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ABSTRACT

Integrity constraints (ICs) are useful for query optimiza-
tion and for expressing and enforcing application semantics.
However, formulating constraints manually requires domain
expertise, is prone to human errors, and may be excessively
time consuming, especially on large datasets. Hence, pro-
posals for automatic discovery have been made for some
classes of ICs, such as functional dependencies (FDs), and
recently, order dependencies (ODs). ODs properly subsume
FDs, as they can additionally express business rules involv-
ing order; e.g., an employee never has a higher salary while
paying lower taxes than another employee.

We present a new OD discovery algorithm enabled by a
novel polynomial mapping to a canonical form of ODs, and a
sound and complete set of axioms (inference rules) for canon-
ical ODs. Our algorithm has exponential worst-case time
complexity, O(2|R|), in the number of attributes |R| and
linear complexity in the number of tuples. We prove that
it produces a complete and minimal set of ODs. Using real
and synthetic datasets, we experimentally show orders-of-
magnitude performance improvements over the prior state-
of-the-art.

1. INTRODUCTION

1.1 Motivation
With the interest in data analytics at an all-time high,

data quality and query optimization are being revisited to
address the scale and complexity of modern data-intensive
applications. Real data suffer from inconsistencies, dupli-
cates and missing values [3, 4]. A recent Gartner Research
Report study in 2012 revealed that, by 2017, one third of the
largest global companies will experience data quality crises
due to their inability to trust and govern their enterprise in-
formation. Deep analytics on large data warehouses, span-
ning thousands of lines of SQL code, are no longer restricted
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Table 1: A table with employee salaries and tax information.

# ID yr posit bin sal perc tax grp subg

t1 10 16 secr 1 5K 20% 1K A III
t2 11 16 mngr 2 8K 25% 2K C II
t3 12 16 direct 3 10K 30% 3K D I

t4 10 15 secr 1 4.5K 20% 0.9K A III
t5 11 15 mngr 2 6K 25% 1.5K C I
t6 12 15 direct 3 8K 25% 2K C II

to well-tuned, canned batch reports. Instead, complex ad-
hoc queries are increasingly required for business operations
to make timely data-driven decisions. Without clean data
and effective query optimization, organizations will not be
able to take advantage of new data-driven opportunities.

Integrity constraints (ICs) are commonly used to charac-
terize data quality and to optimize business queries. Prior
work has focused on functional dependencies (FDs) and ex-
tensions thereof, such as conditional FDs [4]. However, FDs
cannot capture relationships among ordered attributes, such
as between timestamps and numbers, which are common in
business data [19]. For example, consider Table 1, which
shows employee tax records in which tax is calculated as a
percentage (perc) of salary (sal). Both tax and percentage

increase with salary.
We study order dependencies (ODs) [10, 17, 20], which

naturally express such semantics. The OD salary orders
group (grp), subgroup (subg) holds in Table 1: if we sort the
table by salary, it is also sorted by group, subg; i.e., sorted
by group, with ties broken by subg. (However, the OD salary

orders subg, grp does not hold.) Similarly, the OD salary or-
ders tax, percentage holds in Table 1. ODs subsume FDs as
any FD can be mapped to an equivalent OD by prefixing the
left-hand-side attributes onto the right-hand-side [17]. For
example, if salary functionally determines tax, then salary

orders salary, tax (and, in this case, vice versa).
The additional expressiveness of ODs makes them partic-

ularly suitable for improving data quality, where ODs can
describe intended semantics and business rules; and their
violations can point out possible data errors.

Furthermore, query optimizers can use ODs to eliminate
costly operators such as joins and sorts and to identify in-
teresting orders: ordered streams between query operators
that exploit available indices, enable pipelining, and elimi-
nate intermediate sorts and partitioning steps [20]. Sorting
and interesting orders are integral parts of relational query
optimizers, not only for SQL order-by and group-by, but for
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select ...
from web_sales, item, date_dim
where ws_item_sk = i_item_sk and ...

and ws_sold_date_sk = d_date_sk and
d_date between

cast(’1999-02-22’ as date) and
(cast(’1999-02-22’ as date)

+ 30 days)...;

Figure 1: TPC-DS Q#23 with an expensive join.

instance also for sort-merge joins [19]. A practical applica-
tion of order dependencies for improved design to reduce the
indexing space was presented in [5].

Date and time are richly supported in the SQL standard
and frequently appear in decision support queries over his-
torical data. For example, 85 out of 99 queries in the TPC-
DS benchmark1 involve date operators and five involve time
operators. If ODs were only applicable to date and time,
they would already be very beneficial. As seen in Table 1,
ODs are also useful in other domains such as sales, flight
schedules, stock prices, salaries and taxes [17, 19, 20].

ODs also enable new optimizations for online analytical
processing (OLAP) such as eliminating expensive joins [18],
and improving the performance of queries with SQL func-
tions and algebraic expressions (e.g., date orders year(date)
and date orders year(date)*100 + month(date)) [11, 20].

Data warehouse queries reference fact tables which in-
clude foreign keys to dimension tables. Foreign keys are
often surrogate keys (unique sequential integers). However,
queries usually reference other natural dimension attributes,
not surrogate keys; e.g., the “between” predicate on d date

in TPC-DS query #23 (Figure 1). This predicate requires
a (potentially) expensive join between the fact table and
the date dimension table to identify all surrogate key val-
ues falling within the 30-day window starting at 1999-02-22.
This can be particularly expensive if the potentially very
large fact table is partitioned by date across many compute
nodes. Since the date range surrogate values cannot be de-
termined from d date, all partitions of the fact table must be
scanned. However, if d date sk orders d date, then it suffices
to make two probes into the date dimension table: one to
find the minimum relevant d date sk value corresponding to
1999-02-22; and one to find the maximum relevant d date sk

value corresponding to 1999-02-22 plus 30 days [18]. This
allows us to restate the “between” predicate in terms of
these two surrogate key values rather than dates, and thus
eliminate the join.

TPC-DS query #23 can be optimized as shown in Fig-
ure 2. The cardinality reduction due to the selection on
the date table is usually greater than that due to the se-
lections on other dimension tables. Thus, the first join
done is between the fact table and the date dimension ta-
ble. Eliminating this join brings significant benefits. The
experimental evaluation in [18] showed that 13 out of 99
TPC-DS queries matched this rewrite, which led to an av-
erage runtime improvement of 48%. Similar rewrite rules
can improve the performance of other queries, too, such as
TPC-DS query #29, which has an “in” predicate, d year

in (1998, 1998+1, 1998+2).

1.2 Problem Statement and Contributions
To use ODs for data cleaning and query optimization, we

need to know which ODs hold on a given dataset. While

1http://tpc.org/tpcds/

select ... from web_sales, item,
(select min(d_date_sk) as mindate

from date_dim
where d_date >= cast(’1999-02-22’ as date))
as A,

(select max(d_date_sk) as maxdate
from date_dim
where d_date <= cast(’1999-02-22’ as date)

+ 30 days)
as Z

where ... and ws_sold_date_sk between
A.mindate and Z.maxdate...;

Figure 2: Rewrite of TPC-DS Q#23 (eliminating join).

dependencies can be obtained manually through consulta-
tion with domain experts, this is known to be an expensive,
time consuming, and error-prone process that requires ex-
pertise in the data dependency language [9]. The problem
we study in this paper is how to automatically discover ODs
from data. Automatically discovered ODs can then be man-
ually validated by domain experts, which is an easier task
than manual specification.

This problem has been studied, but is not well understood.
Our aim is to provide a deeper understanding of OD dis-
covery. An OD discovery algorithm was recently proposed
by Langer and Naumann [10], which has a factorial worst-
case time complexity in the number of attributes. (This is
the only prior OD discovery work of which we are aware.)
In contrast to FDs, ODs are naturally expressed with lists
rather than sets of attributes. For instance, salary orders
tax, percentage is different from salary orders percentage, tax
whereas the two analogous FDs are equivalent. The first
complete axiomatization for ODs is expressed in a list nota-
tion [17]; Langer and Naumann use this.

An insight we present is that ODs can be expressed with
sets of attributes via a polynomial mapping to a set-based
canonical form. The mapping allows us to design a fast and
effective OD discovery algorithm that has “only” exponential
worst-case complexity, O(2|R|), in the number of attributes
|R| (and linear complexity in the number of tuples). This
complexity is similar to previous FD and Inclusion Depen-
dency discovery algorithms such as TANE [9].

We also develop sound and complete set-based axioms
(inference rules) for ODs that enable pruning of the search
space, which can alleviate the worst-case complexity in prac-
tice. To overcome the factorial complexity, the list-based
algorithm in [10] intentionally omits ODs in which the same
attributes are repeated in the left-hand-side and the right-
hand-side such as year, salary orders year, bin. In contrast,
our pruning rules do not affect completeness.

Finally, by introducing a set-based canonical form for
ODs, we achieve greater compactness in our representation.
Many ODs that are considered minimal by the algorithm
in [10] are found to be redundant by our algorithm. This is
quite important for efficiency of OD discovery. We do not
need to rediscover the “same” ODs repeatedly–that is, ODs
that can be inferred from ones we have already discovered–
and we can more aggressively prune portions of the search
space which would only have “repeats”.

In Section 2, we formally define ODs. We then make the
following contributions.

1. Mapping. We translate ODs into a novel set-based
canonical form (Section 3) which leads to a new and
efficient approach to OD discovery (Section 4). By
mapping ODs to equivalent set-based canonical ODs,
we illustrate that they can be discovered efficiently by
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traversing a set-containment lattice with exponential
worst-case complexity in the number of attributes (the
same as for FDs [9]), and just linear complexity in the
number of tuples (Section 4.7).

2. Set-based Axiomatization. We introduce axioms for
set-based canonical ODs and prove these are sound
and complete (Section 3.2). Our inference rules re-
veal insights into the nature of canonical ODs, which
lead to optimizations of the OD discovery algorithm
to avoid redundant computation (Section 4).

3. Completeness and Interestingness. We prove that our
discovery algorithm produces a complete and minimal
set of ODs (Section 4). We also propose an interesting-
ness measure for ranking the discovered ODs, which
makes manual verification easier and provides addi-
tional pruning.

4. Experiments. We provide an experimental study (Sec-
tion 5) of the performance and effectiveness of our
discovery techniques using real datasets. We report
orders-of-magnitude performance improvements over
previous work [10].

We discuss related work in Section 6. In Section 7, we
conclude and consider future work.

2. PRELIMINARIES
In this section, we formally define ODs, present the es-

tablished list-based axiomatization [17], and explain the two
ways in which ODs can be violated.

2.1 Framework and Background
We use the following notational conventions.

Relations. R denotes a relation (schema) and r denotes a
specific relation instance (table). A, B and C denote single
attributes, s and t denote tuples, and tA denotes the value of
an attribute A in a tuple t.
Sets. X and Y denote sets of attributes. Let tX denote the
projection of tuple t on X . XY is shorthand for X ∪Y. The
empty set is denoted as {}.
Lists. X, Y and Z denote lists of attributes. X may rep-
resent the empty list, denoted as [ ]. [A,B,C] denotes an
explicit list. [A |T] denotes a list with head A and tail T;
i.e., the remaining list when the first element is removed. Let
XY be shorthand for X◦Y (X concatenate Y). Set X denotes
the set of elements in list X. Any place a set is expected but
a list appears, the list is cast to a set; e.g., tX denotes tX .
Let X′ denote some other permutation of elements of list X.

Let an order specification be a list of attributes defining a
lexicographic order, as in the SQL order-by clause. The or-
der specification order by group, subgroup requires sort-
ing by group in ascending order and, within each group,
by subgroup in ascending order. This is a lexicographical
ordering, a nested sort.
First, we define the operator ‘�X’, which defines a weak

total order over any set of tuples, where X denotes an order
specification. Unless otherwise specified, numbers are or-
dered numerically, strings are ordered lexicographically and
dates are ordered chronologically (all ascending).

Definition 1. Let X be a list of attributes. For two tuples
r and s, X ∈ R, r �X s if

– X = [ ]; or
– X = [A |T] and rA < sA; or
– X = [A |T], rA = sA, and r �T s.

1. Reflexivity

XY �→ X

2. Prefix

X �→ Y

ZX �→ ZY

3. Transitivity

X �→ Y

Y �→ Z

X �→ Z

4. Normalization

WXYXV ↔ WXYV.
5. Suffix

X �→ Y

X ↔ YX

6. Chain
X ∼ Y1

∀i∈[1,n−1]Yi ∼ Yi+1

Yn ∼ Z

∀i∈[1,n]YiX ∼ YiZ

X ∼ Z

Figure 3: List-based axioms for ODs.

Let r ≺X s if r �X s but s ��X r.

Next, we define order dependencies [10, 17, 20].

Definition 2. Let X and Y be order specifications, where
X ,Y ⊆ R. X 	→ Y denotes an order dependency (OD), read
as X orders Y. We write X ↔ Y, read as X and Y are order
equivalent, if X orders Y and Y orders X. Table r over R
satisfies X 	→ Y (r |= X 	→ Y) if, for all r, s ∈ r, r �X s

implies r �Y s. X 	→ Y is said to hold for R (R |= X 	→ Y)
if, for each admissible relational instance r of R, table r
satisfies X 	→ Y. X 	→ Y is trivial if, for all r, r |= X 	→ Y.

The OD X 	→ Y means that Y’s values are monotoni-
cally non-decreasing with respect to X’s values. Thus, if a
list of tuples is ordered by X, then it is also ordered by Y,
but not necessarily vice versa. This is to say, if one knows
X 	→ Y, then one knows that any ordering of tuples of any
table that satisfies order by X must also satisfy order by

Y. We assume ascending (asc) order in the lexicographi-
cal ordering, which is the SQL default for any attributes
for which directionality is not explicitly indicated. We do
not consider bidirectional ODs in this paper, which allow
a mix of ascending and descending (desc) orders [20]. We
also only consider lexicographic order specifications, as per
the SQL order-by semantics, and do not consider pointwise
ODs [6, 7]. Working with lexicographical ODs is more use-
ful for query optimization [10, 19, 20] than working with
pointwise ODs, because the sequence of the attributes in an
order specification as in order-by matters.

Example 1. Recall Table 1, in which tax is calculated
as a percentage of salary, and tax groups and subgroups
are based on salary. Tax, percentage and group increase
with salary. Furthermore, within the same group, sub-
group increases with salary. Finally, within the same
year, bin increases with salary. Thus, the following ODs
hold: [salary] 	→ [tax]; [salary] 	→ [percentage]; [salary] 	→
[group, subgroup]; and [year, salary] 	→ [year, bin]. Let Table 1
have a clustered index on year, salary. Then, given the OD
[year, salary] 	→ [year, bin], a query with order by year, bin

could be evaluated using the index on year and salary.

2.2 List-based Axiomatization
Figure 3 shows a sound and complete list-based axioma-

tization for ODs [17]. The Chain axiom uses the notion of
order compatibility, denoted as “∼”, defined below.

Definition 3. Two order specifications X and Y are order
compatible, denoted as X ∼ Y, iff XY ↔ YX. The empty
order specification (i.e., [ ]) is order compatible with any
order specification.
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Example 2. [d month] ∼ [d week] is valid: sorting by
month and breaking ties by week is equivalent to sort-
ing by week and breaking ties by month. However, the
OD [d month] 	→ [d week] does not hold since any given
month corresponds to several different weeks (in other words,
d month does not functionally determine d week). Thus, or-
der compatibility is a weaker notion than order dependency.

2.3 Violations
ODs can be violated in two ways. We begin with the

following theorem and then explain how the two conditions
therein correspond to two possible sources of violations. De-
tailed proofs are omitted due to the space constraints; how-
ever, they can be found in the technical report [16].

Theorem 1. For every instance r of relation R, X 	→ Y

iff X 	→ XY and X ∼ Y.

Proof sketch: Suppose X 	→ Y, therefore, by Suffix X ↔ YX

can be inferred. Hence, by Prefix and Normalization X ∼ Y

holds. Next, assume that X 	→ XY and X ∼ Y. By Tran-
sitivity, X 	→ YX. Hence, by Reflexivity and Transitivity,
X 	→ Y.

There is a strong relationship between ODs and FDs. Any
OD implies an FD, modulo lists and sets, but not vice versa.

Lemma 1. For every instance r of relation R, if an OD
X 	→ Y holds, then the FD X → Y is true.

Proof sketch: Let rows s, t ∈ r. Assume that sX = tX .
Hence, s �X t and t �X s. By definition of an OD, s �Y t
and t �Y s. Therefore, sY = tY holds.

Also, there exists a correspondence between FDs and ODs.

Theorem 2. For relation R, for every instance r, X →
Y iff X 	→ XY, for any list X over the attributes of X and
any list Y over the attributes of Y.

Proof sketch: Assume an OD X 	→ XY does not hold. This
means, there exist s, t ∈ r, such that s �X t but s ��XY t.
Therefore, sX = tX and s ≺Y t. Also s ≺Y t implies that
sY �= tY . Therefore, X → Y is not satisfied. However, if
X 	→ XY, then X → XY. Hence, by Armstrong’s axiom of
Reflexivity and Transitivity, X → Y.

We are now ready to explain the two sources of OD viola-
tions: splits and swaps [17]. Langer et al. [10] utilize these
concepts to validate ODs in their list-based OD discovery
algorithm (Section 4.5). An OD X 	→ Y can be violated in
two ways, as per Theorem 1. Split falsifies X 	→ XY (X does
not functionally determine Y) and swap falsifies X ∼ Y.

Definition 4. A split with respect to an OD X 	→ XY is a
pair of tuples s and t such that sX = tX but sY �= tY .

Definition 5. A swap with respect to X ∼ Y (i.e., with
respect to XY ↔ YX) is a pair of tuples s and t such that
s ≺X t, but t ≺Y s.

Example 3. In Table 1, there are three splits with respect
to the OD [position] 	→ [position, salary] because position does
not functionally determine salary. The violating tuple pairs
are t1 and t4, t2 and t5, and t3 and t6. There is a swap
with respect to [salary] ∼ [subgroup], e.g., over pair of tuples
t1 and t2.

3. SET-BASED CANONICAL FORM
We now present our first set of contributions: a polyno-

mial mapping from the list-based representation to a set-
based canonical form for ODs, and a sound and complete
axiomatization over this representation. These are the fun-
damental building blocks of our efficient OD discovery algo-
rithm that will be discussed in Section 4.

3.1 Mapping to Canonical Form
Expressing ODs in a natural way relies on lists of at-

tributes, as in the SQL order-by statement. One might well
wonder whether lists are inherently necessary. Indeed, we
provide a polynomial mapping of list-based ODs into equiv-
alent set-based canonical ODs. The mapping allows us to
develop an efficient OD discovery algorithm that traverses
a much smaller set-containment lattice rather than the list-
containment lattice used in prior work [10].

Two tuples s and t are equivalent with respect to a given
set X if sX = tX . Any attribute set X partitions tuples into
equivalence classes [9]. We denote the equivalence class of a
tuple t ∈ r with respect to a given set X by E(tX ), i.e., E(tX )
= {s ∈ r | sX = tX}. A partition of r over X is the set of
equivalence classes, ΠX = {E(tX ) | t ∈ r}. For instance, in
Table 1, E(t1{year}) = E(t2{year}) = E(t3{year}) = {t1, t2, t3}
and Πyear = {{t1, t2, t3}, {t4, t5, t6}}.
We now introduce a canonical form for ODs.

Definition 6. An attribute A is a constant within each
equivalence class with respect to X , denoted as X : [ ] 	→cst

A, if X′ 	→ X
′A for any permutation X

′ of X. Furthermore,
two attributes A and B are order-compatible (i.e., no swaps)
within each equivalence class with respect to X , denoted as
X : A ∼ B, if X′A ∼ X

′B. ODs of the form of X : [ ] 	→cst A

and X : A ∼ B are called canonical ODs, and the set X is
called a context.

Example 4. In Table 1, bin is a constant in the con-
text of position (posit), written as {position}: [ ] 	→cst bin.
This is because E(t1{position}) |= [ ] 	→cst bin, E(t2{position})
|= [ ] 	→cst bin and E(t3{position}) |= [ ] 	→cst bin.
Also, there is no swap between bin and salary in the con-

text of year, i.e., {year}: bin ∼ salary. This is because
E(t1{year}) |= bin ∼ salary and E(t4{year}) |= bin ∼ salary.
However, the canonical ODs {year}: bin ∼ subgroup and
{position}: [ ] 	→cst salary do not hold as E(t1{year}) �|= bin ∼
subgroup and E(t1{position}) �|= [ ] 	→cst salary, respectively.

Given a set of attributes Y, for brevity, we state ∀j, Yj to
mean ∀j ∈ [1..|Y|], Yj in the remainder of this section.

Theorem 3.
An OD X 	→ XY holds iff ∀j, X : [ ] 	→cst Yj .

Proof sketch: Let X 	→ XY hold. Thus, by Reflexivity and
Transitivity ∀j, X 	→ XYj . Hence, by Prefix and Normal-
ization ∀j, X′ 	→ X

′Yj , i.e, ∀j, X : [ ] 	→cst Yj . Next, assume
∀j, X : [ ] 	→cst Yj . Thus, ∀j, X′ 	→ X

′Yj . Hence, it follows
from Union [17] (if X 	→ Y and X 	→ Z, then X 	→ YZ) that
X 	→ XY.

Theorem 4.
X ∼ Y iff ∀i, j, {X1, ..,Xi−1,Y1, ..,Yj−1}: Xi ∼ Yj .

Proof sketch: Let X ∼ Y, hence, by Downward Closure [17]
(if XZ ∼ YV, then X ∼ Y), ∀i, j, X1, .., Xi ∼ Y1, .., Yj
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1. Reflexivity

X : [ ] �→cst A, ∀A ∈ X

2. Identity

X : A ∼ A

3. Commutativity

X : A ∼ B

X : B ∼ A

4. Strengthen

X : [ ] �→cst A
XA: [ ] �→cst B

X : [ ] �→cst B

5. Propagate

X : [ ] �→cst A

X : A ∼ B

6. Augmentation-I

X : [ ] �→cst A

ZX : [ ] �→cst A

7. Augmentation-II

X : A ∼ B

ZX : A ∼ B

8. Chain
X : A ∼ B1

∀i∈[1,n−1],X : Bi ∼ Bi+1

X : Bn ∼ C
∀i∈[1,n],XBi : A ∼ C

X : A ∼ C

Figure 4: Set-based axiomatization for canonical ODs.

and by Prefix, Normalization and Theorem 1, ∀i, j, {X1, ..,
Xi−1, Y1, .., Yj−1}: Xi ∼ Yj . Given ∀i, j, {X1, .., Xi−1, Y1,
.., Yj−1}: Xi ∼ Yj , by Prefix, Normalization, Transitivity
and Reflexivity, it follows that X ∼ Y.

Theorem 5. X 	→ Y iff ∀j, X : [ ] 	→cst Yj and ∀i, j, {X1,
.., Xi−1, Y1, .., Yj−1}: Xi ∼ Yj .

Proof sketch: Since X 	→ Y iff X 	→ XY and X ∼ Y

(Theorem 1), therefore, by Theorems 3 and 4 X 	→ Y iff
∀j, X : [ ] 	→cst Yj and ∀i, j, {X1, .., Xi−1, Y1, .., Yj−1}:
Xi ∼ Yj .

The size of this mapping is the product |X| ∗ |Y|.

Example 5. By Theorem 5, an OD [AB] 	→ [CD] can be
mapped into the following equivalent set of canonical ODs:
{A,B}: [ ] 	→cst C, {A,B}: [ ] 	→cst D, {}: A ∼ C, {A}: B ∼
C, {C}: A ∼ D, {A,C}: B ∼ D.

3.2 Set-based Axiomatization
We present a sound and complete set-based axiomatization

for ODs in Figure 4. For clarity, we denote names of list-
based inference rules (Figure 3) with italic font and those of
set-based inference rules (Figure 4) with regular font. Below,
we show additional inference rules that can be inferred from
the axioms in Figure 4, as they are used in Section 4.

Lemma 2 (Transitivity).

1. ∀j, X : [ ] �→cst Yj

2. ∀k, Y: [ ] �→cst Zk

∀k, X : [ ] �→cst Zk

Lemma 3 (Normalization).
1. X : A ∼ B, ∀A ∈ X

Theorem 6. The proposed set-based axiomatization for
canonical ODs in Figure 4 is sound and complete.

Proof sketch: Given the mapping presented in Theorem 5, to
prove soundness, it is sufficient to show that all the set-based
OD axioms (Figure 4) can be inferred from the list-based
OD axioms (Figure 3). In order to prove completeness the
remaining step is to show that all the list-based OD axioms
follow from the set-based OD axioms.

By Theorem 6, three set-based axioms, namely Reflexiv-
ity, Strengthen and Augmentation–I, are sound and com-
plete for the FD fragment of the OD class, as these are the
only canonical OD axioms that use the constant operator.
In contrast, the sound and complete list-based axiomatiza-
tion for ODs [17] is concealed within the first five axioms in
Figure 3. The versatility and separability of the set-based
axioms–between the FD fragment and the order-compatible
fragment–allows us to design effective pruning rules for our
OD discovery algorithm (Section 4).

4. OD DISCOVERY ALGORITHM

4.1 FASTOD Main Algorithm
Given the mapping of a list-based OD into equivalent set-

based ODs (Section 3.1), we present an algorithm, named
FASTOD (Algorithm 1), which efficiently discovers a com-
plete and minimal set of set-based ODs over a given relation
instance.

A canonical OD X : [ ] 	→cst A is trivial if A ∈ X (Reflex-
ivity). A canonical OD X : A ∼ B is trivial if A ∈ X or
B ∈ X (Normalization, Lemma 3) or A = B (Identity). A
canonical OD X : [ ] 	→cst A is minimal if it is non-trivial and
there is no context Y ⊂ X such that Y: [ ] 	→cst A holds in
r (Augmentation–I). A canonical OD X : A ∼ B is minimal
if it is non-trivial and there is no context Y, where Y ⊂ X ,
such that Y: A ∼ B holds in r (Aug–II), or X : [ ] 	→cst A or
X : [ ] 	→cst B (Propagate) holds in r. Our goal is to compute
a complete, minimal set of ODs that hold in r.

FASTOD traverses a lattice of all possible sets of at-
tributes in a level-wise manner (Figure 5) since list-based
ODs can be mapped into equivalent set-based ODs (Theo-
rem 5). In contrast, the OD discovery algorithm from [10]
traverses a lattice of all possible lists of attributes, which
leads to factorial time complexity. In level Ll, our algo-
rithm generates candidate ODs with l attributes using com-
puteODs(Ll). FASTOD starts the search from singleton
sets of attributes and works its way to larger attribute sets
through the set-containment lattice, level by level. When
the algorithm is processing an attribute set X , it verifies
ODs of the form X \ A: [ ] 	→cst A (let X \ A be shorthand
for X \ {A}), where A ∈ X and X \ {A,B}: A ∼ B, where
A, B ∈ X and A �= B. This guarantees that only non-trivial
ODs are considered.

Algorithm 1 FASTOD

Input: Relation r over schema R

Output: Minimal set of ODs M, such that r |= M

1: L0 = {}

2: C+
c ({}) = R

3: C+
s ({}) = {}

4: l = 1
5: L1 = {A | A ∈ R}

6: ∀A∈RC+
s (A) = {}

7: while Ll �= {} do

8: computeODs(Ll)
9: pruneLevels(Ll)
10: Ll+1 = calculateNextLevel(Ll)
11: l = l + 1
12: end while

13: return M

The small-to-large search strategy of the discovery algo-
rithm guarantees that only ODs that are minimal with re-
spect to the context are added to the output set of ODs M,
and is used to prune the search space effectively. The OD
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candidates generated in a given level are checked for mini-
mality based on the previous levels and are added to a valid
set of ODs M if applicable. The algorithm pruneLevels(Ll)
prunes the search space by deleting sets from Ll with the
knowledge gained during the checks in computeODs(Ll).
The algorithm calculateNextLevel(Ll) forms the next level
from the current level.

Our algorithm, for example, can detect the following ODs
in the TPC-DS benchmark: {d date sk}: [ ] 	→cst [d date];
{}: [d date sk] ∼ [d date]; {d date sk}: [ ] 	→cst [d year]; {}:
[d date sk] ∼ [d year]; {d month}: [ ] 	→cst [d quarter] and;
{}: [d month] ∼ [d quarter]. These types of canonical ODs
have been proven to be useful to eliminate joins and simplify
group-by and order-by statements [18, 20].

Next, we explain, in turn, each of the algorithms that are
called in the main loop of FASTOD (Lines 7–12).

4.2 Finding Minimal ODs
FASTOD traverses the lattice until all complete and min-

imal ODs are found. First, we deal with ODs of the form
X \ A: [ ] 	→cst A, where A ∈ X . To check if such an OD
is minimal, we need to know if Y \ A: [ ] 	→cst A is valid
for Y ⊂ X . If Y \ A: [ ] 	→cst A, then by Augmentation–
I X \ A: [ ] 	→cst A holds. An OD X : [ ] 	→cst A holds for
any relational instance by Reflexivity, therefore, considering
only X \ A: [ ] 	→cst A guarantees that only non-trivial ODs
are taken into account.

We maintain information about minimal ODs, in the form
of X \ A: [ ] 	→cst A, in the candidate set C+

c (X ) [9].2 If
A ∈ C+

c (X ) for a given set X , then A has not been found
to depend on any proper subset of X . Therefore, to find
minimal ODs, it suffices to verify ODs X \ A: [ ] 	→cst A,
where A ∈ X and A ∈ C+

c (X \ B) for all B ∈ X .

Example 6. Assume that {B}: [ ] 	→cst A and that we
consider the set X = {A,B,C}. As {B}: [ ] 	→cst A holds,
A �∈ C+

c (X \ C). Hence, the OD {B,C}: [ ] 	→cst A is not
minimal.

We now show how to prune the search space. Assume
that B ∈ X and an OD X \ B: [ ] 	→cst B holds. Then, by
Lemma 4 below, inferring via the Strengthen axiom, the OD
X : [ ] 	→cst A cannot be minimal because B can be removed
from the context X [9]. Observe that FASTOD does not
have to know whether X : [ ] 	→cst A holds.

Lemma 4. Let B ∈ X and X \B: [ ] 	→cst B. If X : [ ] 	→cst

A, then X \ B: [ ] 	→cst A.

Hence, we define the candidate set C+
c (X ), formally as

follows. (Note that A may equal B in Definition 7).

Definition 7. C+
c (X ) = {A ∈ R |

∀B∈X X \ {A,B}: [ ] 	→cst B does not hold}

Example 7. Assume that {B}: [ ] 	→cst C and that FAS-
TOD considers {B,C}: [ ] 	→cst A. Since {B}: [ ] 	→cst C

holds, the OD {B,C}: [ ] 	→cst A is not minimal and A �∈
C+
c (X ), where X = {A,B,C}.

2Since FDs are subsumed by ODs, FD discovery is part of FAS-
TOD, and some of our techniques are similar to those from
TANE [9]. However, FASTOD and TANE differ in many de-
tails, even for FD discovery; e.g., a pruning rule for removing
nodes from the lattice (Section 4.5) and the key pruning rule
(Section 4.6). Additionally, FASTOD includes new OD-specific
pruning rules.

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Figure 5: A pruned set lattice for attributes A, B, C. As {B,
C} is discarded, only the non-dashed bold parts are accessed.

We now deal with ODs involving ‘∼’. To verify if a po-
tential OD of the form X \ {A,B}: A ∼ B, where A,B ∈ X
and A �= B, is minimal, we need to know if Y \ {A,B}:
A ∼ B holds for some proper subset Y of X \ {A,B}, and
that X \ {A,B}: [ ] 	→cst A and X \ {A,B}: [ ] 	→cst B do
not hold. If Y \ {A,B}: A ∼ B, then by Augmentation–II,
X \ {A,B}: A ∼ B holds. Also, if X \ {A,B}: [ ] 	→cst A or
X \{A,B}: [ ] 	→cst B, then by Propagate, X \{A,B}: A ∼ B

holds. ODs X \B: A ∼ B, X \A: A ∼ B, and OD X : A ∼ A

are always true by Normalization and Identity, respectively.
Hence, considering ODs in the form of X \ {A,B}: A ∼ B

guarantees that non-trivial ODs are taken into account.
We store information about minimal ODs in the form of

X \ {A,B}: A ∼ B, in the candidate set C+
s (X ). If {A,B} ∈

C+
s (X ) for a given set X , then A ∼ B has not been found

to hold within the context of any subset of X \ {A,B}; also,
X \{A,B}: [ ] 	→cst A and X \{A,B}: [ ] 	→cst B do not hold.
By Commutativity, if X \ {A,B}: A ∼ B, then X \ {A,B}:
B ∼ A. Hence, only {A,B} is stored in C+

s (X ) instead of both
[A,B] and [B,A], since order compatibility is symmetric.

Example 8. Let {}: A ∼ B, {A}: [ ] 	→cst C and X =
{A,B,C}. Consider that {C}: A ∼ B and {A}: B ∼ C.
Hence, {C}: A ∼ B is not minimal as {}: A ∼ B; there-
fore, {A,B} �∈ C+

s (X ). Also, {A}: B ∼ C is not minimal
since {A}: [ ] 	→cst C; therefore, {B,C} �∈ C+

s (X ).

Lemma 5. Let C ∈ X and X \ C: [ ] 	→cst C hold. If X :
A ∼ B, then X \ C: A ∼ B.

Proof sketch: Assume that, for some C ∈ X , an OD X \
C: [ ] 	→cst C holds. Therefore, by Propagate X \ C: A ∼ C

and X \C: B ∼ C. Also, X \C: A ∼ B follows by Chain.
Hence, X : A ∼ B could not be minimal as C can be

removed from the context X . Note that FASTOD does not
have to know whether X : A ∼ B holds. As a result, we
define the candidate set C+

s (X ) as follows. Note that C can
be equal to A or B.

Definition 8. C+
s (X ) = {{A,B} ∈ X 2 | A �= B and

∀C∈X X \ {A,B,C}: A ∼ B does not hold, and ∀C∈X

X \ {A,B,C}: [ ] 	→cst C does not hold}

Example 9. Assume that {C}: [ ] 	→cst D and that FAS-
TOD considers {C,D}: A ∼ B. Since {C}: [ ] 	→cst D, the
OD {C,D}: A ∼ B is not minimal, and therefore, {A,B} �∈
C+
s (X ), where X = {A,B,C,D}.

FASTOD ’s candidate sets do not increase in size during
the execution of the algorithm (unlike ORDER [10]) because
of the concise candidate representation. Also, we show in
Section 5.3 that many “minimal” ODs in [10] are considered
non-minimal (redundant) in our representation. Additional
optimizations for our OD discovery algorithm are described
in Sections 4.5 and 4.6.
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4.3 Computing Levels
Algorithm 2 explains calculateNextLevel, which com-

putes Ll+1 from Ll. It uses the subroutine singleAttrDif-
ferBlocks(Ll) that partitions Ll into blocks (Line 2). Two
sets belong to the same block if they have a common subset
Y of length l − 1 and differ in only one attribute, A and B,
respectively. Therefore, the blocks are not difficult to cal-
culate as sets YA and YB can be preserved as sorted sets
of attributes. Unlike FASTOD and other usual use cases of
Apriori [1] such as TANE, the OD discovery algorithm from
[10] generates all permutations of attributes of size l + 1
with the same prefix blocks of size l − 1, which leads to its
factorial worst-case time complexity.

Algorithm 2 calculateNextLevel(Ll)

1: Ll = [ ]
2: for all {YB,YC} ∈ singleAttrDiffBlocks(Ll) do

3: X = Y
⋃
{B,C}

4: if ∀A∈X X \ A ∈ Ll then

5: Add X to Ll+1

6: end if

7: end for

8: return Ll+1

The level Ll+1 contains only those sets of attributes of
size l+1 which have all their subsets of size l in Ll (Line 4).

4.4 Computing Dependencies
Algorithm 3, computeODs(Ll), adds minimal ODs from

level Ll to M, in the form of X \ A: [ ] 	→cst A and X \
{A,B}: A ∼ B, where A,B ∈ X and A �= B. The following
lemma shows that we can use the candidate set C+

c (X ) to
test whether X \ A: [ ] 	→cst A is minimal [9].

Lemma 6. An OD X \ A: [ ] 	→cst A, where A ∈ X , is
minimal iff ∀B∈XA ∈ C+

c (X \ B).

Similarly, Lemma 7 states that we can use the candidate
set C+

s (X ) to verify if X \ {A,B}: A ∼ B is minimal.
Lemma 7. The OD X \ {A,B}: A ∼ B, where A, B ∈ X

and A �= B, is minimal iff ∀C∈X\{A,B} {A,B} ∈ C+
s (X \ C),

and A ∈ C+
c (X \ B) and B ∈ C+

c (X \ A).

Proof sketch: Assume first that X \ {A,B}: A ∼ B is not
minimal. Thus, there exists C ∈ X \ {A,B} for which X \
{A,B,C}: A ∼ B holds or there exists D ∈ X such that
X \ {A,B,D}: [ ] 	→cst D holds. Then {A,B} �∈ C+

s (X \ C),
A �∈ C+

c (X \ B), or B �∈ C+
c (X \ A). Next, assume that

there exists C ∈ X \{A,B} such that {A,B} �∈ C+
s (X \C), or

A �∈ C+
c (X \B) or B �∈ C+

c (X \A). Therefore, ∃D ∈ X \C, such
that X \ {A,B,C,D}: A ∼ B or X \ {A,B,C}: [ ] 	→cst C or
∃D ∈ X \B such that X \{A,B,D}: [ ] 	→cst D or ∃E ∈ X \A
such that X\{A,B,E}: [ ] 	→cst E. Hence, by Augmentation–
II, Propagate, and Lemma 5, X \ {A,B}: A ∼ B is not
minimal.
By Lemma 6, the steps in Lines 2, 10, 11 and 12 guarantee

that the algorithm adds to M only the minimal ODs of the
form X \ A: [ ] 	→cst A, where X ∈ Ll and A ∈ X [9].

Lemma 8. Let C+
c (Y) be correctly computed ∀Y ∈ Ll−1.

computeODs(Ll) calculates correctly C+
c (X ), ∀X ∈ Ll.

By Lemma 7, the steps in Lines 4, 6, 17–18 and 20–21
ensure that the algorithm adds to M only the minimal ODs
of the form X \ {A,B}: A ∼ B, where X ∈ Ll, A,B ∈ X and
A �= B.

Algorithm 3 computeODs(Ll)

1: for all X ∈ Ll do

2: C+
c (X ) =

⋂
A∈X C+

c (X \ A)
3: if l = 2 then

4: ∀A,B∈R2,A �=BC
+
s ({A,B}) = {A,B}

5: else if l > 2 then

6: C+
s (X ) = {{A,B} ∈

⋃
C∈X C+

s (X \ C) |

∀D∈X\{A,B}{A,B} ∈ C+
s (X \ D)}

7: end if

8: end for

9: for all X ∈ Ll do

10: for all A ∈ X ∩ C+
c (X ) do

11: if X \ A: [ ] �→cst A then

12: Add X \ A: [ ] �→cst A to M

13: Remove A from C+
c (X )

14: Remove all B ∈ R \ X from C+
c (X )

15: end if

16: end for

17: for all {A,B} ∈ C+
s (X ) do

18: if A �∈ C+
c (X \ B) or B �∈ C+

c (X \ A) then

19: Remove {A,B} from C+
s (X )

20: else if X \ {A,B}: A ∼ B then

21: Add X \ {A,B}: A ∼ B to M

22: Remove {A,B} from C+
s (X )

23: end if

24: end for

25: end for

Lemma 9. Let C+
c (Y) and C+

s (Y) be correct ∀Y ∈ Ll−1.
computeODs(Ll) computes correctly C+

s (X ), ∀X ∈ Ll.

Proof sketch: A pair of attributes {A,B}, such that {A,B} ∈
X 2 and A �= B, is in C+

s (X ) after the execution of com-
puteODs(Ll) unless it is excluded from C+

s (X ) in Lines 6,
19 or 22. Thus, we can prove correctness by first showing
that if {A,B} is excluded from C+

s (X ) by computeODs(Ll),
then {A,B} �∈ C+

s (X ) by the definition of C+
s (X ). Next, by

showing that if {A,B} �∈ C+
s (X ) by the definition of C+

s (X ),
then A is excluded from C+

s (X ) by computeODs(Ll).

4.5 Pruning Levels and Completeness
Algorithm 4 shows pruneLevels(Ll), which implements an

additional optimization. We delete node X from Ll, where
l ≥ 2, if both C+

c (X ) = {} and C+
s (X ) = {}.

Algorithm 4 pruneLevels(Ll)

1: for all X ∈ Ll do

2: if l ≥ 2 then

3: if C+
c (X ) = {} and C+

s (X ) = {} then

4: Delete X from Ll

5: end if

6: end if

7: end for

Lemma 10. Deleting X from Ll for levels l ≥ 2, if
C+
c (X ) = {} and C+

s (X ) = {} has no effect on the output
set of minimal ODs M.

Proof sketch: Follows from the fact that for all Y such that
Y ⊃ X , C+

c (Y) = {} and C+
s (Y) = {}.

Example 10. Let A: [ ] 	→cst B, B: [ ] 	→cst A and {}:
A ∼ B. Since C+

c ({A,B}) = {} and C+
s ({A,B}) as well

as l = 2, by the pruning levels rule (Lemma 10), the node
{A,B} is deleted and the node {A,B,C} is not considered
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(see Figure 5). This is justified as {AB}: [ ] 	→cst C is
not minimal by Lemma 4, {AC}: [ ] 	→cst B is not min-
imal by Augmentation–I, {BC}: [ ] 	→cst A is not mini-
mal by Augmentation–I, {C}: A ∼ B is not minimal by
Augmentation–II, {A}: B ∼ C is not minimal by Propagate,
and {B}: A ∼ C is not minimal by Propagate.

Theorem 7. The FASTOD algorithm computes a com-
plete, minimal set of ODs M.

Proof sketch: The algorithm computeODs(Ll) adds to M
only the minimal ODs. (See the discussion in Section 4.3.)
It can also be shown by induction that computeODs(Ll)
calculates correctly the sets C+

c (X ) and C+
s (X ) for all X ∈

Ll, since Lemmas 8 and 9 hold. Deleting X from Ll for
levels l ≥ 2 if C+

c (X ) = {} and C+
s (X ) = {} has no effect

on the output set of minimal ODs M of the algorithm by
Lemma 10. Therefore, the FASTOD algorithm computes
a sound and complete set of minimal ODs M.

While we guarantee that FASTOD finds a complete set
of ODs (Sections 4.4–4.5), the ORDER algorithm in [10] in-
tentionally omits some ODs for efficiency. When ORDER
accesses the node [A,B,C] in the list-containment lattice, it
generates the list-based ODs [B,C] 	→ [A] and [C] 	→ [A,B]
and verifies if there are any splits and swaps (Definitions 4
and 5). However, it discards potential ODs with repeating
attributes [10]. For instance, a valid OD [C] 	→ [C,A,B]
(note, an FD) is missed, if [C] ∼ [A,B] does not hold. Sim-
ilarly, a valid OD [C] ∼ [A,B] (an order compatible depen-
dency) is missed, if [C] 	→ [C,A,B] does not hold. This causes
the algorithm to discard ODs such as d month ∼ d week

from Example 2 as d month does not functionally determine
d week. Only if both [C] 	→ [C,A,B] and [C] ∼ [A,B] hold,
then they are not missed, as just [C] 	→ [A,B] is checked
by the ORDER algorithm. (By Theorem 1, [C] 	→ [A,B]
iff [C] 	→ [C,A,B] and [C] ∼ [A,B].) Also, ORDER misses
potential ODs with the same prefix; i.e., XY 	→ XZ, such as
[year, salary] 	→ [year, bin] (Example 4). Furthermore, OR-
DER discards constants; i.e., ODs in the form of [ ] 	→cst X.
For instance, if all data are from the year 2012, the year

attribute is a constant.

4.6 Efficient OD Validation
Computing with Partitions. In order to verify

whether the ODs X : [ ] 	→cst A and X : A ∼ B hold, we
first compute the equivalence classes over the context X ,
i.e., ΠX . Next, within each equivalence class in ΠX , we
verify whether the ODs X : [ ] 	→cst A and X : A ∼ B hold.
The values of the columns are replaced with integers: 1,

..., n, in a way that the equivalence classes do not change
and the ordering is preserved. That is, the same values
are substituted by the same integers, and higher values are
replaced by larger integers. Computation over integers is
more time and space efficient. The value tA is used as the
identifier of the equivalence class E(tA) of ΠA.
After computing the partitions ΠA, ΠB, ..., for all sin-

gle attributes in R at level l = 2, we efficiently compute
the partitions for subsequent levels in linear time by tak-
ing the product of refined partitions, i.e., ΠA

⋃
B = ΠA ·ΠB.

Accordingly, for all other levels the partitions are not cal-
culated from scratch for each set of attributes X . In the
general case, for all |X | ≥ 2, partitions ΠX are computed
in linear time as products of partitions ΠY and ΠZ , i.e.,
ΠX = ΠY ·ΠZ , such that Y,Z ⊂ X and |Y| = |Z| = |X −1|.

τA Rank Tuple #’s

1 {t3, t5, t8}
2 {t1, t6}
3 {t4}
4 {t7}
5 {t2}

(a) τA

ΠX ID τA(E(tX ))

t1X {t1}
t2X {t2}
t3X {t3, t5}, {t4}
t6X {t6}, {t7}
t8X {t8}

(b) τA(E(tX ))

Table 2: ΠX = {{t1}, {t2}, {t3, t4, t5}, {t6, t7}, {t8}},
τA = {{t3, t5, t8}, {t1, t6}, {t4}, {t7}, {t2}}

This is beneficial for a levelwise algorithm since only parti-
tions from the previous level are needed.

To verify whether an OD X : [ ] 	→cst A holds, for each
equivalence class E(tX ) ∈ ΠX , it is sufficient to check
whether |ΠA(E(tX ))| = 1, which requires a single scan over
the dataset (linear time operation in the number of tuples).
However, there is an even simpler test to validate whether
X : [ ] 	→cst A holds: check if |ΠX | = |ΠX∪A| [9]. Verifying
if an OD X : A ∼ B holds is more involved but can also be
computed efficiently. For all single attributes A ∈ R at level
l = 2, we calculate sorted partitions τA. A sorted partition
τA is a list of equivalence classes according to the ordering
imposed on the tuples by A. For instance, in Table 1, τbin =
{{t1, t4}, {t2, t5}, {t3, t6}}. Hence, when we verify for any
subsequent level, whether X : A ∼ B is valid, for each equiv-
alence class E(tX ) ∈ ΠX , we compute τA(E(tX )) by hashing
tuples into sorted buckets with a single scan over τA (see
the example in Table 2). This allows us to verify efficiently
whether there is no swap over attributes A and B for each
equivalence class in ΠX via a single scan. Hence, checking
whether X : A ∼ B can be done in linear time.
Key Pruning. When a key is found during the search of

ODs, additional optimization methods can be applied.

Lemma 11. Let X \A be a superkey and A ∈ X . The OD
X \A: [ ] 	→cst A is valid. The OD X \A: [ ] 	→ A is minimal
iff X \ A is a key and ∀B ∈ X , A ∈ C+

c ({X} \ B).

Typically, an OD X \ A: [ ] 	→cst A, A �∈ X , is verified in
Line 11 of computeODs(Ll). However, if X \A is a key, then
X \A: [ ] 	→cst A always holds, and hence, we do not need to
verify it. On the other hand, if X \ A is a superkey but not
a key, then clearly the OD X \ A: [ ] 	→cst A is not minimal.
This is because there exists B ∈ X , such that X \ B is a
superkey, therefore, A �∈ C+

c ({X} \ B)).
Lemma 12 states that X \ {A,B}: A ∼ B, A, B ∈ X , also

does not have to be verified in Line 20 of computeODs(Ll),
if X \ {A,B} is a key since it is not minimal (Propagate).

Lemma 12. Let X be a key (or superkey) and A,B ∈ R \
X . The OD X : A ∼ B is valid but not minimal.

Stripped Partitions. We replace partitions with a more
compact version called stripped partitions. A stripped par-
tition is a partition with equivalence classes of size one–call
these singleton equivalence classes–discarded. A stripped
representation of partition ΠX is denoted as Π∗

X .

Example 11. In Table 1, Π∗
salary = {{t2, t6}}, whereas

Πsalary = {{t1}, {t2, t6}, {t3}, {t4}, {t5}}.

Removing singleton equivalence classes is correct as they
cannot break any set-based ODs.

Lemma 13. Singleton equivalence classes over attribute
set X cannot falsify any OD: X : [ ] 	→cst A or X : A ∼ B.
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If Π∗
X = {}, then X is a superkey and the optimization

with key pruning is triggered. The authors in [10] state
that stripped partitions cannot be used with their list-based
canonical form.

4.7 Complexity and Interestingness
Complexity Analysis. The previous state-of-the-art

discovery algorithm for ODs, ORDER, has a factorial worst-
case complexity in the number of attributes [10], as it tra-
verses a lattice of attribute permutations with ⌊|R|! ∗ e⌋
nodes. The authors in [10] claim that this is inevitable, due
to the factorial search space of candidates, since ODs are de-
fined over lists of attributes as opposed to FDs being defined
over sets of attributes. We show that the worst-case com-
plexity of our OD discovery algorithm is exponential in the
number of attributes, as there exists a quadratic mapping
of list-based ODs into the equivalent set-based ODs (Sec-

tion 3.1), and there are 2|R| nodes in the set-containment
lattice (Sections 4.1 and 4.3). This establishes a lower bound
as ODs subsume FDs, and it has been already observed for
FDs that the solution space is exponential, and a polynomial
time algorithm cannot exist [9]. Additionally, the complex-
ity is linear in the number of tuples (Section 4.6).

Interestingness. Given that ODs properly subsume
FDs [20], the search space and the number of discovered
ODs may be larger than for FDs even after pruning non-
minimal ODs. To decrease the cognitive burden of human
verification, we propose a new measure for interestingness
of ODs based on their coverage, which can be used to rank
them. Given an OD ϕ, X : [ ] 	→cst A or X : A ∼ B, we define
interestingness, abbreviated Inter, as the number of tuple
pairs covered by the OD (with respect to the context X );
i.e., the sum of squares of the sizes of the equivalence classes:
Inter(ϕ) =

∑
E(tX )∈ΠX

|E(tX )|2.

Example 12. In Table 1, Inter({year}: bin ∼ salary) =
32 + 32 = 18 and Inter({year, group} : bin ∼ salary) = 4 ∗
12 + 22 = 8; hence, the first OD is more interesting.

Our interestingness metric prefers ODs with large equiva-
lence classes. Observe that ODs with more attributes (with
the same prefixes over the context) naturally have more
unique equivalence classes. Thus, since stripped partitions
(Lemma 13) do not violate any ODs, the discovered ODs
are not necessary meaningful. This is also recognized as
overfitting, and occurs when an OD is excessively complex.
Whereas this approach is mainly data driven, it also takes
into account indirectly the succinctness of rules; i.e., the size
of ODs (schema size).

Approximate ODs. In practice, ODs may not hold ex-
actly, perhaps due to errors in the data. We thus define
approximate ODs that hold with some exceptions. As in
prior work on approximate FD discovery, we compute the
minimum number of tuples that must be removed from the
given table for the OD to hold. We define the problem of
discovering approximate ODs as follows: given a table t and
a threshold ε, 0 ≤ ε ≤ 1, find all minimal ODs ϕ, such that
e(ϕ) ≤ ε, where e(ϕ) = min{|r| | r ⊆ t, t \ r |= ϕ}/|t|.

The modification to the regular OD discovery algorithm
needed to search for approximate ODs is the data verifica-
tion step. The error e(X : [ ] 	→cst A) is computed from the
partitions ΠX and ΠX∪A [9]. Any equivalence class E(tX ) of
ΠX is the union of one or more equivalence classes E1(tX∪A),
..., En(tX∪A) of ΠX∪A. The minimum number of tuples to be
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Figure 6: Scalability and effectiveness in |r|.

removed over each equivalence class of ΠX is the size |E(tX )|
minus the size of the largest Ek(tX∪A) of ΠX∪A. A similar
argument applies to computing the error e(X : A ∼ B). The
minimum number of tuples to be removed over each equiv-
alence class over of ΠX is the size |E(tX )| minus the sum of
the iteratively removed tuples (for an OD to hold) with the
highest number of swaps with respect to attributes A and B

over sorted partitions τA(E(tX )).

5. EXPERIMENTS
In this section, we present an experimental evaluation of

our techniques. Our experiments were run on a machine
with an Intel Xeon CPU E5-2630 v3 2.4GHz with 64GB of
memory. The algorithm was implemented in Java 8.

5.1 Data Characteristics
We use several real and synthetic datasets that have

previously been used to evaluate FD and OD discovery
algorithms [10]. They are published through the UCI
Machine Learning Repository3 and the Hasso-Plattner-
Institute (HPI) repository4. The flight dataset (from the
HPI repository) contains information about US domestic
flights, with 500K tuples and 30 attributes (and 40 at-
tributes over 1K tuples). The ncvoter dataset (from the
ncsbe.gov repository) contains personal data of registered
voters from North Carolina, with 1M tuples and 20 at-
tributes. The hepatitis dataset provides information about
the hepatitis disease of the liver, with 155 tuples and 20 at-
tributes. Dbtesma is a synthetic dataset with 250K tuples
and 30 attributes, available at the link provided for the HPI
repository, produced by a data generator5 for benchmarks
and performance analysis.

3http://archive.ics.uci.edu/ml
4http://metanome.de
5http://sourceforge.net/projects/dbtesma
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5.2 Scalability
Exp-1: Scalability in |r|. We measure the running time

of FASTOD in milliseconds by varying the number of tuples,
as reported in Figure 6. For now, ignore the other curves
labeled ORDER and TANE, as well as the numbers next to
the datapoints. We use random samples of 20, 40, 60, 80 and
100 percent of flight, ncvoter and dbtesma, all with 10 at-
tributes for comparison purposes with ORDER [10], which
does not terminate after 5 hours on larger schemas (details in
Exp-3). Furthermore, on the entire available flight dataset
schema with 30 attributes and 500K, both TANE and FAS-
TOD run out of memory. In such cases, we recommend to
set a threshold for the measure of interestingness to prune
the rules and/or limit the order dependencies to be discov-
ered only over the top levels of the lattice. The reported
runtimes are averaged over ten executions. We do not use
hepatitis in this experiment because it is too small for
testing scalability in the number of tuples.

Figure 6 shows a linear runtime growth as computation is
dominated by the verification of ODs which requires a scan
of the dataset. Thus, our algorithm scales well for large
datasets. Also, it appears to run faster on flight than on
ncvoter. This is due to the varying effectiveness of our
pruning strategies (details in Section 5.4).

Exp-2: Scalability in |R|. We measure the running
time of FASTOD in milliseconds by varying the number
of attributes by taking random projections of the tested
datasets. We use the flight dataset with 1K tuples, the
ncvoter dataset with 1K tuples, the hepatitis dataset with
155 tuples and the dbtesma dataset with 1K tuples. Again,
we report the average runtimes over ten executions. Fig-
ure 7 shows that the running time increases exponentially
with the number of attributes. (The Y axis of Figure 7 is
in log scale.) This is not surprising because the number of
minimal ODs over the set-containment lattice is exponential
in the worst case (Section 4.7).

5.3 Comparative Study
Exp-3: Comparison with ORDER [10]. We now

compare FASTOD with ORDER from [10]. We obtained a
Java implementation of ORDER from www.metanome.de.
As Figures 6 and 7 show, our algorithm can be orders of mag-
nitude faster. For instance, on the flight dataset with 1K
tuples and 20 attributes, FASTOD finishes the computation
in less than 1 second, whereas ORDER did not terminate
after 5 hours. (We aborted the experiments after 5 hours
and denote it in figures as “* 5h”.) The running time of
ORDER is consistent with results reported in [10]. Similar
observations can be made on the dbtesma dataset. This is
expected as the worst-time complexity for ORDER is facto-
rial in the number of attributes [10], whereas, for FASTOD,
it is exponential in the number of attributes (Section 4.7).

The higher complexity of ORDER is remedied in some
cases by its aggressive pruning strategies. For instance, the
swap pruning rule states that if X 	→ Y is invalidated by
a swap, then XA 	→ YB is not valid and is not considered
when traversing the list-containment lattice. As a result, the
ORDER algorithm misses ODs of the form XA 	→ XAYB,
e.g., XA: [ ] 	→cst B is missed (recall Section 4.5). It also
skips ODs in the form of X 	→ XY. Similarly, if XA 	→ YB

is invalidated by a split, then XA ∼ YB is not considered;
e.g., XY: A ∼ B is missed.
These observations explain why ORDER is faster than
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Figure 7: Scalability and effectiveness in |R|.

FASTOD (and even TANE) on the hepatitis dataset:
here, ORDER discovers zero ODs, whereas FASTOD, which
is sound and complete, discovers hundreds. Similar reason-
ing explains the runtimes over the ncvoter dataset.
While the swap pruning rule (and other pruning rules) in

the ORDER algorithm can be deactivated to enable com-
pleteness, this has an extreme performance impact. For
example, after disabling the swap pruning rule, the OR-
DER algorithm did not terminate within five hours in any
of tested datasets. In fact, in [10] they have shown the same.

Also, our canonical representation is significantly more
concise than the one in [10] even though FASTOD is com-
plete. For brevity, we refer to set-based ODs in the form of
X \ A: [ ] 	→cst A as FDs and X \ {A,B}: A ∼ B as order
compatible dependencies (OCDs). We report the number
of set-based ODs (number of FDs and number of OCDs)
in Figure 6 and 7 next to the runtime datapoints. For in-
stance, for the flight dataset with 500K tuples and 10 at-
tributes, the number of discovered set-based ODs by FAS-
TOD is 14 (13 FDs and 1 OCD) and list-based ODs by OR-
DER is 31, which maps to 58 set-based ODs (31 FDs and
27 OCDs). Since all flight data are from the year 2012, the
year attribute is a constant. Therefore, FASTOD discovers
an OD {}: [ ] 	→cst [year]; however, ORDER produces ODs
[quarter] 	→ [year], [dayOfMonth] 	→ [year], [dayOfWeek] 	→
[year] and so on, which follow from {}: [ ] 	→cst [year] by
Aug–I and Propagate (but not vice versa!). For example,
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Figure 8: Impact of pruning.

{quarter}: [ ] 	→cst [year] can be inferred from Aug–I, and
{}: [quarter] ∼ [year] can be deduced from Propagate.

Exp-4: Comparison with TANE [9]. Since ODs are
closely related to FDs, as ODs properly subsume FDs, we
also conduct a comparative study with TANE [9] (Java im-
plementation). Here, we effectively measure the extra cost
to capture the additional OD semantics: those of order.
As expected, TANE is faster than FASTOD (see Figures 6
and 7). TANE uses a technique called error rate [9] to speed
up the verification over FDs (detecting splits) that is not ap-
plicable to ODs in the form of X \ {A,B}: A ∼ B (detecting
swaps). However, both TANE and FASTOD scale linearly
in the number of tuples and exponentially in the number of
attributes. We argue that the extra cost of OD discovery
is worthwhile, as ODs can convey many business rules that
FDs cannot express. For instance, in the flight dataset with
1K tuples and 25 attributes, we found around 500 set-based
minimal ODs, out of which around 100 are in the form of
X \ A: [ ] 	→cst A (FDs) (the number of FDs detected by
TANE and FASTOD is the same) and around 400 are in
the form of X \ {A,B}: A ∼ B (OCDs).

This experiment showed that the number of discovered
ODs increases by an order of magnitude when we move from
large to small datasets (in the number of tuples). In Exp-
8, we will explore how to rank and prune ODs using our
interestingness measure from Section 4.7.

5.4 Optimizations and Lattice Levels
Exp-5: Improving performance. We now quantify the

runtime improvements due to the optimizations described in
Sections 4.2 and 4.5. We perform this experiment over the
flight dataset up to 500K tuples (and 10 attributes) as well
as up to 25 attributes (and 1K tuples). Results are shown in
Figure 8 for FASTOD and FASTOD-No Pruning ; the Y axis
is in log scale. Our optimizations provide a substantial per-
formance improvement. For instance, the running time over
the flight dataset with 1K tuples and 20 attributes drops
from 80 minutes to less than 1 second. For the same dataset
with 25 attributes, the running time drops from intractable
(did not terminate after 5 hours) to under 3 seconds.

Exp-6: Pruning non-minimal ODs. We show that
our optimizations prune a significant number of non-minimal
ODs. Figure 8 reports the numbers of ODs with and without
redundant ODs for the flight dataset. Our canonical rep-
resentation can prune a large amount of inferred ODs. For
instance, over the flight dataset with 1K tuples and 20 at-

Figure 9: Experiment with lattice levels, |r| = 1K, |R| = 40.

tributes, there are around 700 minimal ODs discovered (with
pruning activated) and around 50 million non-minimal ODs
(with pruning deactivated). Thus, our canonical represen-
tation is highly effective in avoiding redundancy.

Exp-7: Effectiveness over lattice levels. Here, we
measure the running time and the number of ODs discov-
ered at different levels of the lattice (Figure 9 with log scale
on Y axis). Note that the level number (l) determines the
size of the context for set-based ODs; i.e., the higher the
level, the larger the context. We report results over the
flight dataset with 1K tuples and 40 attributes. We be-
lieve that ODs with a smaller context are more interesting;
for instance, they are more likely to be used in query opti-
mization [19, 20]. Note that FASTOD discards redundant
ODs if they can be inferred by ODs detected at lower levels
of the lattice. Interestingly, most of the ODs are discov-
ered efficiently over the first few levels of the lattice. Level
9 was the highest level for which FASTOD generated can-
didates. Since the set-lattice is diamond-shaped (Figure 5)
and nodes are pruned over time, the time to process each
level first increases, up to level 6, and decreases thereafter.

Exp-8: Evaluation of the Inter score. We conduct
this experiment over the flight dataset with 100K tuples
and 30 attributes (since the number of discovered ODs over
500K tuples and 10 attributes is small). We first report the
precision of discovered ODs with MTop-K being the Top-K
ODs according to our Inter score (Section 4.7). We define
precision as: (# Meaningful ODs in MTop-K) / |MTop-K |,
where “# Meaningful ODs in MTop-K” is the number of
meaningful (not overfitted) ODs in MTop-K verified manu-
ally by experts (graduate students in computer science well
versed in databases). The precision of our algorithm over the
flight dataset is 88%. (The parameter K was set to TOP-
100.) This experiment demonstrates that the proposed scor-
ing function that combines coverage and (indirectly) suc-
cinctness can identify interesting ODs.

Next, we report the algorithm runtime with and without
using a minimum Inter score as a pruning rule. The higher
is the Inter threshold, the more aggressive is the pruning.
We adjusted this threshold manually so TOP-100 ODs are
selected. The running time over the flight dataset with
the Inter score pruning strategy activated is an order of
magnitude faster over 25K tuples and 30 attributes (39 sec
versus 535 sec). For 100K tuples and 30 attributes, the
algorithm with pruning finishes in 639 seconds and without
pruning it runs out of memory. Thus, this optimization
provides a substantial performance improvement.

6. RELATED WORK
Pointwise ODs were introduced in the context of database

systems by Ginsburg and Hull [6]. In a pointwise ordering,
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an instance of a database satisfies a pointwise order depen-
dency X � Y if, for all tuples s and t, for every attribute A

in X , s[A] op t [A] implies that for every attribute B in Y s[B]
op t [B], where op ε{<,>,≤,≥,=}. A sound and complete
set of axioms was presented, and the inference problem was
proven to be co-NP complete. Lexicographical ODs were
studied in [12, 17, 20]. Ng [12] developed a theory of lexico-
graphical ODs as well as a simpler version of pointwise ODs.
Szlichta et al. [17] presented a sound and complete axioma-
tization for ODs. Bidirectional ODs, containing a mix of as-
cending and descending orders, were introduced by Szlichta
et al. [20], where it was shown that the inference problem
for both ODs and bidirectional ODs is co-NP-complete.

Golab et al. [7] introduced sequential dependencies (SDs),
which specify that when tuples have consecutive antecedent
values, their consequents must be within a specified range.
The discovery problem was studied for approximate SDs [7].

Denial Constraints (DCs) [2], a universally quantified
first-order logic formalism, are more expressive than FDs
and ODs. DCs subsume pointwise ODs as they allow six
operators for comparison of tuples {<,>,≤,≥,=, �=} (with
�= as the addition). DCs also subsume lexicographical ODs
as it is shown in [20] that pointwise ODs properly subsume
lexicographical ODs. While the search space of FD and OD
discovery is 2|R|, the search space for DC discovery is much

larger, at O(2|R|2). Note that 2|R|2 grows faster than even
factorial |R|!, the runtime of ORDER in [10]. The authors
in [2] design a set of (incomplete) axioms to develop pruning
rules for DC discovery.

There has been much research on FD discovery [9, 13].
However, there has, to date, been little work on discovery of
ODs. Langer and Naumann [10] propose the algorithm OR-
DER that uses list-containment lattice with factorial worst-
case time complexity in the number of attributes, which
establishes an upper bound. However, OD discovery is no
harder than FD discovery as we show in Section 4.7.

Sorting is at the heart of many database operations; such
as sort-merge join, index generation, duplicate elimination
and order-by. The importance of sorted sets for query op-
timization and processing had been long recognized. The
seminal query optimizer System R [14] paid particular at-
tention to interesting orders by keeping track of all such
ordered sets throughout the process of query optimization.
FDs and ODs were shown to help generate interesting or-
ders in [15] and in [20, 19], respectively. In [8], the authors
explored the use of sorted sets for executing nested queries.

The significance of sorted sets has prompted researchers
to look beyond the sets that have been explicitly generated.
Malkemus et al. [11] and Szlichta et al. [19] showed how to
use sorted sets created as generated columns (SQL functions
and algebraic expressions) in predicates for query optimiza-
tion. Relationships between sorted attributes discovered by
reasoning over the physical schema have been also used to
eliminate joins over data warehouse queries [18].

7. CONCLUSIONS
We presented an efficient algorithm for discovering ODs,

which we showed to be substantially faster than the prior
state-of-the-art. The technical innovation that made our al-
gorithm possible is a novel mapping into a set-based canoni-
cal form and an axiomatization for set-based canonical ODs.

In future work, we plan to extend our OD discovery frame-
work to bidirectional ODs [20] and conditional ODs that
hold over portions of a relation. A conditional OD can
be represented as a pair: embedded OD and range pattern
tableau, that defines the rows over which the embedded de-
pendency applies. Furthermore, while we have outlined a
straightforward approach for discovery of approximate ODs
in this paper, we plan to investigate more effective and effi-
cient approaches in the future.
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