and school
cj as

Usi(cj) = αZ(cj)+ (1 − α)Zsi(cj)

Ucj (si) = θZ(si)+ (1 − θ)Zcj (si)�

where α�θ ∈ [0�1] are fixed parameters that set the correlation levels between student
preferences and school priorities, respectively.

For each simulation experiment, we set the parameters (n, m, p, M , r, α, θ) and ran-
domly generate the utility functions. We define the preference order for each student si
for all pairs of schools (cj� cj′) by using the relation cj ≻si cj′ ⇐⇒ Usi(cj) > Usi(cj′) ∀j� j′ ∈

1� � � � �m. Similarly, a school’s priority order can be determined by comparing utility lev-
els for each student pair (si� si′): si ≻cj si′ ⇐⇒ Ucj (si) > Ucj (si′) ∀i� i′ ∈ 1� � � � � n. For each
set of parameters, we perform 100 simulations to capture representative behavior of dif-
ferent matching models. We implement all six matching algorithms in PERL and ran
more than five million simulations in total to sample throughout the parameter space.22

In our first set of simulations, we set the number of students to n = 1,000, the number
of schools to m= 20, each school size to M = 50, and the proportion of minority students
to p= 20%,23 and varied minority reserve ratio r,24 α, and θ. Note that the expected ratio
of minority students assigned by DANAA and TTCNAA is equal to p (20%) in each school.

For each simulation result, we show the median of 100 simulations with 25% and
75% quartiles. Initially, we set r = 20%, and change, α and θ from 0 to 1 in steps of 0�1.

22Simulation code is available on request.
23Our simulation results are robust for various instances of these parameters. We systematically tried

different values for these variables; for instance, we changed the number of students to n= 5,000 and 1,200,
the number of schools to m = 50, and the proportion of minority students to p = 15% or used variable
reserve sizes for each school, and our conclusions were not affected. Moreover, we also ran simulations
when the number of seats was greater than the number of students (m×M >n) and vice versa (n >m×M),
but we did not observe any qualitative changes.

24We specify only minority reserves from this point on; the corresponding majority quotas are set to 1−r.
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F 1. Median percentage of minorities and majorities who are better off under DAMiR than
under DAMaQ after 100 simulations. The error bars indicate inter-quartile range. DAMiR Pareto

dominates DAMaQ.

We first compare DAMiR to DAMaQ. As a sanity check, our simulations confirm the Pareto
dominance of DAMiR over DAMaQ (Figure 1). For small values of α and θ, as the level
of correlation between school (student) priorities (preferences) increases, the ratio of
minority and majority students who are better off under DAMiR decreases (Figure 1).
When neither student preferences nor school priorities are correlated with each other (i.e.,

α�θ = 0), 27% of minorities and 52% of majorities are better off under DAMiR in median.

When either school priorities or student preferences are perfectly correlated, both meth-
ods give rise to the same assignments for minorities.

Under the same settings, DAMiR increases the match quality of 5–40% of minori-
ties in median, but there are some peculiar cases where few minorities are worse off,
although the number of minorities who are worse off is not statistically different from
0 (Figure 2). When α = θ = 1, we corroborate the results of Proposition 2, with 40%

of minorities being better off in median under the minority reserves policy. Alterna-
tively, DAMaQ makes 5–40% of minorities better off, on average, while decreasing the
match quality of 5–60% of majorities in median compared to DANAA (Figure 3). Most

surprisingly, for low levels of α and θ, ∼20% of minorities are worse off in median under

DAMaQ than under DANAA, corroborating that the observations of Kojima (2012) are not

peculiarities.
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F 2. Median percentage of minorities and majorities who are better/worse off under
DAMiR than under DANAA after 100 simulations. The error bars indicate interquartile range. Here,

there are some cases where minorities can be worse off or majorities can be better off, but neither
cases is significant.

The differences between matches of minorities under different TTC algorithms are
almost exclusively α dependent and θ independent, showing the power bestowed to stu-
dents by TTC algorithms (Figure S.1).25 When α < 1 TTCMiR increases the match qual-
ities of minority students compared to both TTCMaQ and TTCNAA more significantly.
When α ≈ 1, TTCMaQ makes minorities better off compared to TTCNAA because the
probability of reciprocality between choices of students and schools increases, thereby
creating cycles and better matches for minority students.

Next, we want to assess the effects of setting various reserve sizes. For this purpose,
we change the minority reserve ratio, r, from 0% to 20% in steps of 4%, set the α and
θ parameters equal, and vary them simultaneously from 0 to 1 in steps of 0�1. When
the reserve size is much smaller than the minorities present in the environment (e.g.,
0% < r < 12%), we do not see much effect of affirmative action policies, DAMiR and
DAMaQ, compared to no affirmative action based policy, DANAA (Figure S.2). But when

25In the main text, we report only the simulations concerning DA mechanisms. We also highlight re-
sults for the TTC mechanism and alternative specifications, although summaries of the simulations are
delegated to Appendix B as supplementary figures.
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F 3. Median percentage of minorities and majorities who are better/worse off under
DAMaQ than under DANAA after 100 simulations. The error bars indicate interquartile range. The

number of majorities who are better of is not statistically significant, but for small α levels, some
minorities can be worse off.

we set r = 16% and 20%, we start to observe the adverse effects of DAMaQ for both ma-
jorities and minorities (Figure S.2). With TTCMiR, however, minority reserve sizes start
to show positive redistribution effects for minority students even for very small reserve
sizes (Figure S.2).

In real-life situations, affirmative action policies are directed toward groups who
tend to be left behind for a variety of reasons. For instance, there might be observed
differences in exam scores or other academic achievements between majorities and mi-
norities, which can be reflected in our model by changing the school priorities on minor-
ity students. To this end, we introduce a new variable, 	 ≤ 0, the average overall shared
preference toward minority students. We can define an updated school utility function
for minority students as

Ucj (s
minority
i )= θN	�1(s

minority
i )+ (1 − θ)Zcj (s

minority
i )�

where N	�1 is a normal distribution with mean 	 and variance 1.
With this new utility function in hand, we first check the effects of 	 and its inter-

actions with α and minority reserve, r, parameters. Initially, we vary 	 from 0 to −2 in
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steps of 0�2,26 vary α from 0 to 1 in steps of 0�1, and set minority reserve at r = 20% and
θ = 0�5. As the correlation between student preferences increases, all affirmative action
policies increase match qualities of minorities up to 80% in median for smaller 	 val-
ues compared with their no affirmative action counterparts (Figure S.3). Moreover, as 	
decreases from 0 to −2, the amount of improvements under DAMiR compared to DAMaQ

decreases for both minorities and majorities (Figure S.3).
Next, we set α = θ = 50% and analyze the interaction between 	 and minority re-

serve size r. With decreasing values of 	, affirmative action policies make minorities
better off more dramatically (Figure S.4). For lower values of 	, positive effects of affir-
mative action policies for minorities can be observed for lower minority reserve sizes.
These lower minority reserve sizes coincide with the expected number of minority stu-
dents being assigned to better schools under no affirmative action policies, corrobo-
rating the result of Proposition 4 and showing the importance of selecting appropriate
reserve sizes.

Last, we compare the student-proposing deferred acceptance algorithms with the
top trading cycles algorithms. Overall, the ratio of students who are better off to worse
off under TTCNAA compared to DANAA is around 4, validating the notion that TTC based
algorithms improve the overall social welfare of students (Figure S.1). For affirmative
action policies, we also see that TTC based algorithms benefit a larger ratio of both mi-
norities and majorities, albeit not as much as the increase seen in the no affirmative
action counterpart (Figure S.1).

6. C

In recent years, public school admissions have been improved by implementing market-
design-rooted mechanisms (Abdulkadiroğlu et al. 2005a, 2005b). One of the key ingredi-
ents in the admissions process is the presence or absence of affirmative action policies
in many school districts. A common affirmative action policy sets quotas for different
types of students so as to increase minority welfare. These quotas, when taken as hard
feasibility constraints, may lead to negative consequences such as perverse comparative
statistics.

Instead of considering these bounds as hard feasibility constraints, we view them as
soft regulatory boundaries that regulate school priorities dynamically. With this view,
the deferred acceptance algorithm outcome Pareto dominates any stable matching un-
der majority quotas. In addition, simulations show that the new affirmative action pol-
icy mitigates the perverse comparative statistics caused by the old one.

In very general settings, it is nearly impossible to assess the overall efficiency or wel-
fare effects of affirmative action policies (Holzer and Neumark 2000). There are numer-
ous reasons for this. To name just a few, markets may be decentralized or the admission
and affirmative action policies may not be clear. By contrast, public school admissions
are increasingly handled in a centralized manner where students submit an ordered
preference list of schools and school priorities are fixed by school policies. Moreover, the

26A value of 	 = −2 corresponds to the case where the average utility of minorities is 2 standard devia-
tions lower than the average utility of majorities.
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affirmative action policies in the school choice setting are transparent, making it close
to an ideal environment for studying the welfare effects of these policies. Therefore,
an important contribution of our paper is the analysis of the welfare effects of different
affirmative action policies.

Another contribution of this paper is to provide a simulation method to analyze “on
average” effects of different affirmative action policies. Simulations allow us to look at
some policy-oriented questions that we cannot study by theoretical analysis while en-
riching our model with realistic features. In future work, we plan to run simulations so
as to determine the minority reserves that benefit minorities while minimizing adverse
effects on majorities. One can also run simulations using data or more realistic models
(such as more student types, floors, and ceilings) to determine the effects of affirmative
action policies in different subpopulations.

In conclusion, it is important to mention that our work is a normative study that pro-
poses how affirmative action policies should operate in centralized mechanisms, rather
than an analysis or a characterization of affirmative action policies with hard bounds
that are used in practice. The proposed affirmative action with minority reserves has
clear benefits over majority quotas. For school districts with diversity concerns such
as San Francisco or Jefferson County, our work provides an alternative approach for
implementation.

A A: P

P  P 1. First, we show that the deferred acceptance algorithm with
minority reserves produces a student-optimal stable matching.

The choice function of a school c, Chc : 2S → 2S , is defined as follows. For a given
subset of S, say Ŝ, Chc(Ŝ) consists of rmc minority students from Ŝ with the highest pri-
orities if there are enough minority students and of students with the highest priorities
from the remaining students in Ŝ without exceeding qc .

D 1. A school c’s preference satisfies substitutability if for any group of stu-
dents Ŝ that contains students s and s′ (s �= s′), s ∈ Chc(Ŝ) implies s ∈ Chc(Ŝ \ {s′}).

C 1. Every school’s preference is substitutable.

P. If s ∈ SM , then s ≻c s
′′ for every s′′ ∈ Ŝ \ Chc(Ŝ). Therefore, s ∈ Chc(Ŝ \ {s′}).

Otherwise, s ∈ Sm. This implies that either (i) |Chc(Ŝ) ∩ Sm| > rmc and s ≻c s
′′ for every

s′′ ∈ Ŝ \ Chc(Ŝ) or (ii) |Chc(Ŝ) ∩ Sm| ≤ rmc and s ≻c s
′′ for every s′′ ∈ (Ŝ \ Chc(Ŝ)) ∩ Sm. In

both cases, s ∈ Chc(Ŝ \ {s′}). �

Therefore, each school’s preference with strict priority and minority reserves can
also be viewed as a substitutable preference profile. Thus, by Theorem 6.8 of Roth and
Sotomayor (1990), the student-proposing deferred acceptance algorithm with minority
reserves produces the student-optimal stable matching.

To verify weakly group strategy-proofness, we introduce a new school choice prob-
lem, where the student-proposing deferred acceptance algorithm produces the same
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matching with the student-proposing deferred acceptance algorithm with minority
reserves.27

Split each school c that has a quota of qc and minority reserve rmc with preference ≻c

into two schools c1 (original) and c2 (minority favoring): c1 has a capacity of qc − rmc and
preferences ≻c ; c2 has a capacity of rmc and preferences ≻′

c . Hence,

s ≻′
c s

′ ⇐⇒

⎧
⎨
⎩
s ∈ Sm and s′ ∈ SM

s� s′ ∈ Sm and s ≻c s
′

s� s′ ∈ SM and s ≻c s
′�

For each student s, we replace school c with its copies in the same order to get the
new preference ≻′

s. For example, if c1 ≻s c2, then c2

1
≻′
s c

1

1
≻′
s c

2

2
≻′
s c

1

2
. In words, each stu-

dent keeps the relative rankings of schools the same and prefers the minority-favoring
schools over the originals.

Let us call the original problem M1 and call the new one M2. Any matching in M2

can be transformed to a matching in M1 in a straightforward manner: All students who
are matched to c1 and c2 in M2 are matched to c in M1. Now take a matching µ in M1.
We can transform this into a matching in M2 as follows. If |µ(c) ∩ Sm| ≥ rmc , then c2 is
matched to the highest-ranked minority students in µ(c) with respect to ≻c , and the
rest of the students in µ(c) are matched to c1. Otherwise, if |µ(c) ∩ Sm| < rmc , then all
the minority students in µ(c) and the best majority students from µ(c) with respect to
≻c are matched to c2 until the quota of c2 is reached or students are exhausted, and the
rest of the students in µ(c) are matched to c1. Let µ be a matching in M1 and let µ2 be
a matching in M2 that correspond to each other by the preceding transformation. By
construction, µ in M1 is stable if and only if µ2 is stable in M2.

Therefore, the student-proposing deferred acceptance algorithm with minority re-
serves produces the same outcome as the student-proposing deferred acceptance algo-
rithm in M2. Suppose, to the contrary, that there exists a problem M1 for which a set of
students Ŝ can deviate from truth-telling in the student-proposing deferred acceptance
algorithm to get better outcomes. If we look at the corresponding problem M2, then Ŝ

can also deviate from truth-telling to get better outcomes. This is a contradiction since
the student-proposing deferred acceptance algorithm is weakly group strategy-proof,
which is the main result of Dubins and Freedman (1981). �

P  T 1. If µ is stable under minority reserves with rm, then we are done.
Suppose, otherwise, that µ is not stable under minority reserves. Then there exists a
blocking pair (c� s). Since (c� s) does not form a blocking pair under majority quotas,
then s has to be a majority, |µ(c)∩ SM | = qMc , and |µ(c)| < qc . Therefore, c has an empty
seat in µ and there exists a student who prefers c to its current match.

Whenever such a school exists, we execute the improvement algorithm described
after Theorem 1. Let µ′ be the matching produced after applying the algorithm.

Note that all the students, both minorities and majorities, are weakly better off in
µ′ compared to µ. Moreover, at least one student is strictly better off. To complete the
proof, we have to show that µ′ is stable under minority reserves.

27An alternative proof can be done by an application of the main result in Martínez et al. (2004) or
Hatfield and Kojima (2009).
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Assume otherwise. Since µ is an individually rational matching, so is µ′. Therefore,

there exists a blocking pair (c′� s′) to violate stability under minority reserves. First note

that |µ′(c′)| = qc′ . Let us separate the analysis into two cases, depending on whether s′

is a minority or majority.

Case 1 (Minority). Suppose that s′ is a minority student. If µ′(c′) = µ(c′), then (c′� s′)

forms a blocking pair for µ under majority quotas since µ′(s′) �s′ µ(s
′). Therefore,

µ′(c′) �= µ(c′). This means that c′ filled some of its seats in the improvement proce-

dure. At every step of the procedure when c′ filled its seats, s′ must have preferred c′ to

its match at that point since s′ weakly improves its match at any step of the procedure.

Therefore, for any student s ∈ µ′(c′) \ µ(c′), s ≻c′ s′. For any student s ∈ µ′(c′) ∩ µ(c′),

s ≻c′ s′ since (c′� s′) is not a blocking pair in µ under majority quotas. This contradicts

the fact that (c′� s′) is a blocking pair under minority reserves.

Case 2 (Majority). Suppose that s′ is a majority student. If µ′(c′) = µ(c′), then (c′� s′)

forms a blocking pair for µ under majority quotas. Therefore, µ′(c′) �= µ(c′), which im-

plies that school c filled some of its seats in the improvement procedure. At every step

of the procedure when c′ filled its seats, s′ must have preferred c′ to its match at that

point since s′ weakly improves its match at any step of the procedure. Therefore, for

any student s ∈ (µ′(c′) \ µ(c′)) ∩ SM , s ≻c′ s′. Moreover, since (c′� s′) is not a blocking

pair in µ under majority quotas, s ∈ (µ′(c′) ∩µ(c′)) ∩ SM , s ≻c′ s′. If we combine the last

two statements, we get that s ∈ µ′(c′) ∩ SM , s ≻c′ s′. If |µ′(c′) ∩ Sm| ≤ rmc′ , then c′ cannot

block since it has to keep the minority students and it prefers all the majority students

to s′. Therefore, |µ′(c′) ∩ Sm| > rmc′ . Let sm be the minority student who is minimal ac-

cording to ≻c′ . Then sm /∈ µ(c′), because otherwise either (i) (µ′(c′) \ µ(c′)) ∩ Sm �= ∅,

and one of (µ′(c′) \ µ(c′)) ∩ Sm and c forms a blocking pair for µ under majority quo-

tas or (ii)(µ′(c′) \ µ(c′)) ∩ Sm = ∅ and (c′� s′) forms a blocking pair for µ under majority

quotas. Therefore, sm /∈ µ(c′). This implies that sm must have been matched to c′ in the

improvement procedure. Moreover, she must have been the last minority student to be

matched to c′. At that step of the algorithm, s′ prefers her match to c′, so s′ should have

been matched to c′ rather than sm according to the procedure. We get a contradiction. �

P  T 2. Suppose, to the contrary, that for all s ∈ Sm, µ(s) ≻s µ
r(s).

When minority students submit their preferences truthfully, the resulting matching

is µr with minority reserves. Now, we claim that if they jointly modify their preferences

such that each minority student s lists µ(s) as the only acceptable choice, µ would be a

stable matching under minority reserves. Let ≻′
s be this preference ordering of s ∈ Sm.

We claim that if the preference profile is ((≻′
s)s∈Sm� (≻s)s∈SM ), then µ is a stable

matching under minority reserves. First note that each minority student s is getting

her top choice in µ according to ≻′
s . Thus, none of the minorities is in a blocking pair.

Moreover, if (c� s) is a blocking pair where s ∈ SM for µ under minority reserves, then the

same pair would also form a blocking pair for µ under no affirmative action. There-

fore, there cannot be any blocking pairs and µ is stable under minority reserves for

((≻′
s)s∈Sm� (≻s)s∈SM ).
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Consequently, the student-proposing deferred acceptance algorithm with minor-
ity reserves when students submit ((≻′

s)s∈Sm� (≻s)s∈SM ) must assign each minority stu-
dent s her top choice, which is µ(s). Hence, all minority students get a strictly bet-
ter outcome by jointly changing their preferences, which contradicts the fact that
the student-proposing deferred acceptance algorithm with minority reserves is weakly
group strategy-proof (Proposition 1). �

P  P 2. Without loss of generality, relabel schools such that for any
i� j ∈ {1� � � � � |C|}, all students prefer ci to cj if and only if i < j. Similarly, relabel students
such that for any i� j ∈ {1� � � � � |S|}, all schools prefer si to sj if and only if i < j.

It is clear that under each affirmative action policy, there is a unique stable matching
because students’ preferences and schools’ priorities are all the same. Therefore, we
start by characterizing the stable matchings under the policies.

No affirmative action. In the unique stable matching, c1 is matched to the top qc1
stu-

dents, s1� � � � � sq1
, c2 is matched to the next qc2

students, sq1+1� � � � � sq1+q2
, and so on. The

unique stable matching in this case can be obtained by a serial dictatorship of schools
in which ck takes the kth turn to choose its students.

Majority quotas. In the unique stable matching, c1 is matched to the top rmc1
minority

students first and then to the top qMc1
− rmc1

students among those remaining. Next, c2 is
matched to the top rm

2
minority students among the remaining minority students and

to the top qMc2
− rmc2

students among the remaining students, and so on. Even if there are
not enough minority students to take rmck seats at step k, school ck cannot be matched
to more than qmck − rmck majority students. The unique stable matching in this case can
be obtained by a serial dictatorship of schools in which ck takes the kth turn: First rm

k

minority students are admitted if there are enough minority students left; then qMck − rmck
students are admitted if there are enough students left.

Minority reserves. In the unique stable matching, c1 is matched to the top rmc1
minor-

ity students first and then to the top students among those remaining to fill its capacity
qc1

. Among the remaining students, c2 is matched to the top rmc2
minority students and

then to the top students among those remaining to fill its quota qc2
, and so on. The

unique stable matching in this case can be obtained by a serial dictatorship of schools
in which ck moves in the kth turn: First rmck minority students are admitted if there are
enough minority students left; then any type of students are admitted to fill its capacity
qck .

Next, note that minority students are matched with the same schools under majority
quotas and minority reserves. The serial dictatorship mechanisms in both cases give the
same outcome step by step as long as the minority reserves can be filled. If the minority
reserves of ck cannot be filled, then the minority students are exhausted. For ck and
remaining schools, more seats are available to remaining majority students in minority
reserves compared with majority quotas. Therefore, µr(s) = µq(s) for any s ∈ Sm and
µr(s) �s µ

q(s) for any s ∈ SM .
Finally, to show that µr(s) �s µ(s) for all s ∈ Sm, we prove the following claim. Let

Mr
t and Mt be the set of majority students available to ct during the serial dictatorship

under minority reserves and no affirmative action, respectively. Similarly define mr
t and
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mt to be the set of minority students available at step t. Then the claim is mr
t ⊆ mt and

Mr
t ⊇Mt .

The proof of this claim is by mathematical induction on t. When t = 1, mr
t =mt = Sm

and Mr
t = Mt = SM , so the claim holds. Suppose that the claim holds for t = k. Since all

schools have the same priorities over students, ck+1 prefers any student in mt \m
r
t to any

student in mr
t ; similarly, any student in Mr

t \ Mt is preferred to any student in Mt . Note
that either all students are chosen by ct+1 in both serial dictatorships if there is enough
capacity or the same number of students are chosen. In the first case, mr

t+1
= mt+1 =

∅ and Mr
t+1

= Mt+1 = ∅, and the claim holds. Now, consider the latter case. Suppose
that a minorities and b majorities are chosen by ct+1 under no affirmative action. If
a ≤ |mt \ mr

t |, then mr
t+1

⊆ mt+1 (since only minority students from mt \ mr
t are chosen

under no affirmative action). Even if ct+1 chooses all majorities under minority reserves,
we get that Mr

t+1
⊇ Mt+1 (since a ≤ |mt \ mr

t | = |Mr
t \ Mt | and at most a more majorities

are chosen under minority reserves compared to no affirmative action). However, if a >

|mt \ mr
t |, then ct+1 chooses a − |mt \ mr

t | minorities among mr
t when Mt is available.

Therefore, even if all of Mr
t \Mt are chosen under minority reserves, which has the same

cardinality as |mt \mr
t |, at least a− |mt \mr

t | minorities are chosen. This implies mr
t+1

⊆

mt+1. Similarly, ct+1 has chosen b majorities among Mt ∪mt under no affirmative action,
so it cannot choose more than b+|Mr

t \Mt | among mr
t ∪Mr

t . Consequently, Mr
t+1

⊇Mt+1.
Since mr

t ⊆ mt for all t, each minority student is chosen under minority reserves no
later than she is chosen under no affirmative action. Therefore, µr(s) �s µ(s) for all
s ∈ Sm. �

P  P 3. Assume, to the contrary, that µ is not a stable matching un-
der minority reserves rm. Since µ is a stable matching under no affirmative action, it is an
individually stable matching. Therefore, there exists a blocking pair (c� s) when minority
reserves are rm. Since µ is a stable matching under no affirmative action, |µ(c)∩ S| = qc ,
i.e., there are no empty seats in c (otherwise (c� s) is a blocking pair).

First suppose that s is a minority student. Since |µ(c)∩Sm| ≥ rcm, there exists s′ ∈ µ(c)

such that s ≻c s
′. In this case, (c� s) also forms a blocking pair when there is no affirmative

action policy, which is a contradiction.
Suppose now that s is a majority student. Then either (a) |µ(c) ∩ Sm| ≥ rmc + 1 and

there exists s′ ∈ µ(c) such that s ≻c s
′ or (b) |µ(c)∩Sm| = rmc and there exists s′ ∈ µ(c)∩SM

such that s ≻c s
′. In both cases, (c� s) forms a blocking pair for µ with no affirmative

action, which is a contradiction. �

P  P 4. We show that the outcome of the student-proposing de-
ferred acceptance algorithm with minority reserves rm (DAMiR) is at least as good as the
outcome of µ for all minorities. Let ν be the outcome of DAMiR, and let νk be the tentative
matching at step k of DAMiR.

Suppose, to the contrary, that there exists a nonempty set T ⊆ Sm such that for all
s ∈ T , µ(s) ≻s ν(s). For each s ∈ T , we have µ(s) ∈ C. This is because ν is an individually
rational matching, i.e., ν(s) �s s for all s. Therefore, each s ∈ T has been rejected by
school µ(s) at some step of the DAMiR. Consider one student in T who has been rejected
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at the earliest step, say student s at step k (if there are multiple students rejected at this
step, choose one randomly). Denote µ(s) by c and ν(s) by c′.

Then we claim that there has to be a new minority student in νk(c) who was not
matched to school c in µ. That is, there exists s′ ∈ Sm such that νk(s′) = c and µ(s′) ≡

c′′ �= c. Otherwise, if the set of students who are matched to c in νk is a subset of µ(c) (i.e.,
(νk(c) ∩ Sm) ⊆ (µ(c) ∩ Sm)), then there can be a maximum of |µ(c) ∩ Sm| − 1 minority
students assigned to c in νk since s ∈ µ(c) \ νk(c). Therefore, school c has not filled
its minority reserves in νk, which contradicts with the rejection of student s at step k.
Consequently, there exists a minority student s′ ∈ νk(c) \ µ(c). But since s is rejected
but s′ is tentatively accepted to school c in νk, we get s′ ≻c s. Moreover, we know that
the original matching µ is stable. Therefore, for s′ not to form a blocking pair with c in
µ, s′ should be matched to a school that is preferred by s′. Hence, µ(s′) = c′′ ≻s′ c. In
DAMiR, s′ applies to schools according to her preference list and since s′ is assigned to c

by νk, it means that s′ was rejected by c′′ in an earlier stage than k. By construction, s
is among the students who were rejected by their original matching in µ at the earliest
step. Hence, we get a contradiction. Consequently, we prove that ν(s) is at least as good
as µ(s) for all s ∈ Sm. �

P  C 1. If rmc ≤ |µ(c) ∩ Sm| for all c, then µ is also stable under mi-
nority reserves with rm by Proposition 3. Therefore, µr Pareto dominates µ for all stu-
dents. However, if rmc ≥ |µ(c)∩ Sm| for all c, then there exists a stable matching µ′ under
minority reserves with rm that Pareto dominates µ for all minority students by Proposi-
tion 4. Since µr is the student-optimal stable matching under minority reserves with rm,
it Pareto dominates µ′ for all students, which in turn Pareto dominates µ for all minority
students. The conclusion follows. �

P  T 3. Suppose, to the contrary, that there exists such a mechanism µ.
The proof is by means of an example: C = {c1� c2� c3}, Sm = {s1� s2}, and SM = {s3}. All
schools have a quota of 1: q = (1�1�1). Students’ preferences and schools’ priorities are
given by the table

≻s1
≻s2

≻s3
≻c1

≻c2
≻c3

c3 c3 c1 s2 s1 s3

c1 c2 c2 s1 s2 s1

c2 c1 c3 s3 s3 s2

Majority quotas are given by qM = (0�0�1). If we apply the top trading cycles algo-
rithm with majority quotas, then we obtain the matching ν:

ν(c1) = s1� ν(c2)= s2� ν(c3) = s3�

There are only two Pareto efficient matchings, say ν1 and ν2, that Pareto dominate ν:

ν1(c1) = s3� ν1(c2) = s2� ν1(c3) = s1

ν2(c1) = s1� ν2(c2) = s3� ν2(c3) = s2�
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Therefore, with these preferences, either µ(≻s1
�≻s2

�≻s3
) = ν1 or µ(≻s1

�≻s2
�≻s3

) =

ν2. We show that both are impossible.

Case 1 (µ = ν1). In this case, s2 and s3 can jointly submit the preferences ≻′
s2

: c3 ≻′
s2

c1 ≻′
s2

c2 and ≻′
s3

: c1 ≻′
s2

c3 ≻′
s2

c2. The outcome of the top trading cycles algorithm
with majority quotas is {(c1� s2)� (c2� s1)� (c3� s3)}.28 There is a unique Pareto efficient
matching that improves on this: {(c1� s3)� (c2� s1)� (c3� s2)}. Therefore, µ(≻s1

�≻′
s2
�≻′

s3
) =

{(c1� s3)� (c2� s1)� (c3� s2)}. But s2 strictly prefers µ(≻s1
�≻′

s2
�≻′

s3
) to µ(≻s1

�≻s2
�≻s3

), while
s3 is indifferent. This is a contradiction since µ is strongly group strategy-proof.

Case 2 (µ = ν2). In this case, s3 can submit the preference ≻′
s3

: c1 ≻′
s2
c3 ≻′

s2
c2. The

outcome of the top trading cycles algorithm with majority quotas is {(c1� s1)� (c2� s2)�

(c3� s3)}. There is a unique Pareto efficient matching that improves on this: {(c1� s3)�

(c2� s2)� (c3� s1)}. Therefore, µ(≻s1
�≻s2

�≻′
s3
) = {(c1� s3)� (c2� s2)� (c3� s1)}. But s3 strictly

prefers µ(≻s1
�≻s2

�≻′
s3
) to µ(≻s1

�≻s2
�≻s3

). This is a contradiction since µ is strongly
group strategy-proof (which implies strategy-proofness). �

P  P 5. For Pareto efficiency, note that all students who are matched
at the first step of the algorithm get their first choice schools, so they cannot be made
better off. Similarly, all students who get matched at the next step cannot get into more
preferred schools without harming some of the students who are matched in step 1. By
induction, students who are matched at step k of the algorithm cannot get into more
preferred schools without harming some of the students who are matched before step
k, which proves Pareto efficiency.

We prove the group strategy-proofness of the top trading cycles algorithm with mi-
nority reserves in three steps. First, we prove individual strategy-proofness. Suppose
that µ is the outcome of TTC with minority reserves. Let ≻′

s be a preference rela-
tion for student s that assigns the best outcome to student s with respect to true pref-
erences ≻s (i.e., for all ≻̂s, µ(≻′

s�≻S\{s}) �s µ(≻̂s�≻S\{s})). Note that by the nature of
top trading cycles algorithms, s can get the same outcome as µs(≻

′
s�≻S\{s}) by stating

µs(≻
′
s�≻S\{s}) as the only acceptable choice. Similarly, listing choices that are worse

than µs(≻
′
s�≻S\{s}) truthfully does not change the outcome. Finally, listing choices that

are better than µs(≻
′
s�≻S\{s}) truthfully cannot harm s. By construction, listing choices

that are better than µs(≻
′
s�≻S\{s}) truthfully also cannot improve the outcome of s, so

the outcome is the same regardless of how s submits her preferences. Hence, we have
µs(≻

′
s�≻S\{s})= µs(≻s�≻S\{s}), which proves the strategy-proofness.

Second, we prove the invariance property of µ. If a student modifies her submitted
preference list by changing only her top school to a better school than assigned by µ or to
the school assigned by µ, while keeping the ranking of other schools the same, then the
outcome of µ does not change. Formally, for any a ∈ C ∪ {s} such that a �s µs(≻) ≡ ĉ,29

the invariance property requires that µ(≻) = µ(≻
∗(a)
s �≻S\{s}), where ≻

∗(a)
s is defined by

a �
∗(a)
s a′ for all a′ ∈ C ∪ {s} and for all a′� a′′ ∈ C ∪ {s} \ {a}� we have a ≻

∗(a)
s a′ if and only

if a ≻s a
′. This follows from the following observations. If a = ĉ, by the argument we use

28Here, we use an alternative notation for one-to-one matchings.
29Here ĉ does not have to be a school; it can also be the outside option s.
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above, s is assigned to ĉ and the choices after ĉ do not matter; hence µ executes the same
cycles under ≻ and (≻

∗(a)
s �≻S\{s}). If a �= ĉ, then by strategy-proofness, we know that s

cannot be assigned to any school better than ĉ under (≻
∗(a)
s �≻S\{s}). This means that

until all schools better than ĉ (under ≻s) exhaust their quotas, the cycles under ≻ and
(≻

∗(a)
s �≻S\{s}) are the same. Furthermore, once all of these schools exhaust their quotas,

the same cycles are executed under both preference profiles from that point on, since at
that point the network graphs are the same, proving the invariance property.

In the third and the last step, we argue that the invariance property implies strongly
group strategy-proofness. Suppose that there exist {s1� � � � � s|T |} ≡ T ⊆ S, ≻′

T , and ≻ such
that c′

s ≡ µs(≻
′
T �≻S\T ) �s µs(≻) ≡ cs for all s ∈ T .30 We claim that c′

s = cs for all s ∈ T . For

all s ∈ T , let ≻
∗(c′

s)
s be the preference profile defined as above and let ≻∗

T ≡ (≻
∗(c′

s)
s )s∈T .

Since c′
s1

� cs1
� by the invariance property, µ(≻

∗(c′
s1
)

s1
�≻S\{s1}) = µ(≻). Then, again by the

invariance property, µ(≻
∗(c′

s1
)

s1
�≻

∗(c′
s2
)

s2
�≻S\{s1�s2}) = µ(≻

∗(c′
s1
)

s1
�≻S\{s1}). By mathematical

induction, we conclude that

µ(≻∗
T �≻S\T ) = µ(≻)� (1)

Similarly, we have µ(≻
∗(c′

s1
)

s1
�≻′

T\{s1}
�≻S\T ) = µ(≻′

T �≻S\T ), µ(≻
∗(c′

s1
)

s1
�≻

∗(c′
s2
)

s2
�≻′

T\{s1�s2}
�

≻S\T ) = µ(≻
∗(c′

s1
)

s1
�≻′

T\{s1}
�≻S\T ), and so on. Finally, by mathematical induction,

µ(≻∗
T �≻S\T ) = µ(≻′

T �≻S\T )� (2)

Combining (1) and (2), we get µ(≻′
T �≻S\T )= µ(≻) and, in particular, c′

s = cs for all s ∈ T ,
which shows that µ is strictly group strategy-proof. �

P  T 4. The proof is by induction on the number of students.
Base case. If there is only one student in the problem, then the claim is trivially true.
General case. Consider the set of students and schools that are matched in the first

step of the top trading cycles with minority reserves, say S1 and C1, respectively. If there
exists a minority student among S1, then we are done, since this student is matched to
her top choice. Otherwise, S1 ⊆ SM . Moreover, each school in C1 cannot be pointing to
a minority student at the first step, since all students who are pointed to by schools in
C1 are matched at this step. Therefore, these schools have zero minority reserves. Since
each agent in C1 ∪ S1 is pointing to her best choice, those agents must also be matched
to each other in the first step of the top trading cycles without minority reserves. To
implement the top trading cycles algorithm with or without minority reserves for the
rest of the agents, we can consider a new problem with the set of students S \ S1 and the
capacities of C1 reduced by 1. By induction, there exists at least one minority student
s for which the outcome with the minority reserves is as good as the outcome without
minority reserves. This completes the proof. �

P  P 7. In the next example, taken from Kojima (2012), we show
that the top trading cycles algorithm can Pareto dominate, for the minority students,
the top-trading cycles algorithm with minority reserves.

30As before, cs and c′
s are not necessarily schools; they can also represent the outside options.
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E 3. Consider the problem C = {c1� c2� c3}, SM = {s1� s2}, and Sm = {s3� s4}. All

schools have a quota of 1: q = (1�1�1). Students’ preferences and schools’ priorities are

given by the table

≻s1
≻s2

≻s3
≻s4

≻c1
≻c2

≻c3

c1 c2 c2 c3 s4 s1 s1

s2 s3 s4

s2

s3

Minority reserves are given by rm = (0�0�1). If we apply the top trading cycles algo-

rithm, then we obtain the matching µ:

µ(c1) = s1� µ(c2) = s3� µ(c3)= s4� µ(s2)= s2�

If we apply the top trading cycles algorithm with minority reserves, then we obtain

the matching µ′31:

µ′(c1) = s1� µ′(c2) = s2� µ′(c3) = s4� µ′(s3) = s3�

In this problem, s3 prefers the top-trading cycles algorithm, whereas s4 is

indifferent. ♦

In the next example we show that the top trading cycles algorithm with minority

reserves can Pareto dominate, for minority students, the top trading cycles algorithm.

E 4. Consider the problem C = {c1� c2}, SM = {s2}, and Sm = {s1}. All schools

have a quota of 1: q = (1�1). Students’ preferences and schools’ priorities are given by

the table

≻s1
=≻s2

≻c1
=≻c2

c1 s2

c2 s1

Minority reserves are given by rm = (1�0). If we apply the top trading cycles algo-

rithm, then we obtain the matching µ:

µ(c1)= s2� µ(c2) = s1�

If we apply the top trading cycles algorithm with minority reserves, then we obtain

the matching µ′:

µ′(c1)= s1� µ′(c2) = s2�

In this problem, s1 prefers the top trading cycles algorithm with minority reserves. ♦

31This is also the outcome of the top trading cycles with majority quotas as shown by Kojima (2012).
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In the next example we show that the top trading cycles algorithm with majority
quotas can Pareto dominate, for minority students, the top trading cycles algorithm with
minority reserves.

E 5. Consider the problem C = {c1� c2� c3}, SM = {s2}, and Sm = {s1� s3}. All
schools have a quota of 1: q = (1�1�1). Students’ preferences and schools’ priorities
are given by the table

≻s1
≻s2

=≻s3
≻c1

≻c2
≻c3

c2 c1 s1 s2 s3

c3

Majority quotas are given by qM = (0�1�1) and corresponding minority reserves are
rm = (1�0�0). If we apply the top trading cycles algorithm with majority quotas, then we
obtain the matching µ:

µ(c1)= s3� µ(c2) = s1� µ(c3) = s2�

If we apply the top trading cycles algorithm with minority reserves, then we obtain
the matching µ′:

µ′(c1)= s2� µ′(c2) = s1� µ′(c3)= s3�

In this problem, s1 is indifferent between the two algorithms, whereas s3 prefers the
top trading cycles algorithm with majority quotas. ♦

In the last example, we show that the top trading cycles algorithm with minority
reserves can Pareto dominate, for minority students, the top trading cycles algorithm
with majority quotas.

E 5. Consider the problem C = {c1� c2}, SM = {s2}, and Sm = {s1}. All schools
have a quota of 1: q = (1�1). Students’ preferences and schools’ priorities are given by
the table

≻s1
≻s2

≻c1
≻c2

c2 c1 s1 s2

c1 c2 s2 s1

Majority quotas are given by qM = (0�1) and the corresponding minority reserves
are rm = (1�0). If we apply the top trading cycles algorithm with majority quotas, then
we obtain the matching µ:

µ(c1) = s1� µ(c2) = s2�

If we apply the top trading cycles algorithm with minority reserves, then we obtain
the matching µ′:

µ′(c1) = s2� µ′(c2) = s1�

In this problem, s1 prefers the top trading cycles algorithm with minority reserves. �
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A B: S 

F S.1. Median percentage of minorities and majorities who are better/worse off under
different mechanisms after 100 simulations. The error bars indicate interquartile range. We set
the number of students to n= 1,000, the number of schools to m = 20, each school size to M = 50,
the proportion of minority students to r = 20%, and the minority reserve ratio to q = 20%, and
vary α and θ.
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F S.2. Median percentage of minorities and majorities who are better/worse off under

different mechanisms after 100 simulations. The error bars indicate interquartile range. We set
the number of students to n = 1,000, the number of schools to m = 20, each school size to M = 50,
and the proportion of minority students to r = 20%. We set α = θ and vary them along with the
minority reserve ratio.
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F S.3. Median percentage of minorities and majorities who are better/worse off under
different mechanisms after 100 simulations. The error bars indicate interquartile range. We set
the number of students to n= 1,000, the number of schools to m = 20, each school size to M = 50,
and the proportion of minority students to r = 20%. We introduce a new variable, 	, which is the
average preference of schools toward minority students. We set θ = 0�5 and minority reserve
q = 20%, and vary α and 	.
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F S.4. Median percentage of minorities and majorities who are better/worse off under
different mechanisms after 100 simulations. The error bars indicate interquartile range. We set
the number of students to n = 1,000, the number of schools to m = 20, each school size to M = 50,
and the proportion of minority students to r = 20%. We introduce a new variable, 	, which is the
average preference of schools toward minority students. We set α= θ = 0�5 and vary 	 along with
the minority reserve ratio.
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