
624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

Effective and Efficient Approach for Power
Reduction by Using Multi-Bit Flip-Flops

Ya-Ting Shyu, Jai-Ming Lin, Chun-Po Huang, Cheng-Wu Lin, Ying-Zu Lin, and Soon-Jyh Chang, Member, IEEE

Abstract— Power has become a burning issue in modern VLSI
design. In modern integrated circuits, the power consumed by
clocking gradually takes a dominant part. Given a design, we
can reduce its power consumption by replacing some flip-flops
with fewer multi-bit flip-flops. However, this procedure may
affect the performance of the original circuit. Hence, the flip-flop
replacement without timing and placement capacity constraints
violation becomes a quite complex problem. To deal with the
difficulty efficiently, we have proposed several techniques. First,
we perform a co-ordinate transformation to identify those flip-
flops that can be merged and their legal regions. Besides, we
show how to build a combination table to enumerate possible
combinations of flip-flops provided by a library. Finally, we use
a hierarchical way to merge flip-flops. Besides power reduction,
the objective of minimizing the total wirelength is also considered.

The time complexity of our algorithm is �(n1.12) less than the

empirical complexity of �(n2). According to the experimental
results, our algorithm significantly reduces clock power by
20–30% and the running time is very short. In the largest test
case, which contains 1 700 000 flip-flops, our algorithm only takes
about 5 min to replace flip-flops and the power reduction can
achieve 21%.

Index Terms— Clock power reduction, merging, multi-bit
flip-flop, replacement, wirelength.

I. INTRODUCTION

D
UE to the popularity of portable electronic products,

low power system has attracted more attention in recent

years. As technology advances, an systems-on-a-chip (SoC)

design can contain more and more components that lead to

a higher power density. This makes power dissipation reach

the limits of what packaging, cooling or other infrastruc-

ture can support. Reducing the power consumption not only

can enhance battery life but also can avoid the overheating

problem, which would increase the difficulty of packaging

or cooling [1], [2]. Therefore, the consideration of power

consumption in complex SOCs has become a big challenge

to designers. Moreover, in modern VLSI designs, power

consumed by clocking has taken a major part of the whole

design especially for those designs using deeply scaled CMOS

technologies [3]. Thus, several methodologies [4], [5] have

been proposed to reduce the power consumption of clocking.

Manuscript received February 1, 2011; revised August 22, 2011; accepted
February 16, 2012. Date of publication April 5, 2012; date of current version
March 18, 2013. This work was supported in part by the National Science
Council of Taiwan under Grant 100-2220-E-006-005.

The authors are with the Department of Electrical Engineering,
National Cheng-Kung University, Tainan 70101, Taiwan (e-mail: kkttkkk@
sscas.ee.ncku.edu.tw; jmlin@ee.ncku.edu.tw; gppo@sscas.ee.ncku.edu.tw;
lcw@sscas.ee.ncku.edu.tw; tibrius@gmail.com; soon@mail.ncku.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2190535

0.35 0.25 0.18 0.13 0.09

0

2

4

6

8

10

12

14

16

18

Technology(µm)

Lo
a
d
in
g
N
u
m
b
e
r

Fig. 1. Maximum loading number of a minimum-sized inverter of different
technologies (rising time 250 ps).

Given a design that the locations of the cells have been

determined, the power consumed by clocking can be reduced

further by replacing several flip-flops with multi-bit flip-flops.

During clock tree synthesis, less number of flip-flops means

less number of clock sinks. Thus, the resulting clock network

would have smaller power consumption and uses less routing

resource.

Besides, once more smaller flip-flops are replaced by larger

multi-bit flip-flops, device variations in the corresponding

circuit can be effectively reduced. As CMOS technology pro-

gresses, the driving capability of an inverter-based clock buffer

increases significantly. The driving capability of a clock buffer

can be evaluated by the number of minimum-sized inverters

that it can drive on a given rising or falling time. Fig. 1 shows

the maximum number of minimum-sized inverters that can be

driven by a clock buffer in different processes. Because of

this phenomenon, several flip-flops can share a common clock

buffer to avoid unnecessary power waste. Fig. 2 shows the

block diagrams of 1- and 2-bit flip-flops. If we replace the

two 1-bit flip-flops as shown in Fig. 2(a) by the 2-bit flip-flop

as shown in Fig. 2(b), the total power consumption can be

reduced because the two 1-bit flip-flops can share the same

clock buffer.

However, the locations of some flip-flops would be changed

after this replacement, and thus the wirelengths of nets con-

necting pins to a flip-flop are also changed. To avoid violating

the timing constraints, we restrict that the wirelengths of nets

connecting pins to a flip-flop cannot be longer than specified

values after this process. Besides, to guarantee that a new flip-

flop can be placed within the desired region, we also need to

consider the area capacity of the region. As shown in Fig. 3(a),

after the two 1-bit flip-flops f1 and f2 are replaced by the

2-bit flip-flop f3, the wirelengths of nets net1, net2, net3, and

net4 are changed. To avoid the timing violation caused by

the replacement, the Manhattan distance of new nets net1,

net2, net3, and net4 cannot be longer than the specified values.

1063-8210/$31.00 © 2012 IEEE



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 625

Master

latch

Slave

latch

C

D Q

C# C

C# C

C#C

1-bit FF

Master

latch

Slave

latch

C

D Q

C# C

C# C

C#C

1-bit FF

Master

latch

Slave

latch

C

D Q

C# C

C# C

C#C

2-bit FF

Master

latch

Slave

latch
D Q

C# C

C#C

(a)                    (b)

Fig. 2. Example of merging two 1-bit flip-flops into one 2-bit flip-flop.
(a) Two 1-bit flip-flops (before merging). (b) 2-bit flip-flop (after merging).

In Fig. 3(b), we divide the whole placement region into several

bins, and each bin has an area capacity denoting the remaining

area that additional cells can be placed within it.

Suppose the area of f3 is 7 and f3 is assigned to be placed

in the same bin as f1. We cannot place f3 in that bin since

the remaining area of the bin is smaller than the area of f3. In

addition to the considerations mentioned in the above, we also

need to check whether the cell library provides the type of the

new flip-flop. For example, we have to check the availability

of a 3-bit flip-flop in the cell library when we desire to replace

1- and 2-bit flip-flops by a 3-bit flip-flop.

A. Related Work

Chang et al. [6] first proposed the problem of using multi-bit

flip-flops to reduce power consumption in the post-placement

stage. They use the graph-based approach to deal with this

problem. In a graph, each node represents a flip-flop. If two

flip-flops can be replaced by a new flip-flop without violating

timing and capacity constraints, they build an edge between

the corresponding nodes. After the graph is built, the problem

of replacement of flip-flops can be solved by finding an

m-clique in the graph. The flip-flops corresponding to the

nodes in an m-clique can be replaced by an m-bit flip-

flop. They use the branch-and-bound and backtracking algo-

rithm [8] to find all m-cliques in a graph. Because one

node (flip-flop) may belong to several m-cliques (m-bit

flip-flop), they use greedy heuristic algorithm to find the

maximum independent set of cliques, which every node

only belongs to one clique, while finding m-cliques groups.

However, if some nodes correspond to k-bit flip-flops that

k ≧ 1, the bit width summation of flip-flops correspond-

ing to nodes in an m-clique, j , may not equal m. If the

type of a j -bit flip-flop is not supported by the library,

it may be time-wasting in finding impossible combinations

of flip-flops.

B. Our Contributions

The difficulty of this problem has been illustrated in the

above descriptions. To deal with this problem, the direct way

is to repeatedly search a set of flip-flops that can be replaced

by a new multi-bit flip-flop until none can be done. However,

as the number of flip-flops in a chip increases dramatically,

2 2 5 6 7 9 10 4

2 1 1 1 1 8 10 4

5 5 3 3 3 8 8 4

2 2 5 5 5 6 6 6

2 2 10 10 10 2 4 6

2 2 7 7 7 7 4 4

2 2 7 7 7 4 4 4

2 2 7 4 4 4 4 4

Congested bins

Sparse

bins

p3

2-bit

f1p1

p2

net1

net2

net3

net4

D Q

D Q

(New)

1-bit f3

f2

D Q

1-bit 

p4

A single bin

Remaining Area

(a)                       (b) 

Fig. 3. (a) Combination of flip-flops possibly increases the wire length.
(b) Combination of flip-flops also changes the density.

the complexity would increase exponentially, which makes

the method impractical. To handle this problem more effi-

ciently and get better results, we have used the following

approaches.

1) To facilitate the identification of mergeable flip-flops, we

transform the coordinate system of cells. In this way, the

memory used to record the feasible placement region can

also be reduced.

2) To avoid wasting time in finding impossible combina-

tions of flip-flops, we first build a combination table

before actually merging two flip-flops. For example, if

a library only provides three kinds of flip-flops, which

are 1-, 2-, and 3-bit, we first separate the flip-flops

into three groups. Therefore, the combination of 1- and

3-bit flip-flops is not considered since the library does

not provide the type of 4-bit flip-flop.

3) We partition a chip into several subregions and perform

replacement in each subregion to reduce the complexity.

However, this method may degrade the solution quality.

To resolve the problem, we also use a hierarchical way

to enhance the result.

The rest of this paper is organized as follows. Section II

describes the problem formulation. Section III presents the

proposed algorithm. Section IV evaluates the computation

complexity. Section V shows the experimental results. Finally,

we draw a conclusion in Section VI.

II. PROBLEM FORMULATION

Before giving our problem formulation, we need the

following notations.

1) Let fi denote a flip-flop and bi denote its bit width.

2) Let A( fi ) denote the area of fi .

3) Let P( fi ) denote all the pins connected to fi .

4) Let M(pi , fi ) denote the Manhattan distance between

a pin pi and fi , where pi is an I/O pin that connects

to fi .

5) Let S(pi ) denote the constraint of maximum wirelength

for a net that connects to a pin pi of a flip-flop.

6) Given a placement region, we divide it into several bins

[see Fig. 3(b) for example], and each bin is denoted

by Bk .



626 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

p1

f1
D Q

p2

S(p1)

S(p2)

Rp(p1) Rp(p2)

R(f1)

Fig. 4. Defined slack region of the pin.

7) Let RA(Bk) denote the remaining area of the bin Bk that

can be used to place additional cells.

8) Let L denote a cell library which includes different

flip-flop types (i.e., the bit width or area in each type is

different).

Given a cell library L and a placement which contains a

lot of flip-flops, our target is to merge as many flip-flops as

possible in order to reduce the total power consumption. If

we want to replace some flip-flops f1,..., f j−1 by a new flip-

flop f j , the bit width of f j must be equal to the summation

of bit widths in the original ones (i.e., �bi = b j , i = 1

to j−1). Besides, since the replacement would change the

routing length of the nets that connect to a flip-flop, it

inevitably changes timing of some paths. Finally, to ensure that

a legalized placement can be obtained after the replacement,

there should exist enough space in each bin. To consider these

issues, we define two constraints as follows.

1) Timing Constraint for a Net Connecting to a Flip-Flop

f j from a Pin pi : To avoid that timing is affected after the

replacement, the Manhattan distance between pi and f j cannot

be longer than the given constraint S(pi ) defined on the pin

pi [i.e., M(pi , f j ) ≤ S(pi )].

Based on each timing constraint defined on a pin, we can

find a feasible placement region for a flip-flop fj . See Fig. 4 for

example. Assume pins p1 and p2 connect to a 1-bit flip-flop

f1. Because the length is measured by Manhattan distance, the

feasible placement region of f1 constrained by the pin pi [i.e.,

M(pi , f1) ≤ S(pi )] would form a diamond region, which is

denoted by Rp(pi ), i = 1 or 2. See the region enclosed by

dotted lines in the figure. Thus, the legal placement region of

f1 would be the overlapping region enclosed by solid lines,

which is denoted by R( f1). R( f1) is the overlap region of

Rp(p1) and Rp(p2).

2) Capacity Constraint for Each Bin Bk : The total area

of flip-flops intended to be placed into the bin Bk cannot be

larger than the remaining area of the bin Bk (i.e., �A( fi ) ≤
RA(Bk)).

III. OUR ALGORITHM

Our design flow can be roughly divided into three stages.

Please see Fig. 5 for our flow. In the beginning, we have

to identify a legal placement region for each flip-flop fi .

First, the feasible placement region of a flip-flop associated

with different pins are found based on the timing constraints

Build a combination table

END

START

Merge flip-flops

Identify mergeable flip-flops

Fig. 5. Flow chart of our algorithm.

defined on the pins. Then, the legal placement region of

the flip-flop fi can be obtained by the overlapped area of

these regions. However, because these regions are in the

diamond shape, it is not easy to identify the overlapped area.

Therefore, the overlapped area can be identified more easily

if we can transform the coordinate system of cells to get

rectangular regions. In the second stage, we would like to build

a combination table, which defines all possible combinations

of flip-flops in order to get a new multi-bit flip-flop provided

by the library. The flip-flops can be merged with the help of

the table. After the legal placement regions of flip-flops are

found and the combination table is built, we can use them to

merge flip-flops. To speed up our program, we will divide

a chip into several bins and merge flip-flops in a local bin.

However, the flip-flops in different bins may be mergeable.

Thus, we have to combine several bins into a larger bin and

repeat this step until no flip-flop can be merged anymore.

In this section, we would detail each stage of our method.

In the first subsection, we show a simple formula to transform

the original coordination system into a new one so that a legal

placement region for each flip-flop can be identified more

easily. The second subsection presents the flow of building

the combination table. Finally, the replacements of flip-flops

will be described in the last subsection.

A. Transformation of Placement Space

We have shown that the shape of a feasible placement region

associated with one pin pi connecting to a flip-flop fi would

be diamond in Section II. Since there may exist several pins

connecting to f i , the legal placement region of f i are the

overlapping area of several regions. As shown in Fig. 6(a),

there are two pins p1 and p2 connecting to a flip-flop f1, and

the feasible placement regions for the two pins are enclosed

by dotted lines, which are denoted by Rp(p1) and Rp(p2),

respectively. Thus, the legal placement region R( f1) for f1

is the overlapping part of these regions. In Fig. 6(b), R( f1)

and R( f2) represent the legal placement regions of f1 and f2.

Because R( f1) and R( f2) overlap, we can replace f1 and f2

by a new flip-flop f3 without violating the timing constraint,

as shown in Fig. 6(c).

However, it is not easy to identify and record feasible

placement regions if their shapes are diamond. Moreover,

four coordinates are required to record an overlapping region

[see Fig. 7(a)]. Thus, if we can rotate each segment 45°, the



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 627

p1

f1
D Q

1-bit 

p2

p3
f2

D

1-bit 

p4

Q

R(f1)

Rp(p1)

Rp(p2)

(a)

p1

f1
D Q

1-bit 

p2

p3
f2

D

1-bit 

p4

R(f1)

R(f2)

R3

Q

p4

p1

p2

p3

f3

D Q

2-bit 

(b)                         (c)

Fig. 6. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2 which are
enclosed by dotted lines, and the legal region R( f1) for f1 which is enclosed
by solid lines. (b) Legal placement regions R( f1) and R( f2) for f1 and f2,
and the feasible area R3 which is the overlap region of R( f1) and R( f2).
(c) New flip-flop f3 that can be used to replace f1 and f2 without violating
timing constraints for all pins p1, p2, p3, and p4.

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(a) (b)

Fig. 7. (a) Overlapping region of two diamond shapes. (b) Rectangular
shapes obtained by rotating the diamond shapes in (a) by 45°.

shapes of all regions would become rectangular, which makes

identification of overlapping regions become very simple. For

example, the legal placement region, enclosed by dotted lines

in Fig. 7(a), can be identified more easily if we change its

original coordinate system [see Fig. 7(b)]. In such condition,

we only need two coordinates, which are the left-bottom corner

and right-top corner of a rectangle, as shown in Fig. 7(b), to

record the overlapped area instead of using four coordinates.

The equations used to transform coordinate system are

shown in (1) and (2). Suppose the location of a point in

the original coordinate system is denoted by (x , y). After

coordinate transformation, the new coordinate is denoted by

(x ′, y ′). In the original transformed equations, each value

needs to be divided by the square root of 2, which would

induce a longer computation time. Since we only need to

know the relative locations of flip-flops, such computation are

ignored in our method. Thus, we use x ′′ and y ′′, to denote the

coordinates of transformed locations

x ′ =
x + y
√

2
=> x ′′ =

√
2 · x ′ = x + y (1)

y ′ =
−x + y

√
2

=> y ′′ =
√

2 · y ′ = −x + y. (2)

R(f1)

R(f2)

DIS_X( f1, f2)

DIS_Y( f1, f2)

H(f1)

W(f1)

Fig. 8. Overlapping relation between available placement regions of f 1
and f 2.

Then, we can find which flip-flops are mergeable according to

whether their feasible regions overlap or not. Since the feasible

placement region of each flip-flop can be easily identified after

the coordinate transformation, we simply use (3) and (4) to

determine whether two flip-flops overlap or not

DIS_X ( f1, f2) <
1

2
(W ( f1) + W ( f2)) (3)

DIS_Y ( f1, f2) <
1

2
(H ( f1) + H ( f2)) (4)

where W ( f1) and H ( f1) [W ( f2) and H ( f2)] denote the width

and height of R( f1) [R( f2)], respectively, in Fig. 8, and the

function DIS_X( f1, f2) and (DIS_Y( f1, f2)) calculates the

distance between centers of R( f1) and R( f2) in x-direction

(y-direction).

B. Build a Combination Table

If we want to replace several flip-flops by a new flip-flop f ′
i

(note that the bit width of f ′
i should equal to the summation

of bit widths of these flip-flops), we have to make sure that the

new flip-flop f ′
i is provided by the library L when the feasible

regions of these flip-flops overlap. In this paper, we will build a

combination table, which records all possible combinations of

flip-flops to get feasible flip-flops before replacements. Thus,

we can gradually replace flip-flops according to the order of

the combinations of flip-flops in this table. Since only one

combination of flip-flops needs to be considered in each time,

the search time can be reduced greatly. In this subsection, we

illustrate how to build a combination table.

The pseudo code for building a combination table T is

shown in Algorithm 1. We use a binary tree to represent one

combination for simplicity. Each node in the tree denotes one

type of a flip-flop in L. The types of flip-flops denoted by

leaves will constitute the type of the flip-flop in the root.

For each node, the bit width of the corresponding flip-flop

equals to the bit width summation of flip-flops denoted by its

left and right child [please see Fig. 9(e) for example]. Let ni

denote one combination in T , and b(ni ) denote its bit width.

In the beginning, we initialize a combination ni for each kind

of flip-flops in L (see Line 1). Then, in order to represent

all combinations by using a binary tree, we may add pseudo

types, which denote those flip-flops that are not provided by

the library, (see Line 2). For example, assume that a library

only supports two kinds of flip-flops whose bit widths are 1

and 4, respectively. In order to use a binary tree to denote a



628 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

Algorithm 1 Build Combination Table.

1 T = InitializationCombinationTable(L);

2 InsertPseudoType(L);

3 SortByBitNumber (L);

4 for each ni in T do

5 InsertChildrens (ni, NULL, NULL);

6 index = 0;

7 while index != size(T) do

8 range_first = index;

9 range_second = size(T);

10 index = size(T);

11 for each ni in T

12 for j = 1 to range_first do TypeVerify(ni, nj, T);

13 for j = i to range_second do TypeVerify(ni, nj, T);

14 T = DuplicateCombinationDelete(T);

15 T = UnusedCombinationDelete(T);

InsertPseudoType(L):

1 for i = (bmin+1) to (bmax-1)

2 if (L does not contain a type whose bit width is equal to i )

3 insert a pseudo type typej with bit width i to L;

InsertChildrens(n, n1, n2):

1 n.left_child ← n1;

2 n.right_child ← n2;

TypeVerify(n1, n2, T):

1 bsum = b(n1) + b(n2);

2 if (L contains a type whose bit width is bsum) 

3 insert a new combination n whose bit width bsum to T;

4 InsertChildrens( n , n1, n2);

combination whose bit width is 4, there must exist flip-flops

whose bit widths are 2 and 3 in L [please see the last two

binary trees in Fig. 9(e) for example]. Thus, we have to create

two pseudo types of flip-flops with 2- and 3-bit if L does

not provide these flip-flops. Function InsertPseudoType in

algorithm 1 shows how to create pseudo types. Let bmax and

bmin denote the maximum and minimum bit width of flip-flops

in L. In InsertPseudoType, it inserts all flip-flops whose bit

widths are larger than bmin and smaller than bmax into L if

they are not provided by L originally. After this procedure,

all combinations in L are sorted according to their bit widths

in the ascending order (Line 3). At present, all combinations

are represented by binary trees with 0-level. Thus, we would

assign NULL to its right and left child (see Lines 4 and 5).

Finally, for every two kinds of combinations in T , we try to

combine them to create a new combination (Lines 6–13). If

the new combination is the flip-flop of a feasible type (this

can be checked by the function TypeVerify), we would add

it to the table T . In the function TypeVerify, we first add

the bit widths of the two combinations together and store the

result in bsum (see Line 1 in TypeVerify). Then, we will add

a new combination n to T with bit width bsum if L has such

kind of a flip-flop. After these procedures, there may exist

some duplicated or unused combinations in T . Thus, we have

Library L

1-bit 4-bit

Type2Type1

Combination 

Table T

1-bit 4-bit

n2n1

Library L

1-bit 2-bit 3-bit 4-bit

Type1 Type2 Type3 Type4

Pseudo Pseudo

Combination 

Table T

1-bit 4-bit

n2n1

1 4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n2n1

+

1 1 1

2

4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n2n1

+

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

+ +

(c)

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n6

4-bit

n1

n4

n2n1

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

1 1

21

3

4

1

+ + + +

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

4-bit

n3

n3

n2n1

1 1 1

2

4 1 1

2

4

1 1

2

+ +

k k-bit flip-flop

k k-bit merged flip-flop

Library L

1-bit 4-bit

Type2Type1

Combination 

Table T

1-bit 4-bit

n2n1

Library L

1-bit 2-bit 3-bit 4-bit

Type1 Type2 Type3 Type4

Pseudo Pseudo

Combination 

Table T

1-bit 4-bit

n2n1

1 4(b)  

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n2n1

+

1 1 1

2

4

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n2n1

+

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

+ +

(c) (d)  

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

3-bit

n1

n3

n5

4-bit

n3

n3

n6

4-bit

n1

n4

n2n1

1 1 1

2

4 1 1

21

3

1 1

2

4

1 1

2

1 1

21

3

4

1

+ + + +

(e)

Combination Table T

1-bit 4-bit

n3

2-bit

n1

n1

n4

4-bit

n3

n3

n2n1

1 1 1

2

4 1 1

2

4

1 1

2

+ +

k k-bit flip-flop

k k-bit merged flip-flop

(f)

(a)      

Fig. 9. Example of building the combination table. (a) Initialize the library
L and the combination table T . (b) Pseudo types are added into L , and the
corresponding binary tree is also build for each combination in T . (c) New
combination n3 is obtained from combining two n1s. (d) New combination
n4 is obtained from combining n1 and n3, and the combination n5 is obtained
from combining two n3s. (e) New combination n6 is obtained from combining
n1 and n4. (f) Last combination table is obtained after deleting the unused
combination in (e).

to delete them from the table and the two functions Dupli-

cateCombinationDelete and UnusedCombinationDelete are

called for the purpose (Lines 14 and 15). In DuplicateCombi-

nationDelete, it checks whether the duplicated combinations

exist or not. If the duplicated combinations exist, only the one

with the smallest height of its corresponding binary tree is left

and the others are deleted. In UnusedCombinationDelete, it

checks the combinations whose corresponding type is pseudo



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 629

Algorithm 2 Insert Pseudo Types (optional)

InsertPseudoType(L):

1 for each typej in L do

2 PseudoTypeVerifyInsertion( typej, L) ;

PseudoTypeVerifyInsertion( typej, L):

1 if (mod (b(typej) /2) == 0) 

2 b1 = [b(typej)/2],  b2 = [b(typej)/2];

3 else 

4 b1 = ⎣b(typej)/2,  b2 = b(typej) - ⎣b(typej)/2;

5 for i = 1 to 2

6 if ((bi > bmin) && 

(L does not contain a type whose bit width is equal to bi))

7 insert a pseudo type typej with bit width bi to L;

8 PseudoTypeVerifyInsertion(typej, L);

type in L. If the combination is not included into any other

combinations, it will be deleted.

For example, suppose a library L only provides two types

of flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and

bmax = 4), in Fig. 9(a). We first initialize two combinations n1

and n2 to represent these two types of flip-flops in the table

T [see Fig. 9(a)]. Next, the function InsertPseudoType is

performed to check whether the flip-flop types with bit widths

between 1 and 4 exist or not. Thus, two kinds of flip-flop types

whose bit widths are 2 and 3 are added into L, and all types

of flip-flops in L are sorted according to their bit widths [see

Fig. 9(b)]. Now, for each combination in T , we would build a

binary tree with 0-level, and the root of the binary tree denotes

the combination. Next, we try to build new legal combina-

tions according to the present combinations. By combing two

1-bit flip-flops in the first combination, a new combination

n3 can be obtained [see Fig. 9(c)]. Similarly, we can get a

new combination n4 (n5) by combining n1 and n3(two n3’s)

[see Fig. 9(d)]. Finally, n6 is obtained by combing n1 and n4.

All possible combinations of flip-flops are shown in Fig. 9(e).

Among these combinations, n5 and n6 are duplicated since

they both represent the same condition, which replaces four

1-bit flip-flops by a 4-bit flip-flop. To speed up our program,

n6 is deleted from T rather than n5 because its height is larger.

After this procedure, n4 becomes an unused combination [see

Fig. 9(e)] since the root of binary tree of n4 corresponds to the

pseudo type, type3, in L and it is only included in n6. After

deleting n6, n4 is also need to be deleted. The last combination

table T is shown in Fig. 9(f).

In order to enumerate all possible combinations in the

combination table, all the flip-flops whose bit widths range

between bmax and bmin and do not exist in L should be

inserted into L in the above procedure. However, this is time

consuming. To improve the running time, only some types of

flip-flops need to be inserted. There exist several choices if

we want to build a binary tree corresponding to a type type j .

However, the complete binary tree has the smallest height.

Thus, for building a binary tree of a certain combination ni

whose type is type j , only the flip-flops whose bit widths

REPLACE filp-flops 

in each subregion

Combine subregions and 

replace flip-flops

De-replace and replace flip-flops 

belongs to pseudo combination

Divide chip into subregions

Input

Output

Fig. 10. Detailed flow to merge flip-flops.

are (⌊b(type j)/2⌋) and (b(type j)–⌊b(type j)/2⌋) should exist

in L. Algorithm 2 shows the enhanced procedure to insert

flip-flops of pseudo types. For each type j in L, the function

PseudoTypeVerifyInsertion recursively checks the existence

of flip-flops whose bit widths around ⌊b(type j)/2⌋ and add

them into L if they do not exist (see Lines 1 and 2). In

the function PseudoTypeVerifyInsertion, it divides the bit

width b(type j) into two parts ⌊b(type j)/2⌋ and ⌊b(type j )/2⌋
(⌊b(type j)/2⌋ and b(type j)–⌊b(type j)/2⌋) if b(type j ) is an even

(odd) number (see Lines 1–4 in PseudoTypeVerifyInsertion),

and it would insert a pseudo type type j into L if the type is

not provided by L and its bit width is larger than the minimum

bit width (denoted by bmin) of flip-flops in L (see Lines 5–8

in PseudoTypeVerifyInsertion). The same procedure repeats

in the new created type. Note that this method works only

when the 1-bit type exists in L. We still have to insert pseudo

flip-flops by the function InsertPseudoType in Algorithm 1

if the 1-bit flip-flop is not provided by L.

For example, assume a library L only provides two kinds of

flip-flops whose bit widths are 1 and 7. In the new procedure, it

first adds two pseudo types of flip-flops whose bit widths are 3

and 4, respectively, for the flip-flop with 7-bit (i.e., L becomes

[1 3 4 7]). Next, the flip-flop whose bit width is 2 is added to

L for the flip-flop with 4-bit (i.e., L becomes [1 2 3 4 7]). For

the flip-flop with 3-bit, the procedure stops because flop-flops

with 1 and 2 bits already exist in L. In the new procedure, we

do not need to insert 5- and 6-bit pseudo types to L.

C. Merge Flip-Flops

We have shown how to build a combination table in

Section III-B. Now, we would like to show how to use the

combination table to combine flip-flops in this subsection. To

reduce the complexity, we first divide the whole placement

region into several subregions, and use the combination table

to replace flip-flops in each subregion. Then, several subre-

gions are combined into a larger subregion and the flip-flops

are replaced again so that those flip-flops in the neighboring

subregions can be replaced further. Finally, those flip-flops

with pseudo types are deleted in the last stage because they are

not provided by the supported library. Fig. 10 shows this flow.

1) Region Partition (Optional): To speed up our problem,

we divide the whole chip into several subregions. By suitable



630 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

subregion

chip

bin

bin

bin

bin

bin

bin

Fig. 11. Example of region partition with six bins in one subregion.

partition, the computation complexity of merging flip-flops can

be reduced significantly (the related quantitative analysis will

be shown in Section V). As shown in Fig. 11, we divide the

region into several subregions, and each subregion contains

six bins, where a bin is the smallest unit of a subregion.

2) Replacement of Flip-flops in Each Subregion: Before

illustrating our procedure to merge flip-flops, we first give an

equation to measure the quality if two flip-flops are going to

be replaced by a new flip-flop as follows:

cost = routing_length − α ×
√

available_area (5)

where routing_length denotes the total routing length between

the new flip-flop and the pins connected to it, and avail-

able_area represents the available area in the feasible region

for placing the new flip-flop. α is a weighting factor (the

related analysis of the value α will be shown in Section V).

The cost function includes the term routing_length to favor

a replacement that induces shorter wirelength. Besides, if the

region has larger available space to place a new flip-flop, it

implies that it has higher opportunities to combine with other

flip-flops in the future and more power reduction. Thus, we

will give it a smaller cost. Once the flip-flops cannot be merged

to a higher-bit type (as the 4-bit combination n4 in Fig. 9),

we ignore the available_area in the cost function, and hence

α is set to 0.

After a combination has been built, we will do the replace-

ments of flip-flops according to the combination table. First,

we link flip-flops below the combinations corresponding to

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f2

f1

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f1

f2

f3

(a)                   (b)

f3

f6

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f4

f5

f3

f6

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f7

f8

f9

(c)                           (d)

f3

f6

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f9 f10

n1

1-bit

n2

2-bit

n3

4-bit

n4

2-bit

n1

+
n1

n5

4-bit

n2

+
n2

n6

4-bit

n2

+
n4

n7

4-bit

n4

+
n4

f9 f10

(e)                           (f)

Fig. 12. Example of replacements of flip-flops. (a) Sets of flip-flops before
merging. (b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-bit flip-flop
f3. (c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit flip-flop f6.
(d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop f9.
(e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop f10.
(f) Sets of flip-flops after merging.

their types in the library. Then, for each combination n in

T, we serially merge the flip-flops linked below the left child

and the right child of n from leaves to root. Algorithm 3

shows the procedure to get a new flip-flop corresponding to

the combination n. Based on its binary tree, we can find the

combinations associated with the left child and right child of

the root. Hence, the flip-flops in the lists, named lleft and lright,

linked below the combinations of its left child and its right

child are checked (see Lines 2 and 3). Then, for each flip-flop

f i in lleft, the best flip-flop fbest in lright, which is the flip-flop

that can be merged with f i with the smallest cost recorded in

cbest, is picked. For each pair of flip-flops in the respective

list, the combination cost [based on (5)] is computed if they

can be merged and the pair with the smallest cost is chosen

(see Lines 4–11). Finally, we add a new flip-flop f ′ in the list

of the combination n and remove the picked flip-flops which

constitutes the f ′ (see Lines 12–14).

For example, given a library containing three types of flip-

flops (1-, 2-, and 4-bit), we first build a combination table T

as shown in Fig. 12(a). In the beginning, the flip-flops with

various types are, respectively, linked below n1, n2, and n3 in



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 631

Subregion
New subregion

after combination

(a)               (b)

Fig. 13. Combination of flip-flops near subregion boundaries. (a) Result of
replace flip-flops in each subregion. (b) Result of replace flip-flops in each
new subregion which is obtained from combining twelve subregion in (a).

Original 

subregion
Subregion after

combination

Subregion after

combination

(a) (b) (c)

Fig. 14. Combination of subregions to a larger one. (a) Placement is originally
partitioned into 16 subregions for replacement. (b) Subregion bounded by
bold line is obtained from combining four neighboring subregions in (a).
(c) Subregion bounded by bold line is obtained from combining four subre-
gions in (b).

T according to their types. Suppose we want to form a flip-

flop in n4, which needs two 1-bit flip-flops according to the

combination table. Each pair of flip-flops in n1 are selected

and checked to see if they can be combined (note that they also

have to satisfy the timing and capacity constraints described

in Section II). If there are several possible choices, the pair

with the smallest cost value is chosen to break the tie. In

Fig. 12(a), f1 and f2 are chosen because their combination

gains the smallest cost. Thus, we add a new node f3 in the

list below n4, and then delete f1 and f2 from their original list

[see Fig. 12(b)]. Similarly, f4 and f5 are combined to obtain a

new flip-flop f6, and the result is shown in Fig. 12(c). After all

flip-flops in the combinations of 1-level trees (n4 and n5) are

obtained as shown in Fig. 12(d), we start to form the flip-flops

in the combinations of 2-level trees (n6, and n7). In Fig. 12(e),

there exist some flip-flops in the lists below n2 and n4, and we

will merge them to get flip-flops in n6 and n7, respectively.

Suppose there is no overlap region between the couple of flip-

flops in n2 and n4. It fails to form a 4-bit flip-flop in n6. Since

the 2-bit flip-flops f3 and f6 are mergeable, we can combine

them to obtain a 4-bit flip-flop f10 in n7. Finally, because there

exists no couple of flip-flops that can be combined further, the

procedure finishes as shown in Fig. 12(f).

If the available overlap region of two flip-flops exists, we

can assign a new one to replace those flip-flops. Once there

is sufficient space to place the new flip-flop in the available

region, the algorithm will perform the replacement, and the

new generated flip-flop will be placed in the grid that makes

the wirelength between the flip-flop and its connected pins

smallest. If the capacity constraint of the bin, Bk , which

the grid belongs to will be violated after the new flip-flop

is placed on that grid, we will search the bins near Bk to

find a new available grid for the new flip-flop. If none of

bins which are overlapped with the available region of new

flip-flop can satisfy the capacity constraint after the placement

of new flip-flop, the program will stop the replacement of the

two flip-flops.
3) Bottom-Up Flow of Subregion Combinations (Optional):

As shown in Fig. 13(a), there may exist some flip-flops in

the boundary of each subregion that cannot be replaced by

any flip-flop in its subregion. However, these flip-flops may

be merged with other flip-flops in neighboring subregions as

shown in Fig. 13(b). Hence, to reduce power consumption

further more, we can combine several subregions to obtain

a larger subregion and perform the replacement again in

the new subregion again. The procedure repeats until we

cannot achieve any replacement in the new subregion. Fig. 14

gives an example for this hierarchical flow. As shown in

Fig. 14(a), suppose we divide a chip into 16 subregions in

the beginning. After the replacement of flip-flops is finished

in each subregion, four subregions are combined to get a larger

one as shown in Fig. 14(b). Suppose some flip-flops in new

subregions still can be replaced by new flip-flops in other new

subregions, we would combine four subregions in Fig. 14(b)

to get a larger one as shown in Fig. 14(c) and perform the

replacement in the new subregion again. As the procedure

repeats in a higher level, the number of mergeable flip-flops

gets fewer. However, it would spend much time to get little

improvement for power saving. To consider this issue, there

exists a trade-off between power saving and time consuming

in our program.
4) De-Replace and Replace (Optional): Since the pseudo

type is an intermediate type, which is used to enumerate all

possible combinations in the combination table T , we have to

remove the flip-flops belonging to pseudo types. Thus, after

the above procedures have been applied, we would perform

de-replacement and replacement functions if there exists any

flop-flops belonging to a pseudo type. For example, if there

still exists a flip-flop, fi , belonging to n3 after replacements

in Fig. 9(f), we have to de-replace fi into two flip-flops

originally belongs to n1. After de-replacing, we will do the

replacements of flip-flops according to T without consideration

of the combinations whose corresponding type is pseudo in L.

IV. COMPUTATION COMPLEXITY

This section analyzes the timing complexity of this algo-

rithm. The core is to continuously seek suitable combinations,

and find the optimized solution among all possibilities. Hence,

the timing complexity depends on the operation count of

the function of deciding whether two flip-flops can combine

together or not. For example, assume all flip-flops are of the

same type, 1-bit flip-flop. In the beginning, each flip-flop will

try to combine with all the other flip-flops. If the first flip-

flop finds the best solution, the two 1-bit flip-flops will form a

2-bit flip-flop and be removed from the list. Then, the second

flip-flop will perform identical procedures. Let N represent

the number of flip-flops per circuit. For an exhaustive run

for all the 1-bit cells, the timing complexity is O(N2). If the



632 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

0 5 10
78.7

79.5

80.3

81.1

81.9

82.7

83.5

Number of FFs

 in single region (10
4
)

P
o

w
e

r 
(N

o
rm

a
li
ze

d
)

(%
)

0 5 10
0

25

50

75

100

Number of FFs

in single region (10
4
)

E
x
e

cu
�

o
n

 T
im

e

(N
o

rm
a

li
ze

d
) 

(%
)

(a) (b)

Fig. 15. (a) Influence of the region size on power. (b) Influence of the region
size on execution time.

0 0.5 1 1.5 2 2.5 3
5

6

7

8

9

10

11

12

13

Weigh�ng factor

W
ir

e
-l

e
n

g
th

 r
e

d
u

ce
d

(N
o

rm
a

li
ze

d
) 

(%
)

0 1 2 3

20.9

20.95

21

21.05

21.1

21.15

21.2

21.25

21.3

Weigh�ng factor

P
o

w
e

r 
re

d
u

ce
d

 (
N

o
rm

a
li
ze

d
)(

%
)

(a) (b)

Fig. 16. (a) Influence of the weighting factor on power reduction.
(b) Influence of the weighting factor on wirelength reduction.

largest flip-flop the library provided is M-bit, the size of the

combination table is O(Mlog2(M)) when we use pseudo type

flip-flops. The total timing complexity is O(Mlog2(M)× N2),

equivalently equal to O(N2) because the value of M is much

less than the value of N .

V. EXPERIMENTAL RESULTS

This section shows our experimental results. We imple-

mented our algorithm in C++ language, and all experiments

were ran on workstation with a 3.33-GHz Intel Core i7-980X

processor with 16-GB memory. Our experiment can be divided

into two parts. In the first part, we compare our method

with Chang et al. [6] and the results are shown in the first

subsection. However, some conditions cannot be verified by

their test cases. Thus, we provide another set of test cases and

the experiment results are shown in the second subsection.

A. Performance Comparison With Chang et al. [6]

In this subsection, we first compare the experimental results

with [6]. They used six test cases which were provided by

Faraday corporation [7]. Table I shows the information of test

cases. The numbers of flip-flops range from 98 to 169 200,

and the available types (i.e., 1-, 2-, and 4-bit) of flip-flops in

all cases are the same. Table I shows the number of flip-flops

in each type in the initial condition.

In our algorithm, there exist two values which would affect

our results: the first one is the dimension of a subregion since

we would partition a chip into several subregions. The second

one is the parameter used in the cost function of (5). Thus,

we first do some experiments to explore better values for these

two parameters. The results for comparisons with [6] will be

shown in the last part of this subsection.

TABLE I

INDUSTRY BENCHMARK CIRCUITS

Circuit
Number of
1-bit FFs

Number of
2-bit FFs

Number of
4-bit FFs

c1 76 22 0

c2 366 57 0

c3 1464 228 0

c4 4378 751 0

c5 9150 1425 0

c6 146400 22800 0

TABLE II

EXPERIMENTAL RESULTS OF [6] AND OUR APPROACH

Circuit
Approach in [6] Our approach

PR_Ratio
(%)

WR_Ratio
(%)

Times
(s)

PR_Ratio
(%)

WR_Ratio
(%)

Times
(s)

c1 14.8 0.917 0.01 15.9 0.928 0.07

c2 16.9 0.947 0.04 18.0 0.934 0.12

c3 17.1 0.948 0.10 17.8 0.928 0.24

c4 16.8 0.945 0.28 17.6 0.932 0.84

c5 17.1 0.949 0.60 17.8 0.936 1.51

c6 17.2 0.949 78.92 17.9 0.938 30.43

Comp. 0.95 1.01 2.41 1.00 1.00 1.00

1) Influence of Region Size on Performance: In this part,

we first determine a suitable size for each subregion during

partitioning. Since the execution time is actually dominated

by the average number of flip-flops included in a subregion,

we use the number of flip-flops in a single subregion to

represent the size of a subregion, which can be obtained from

multiplying the number of bins in a subregion by the average

number of flip-flops in a bin. Fig. 15 shows the simulation

results using the circuit c6 in Table I. We sweep the number of

flip-flops included in a subregion to observe its effect on power

consumption and execution time. The y-axis in Fig. 15(a)

and (b), respectively, represent the power reduction and tim-

ing improvement ratios relative to the size of a subregion.

While a subregion gets larger, the execution time becomes

longer. However, the power consumption does not decrease

proportionally. On the contrary, if the subregion size becomes

very small, the power consumption will increase significantly.

To balance execution time and power consumption, we select

600 as the number of flip-flops in a single subregion (the

normalized power and execution time are about 83% and 0.8%

if the number of flip-flops in a single subregion is 600 in

Fig. 15).

2) Influence of Weighting Factor α on Performance: Since

the parameter α used by (5) (see Section III-C.2) would

affect our results, it is necessary to find a suitable value for

getting better results. Similarly, we use circuit c6 to test our

program, and the simulation result is shown in Fig. 16. In

this experiment, we sweep α from 0 to 3 to get the data of

power consumption and wirelength. The y-axis in Fig. 16(a)

and (b) respectively represents the wirelength reduction ratio

and the power reduction ratio. While the value of α becomes



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 633

TABLE III

EXPERIMENTAL RESULTS UNDER DIFFERENT CONDITIONS

Case 1 Case 2 Case 3 Case 4 Case 5

Library 1, 2, 4 1, 2, 4, 4, 8 1, 2, 4, 6, 13 1, 2, 4, 8 1, 2, 4, 8

Flip-flop number 120 953 5524 60 000 1 728 000

Powerori (unit 103) 12 95 552 6000 172 800

Powermerged (unit 103) 9 67 430 4208 136 509

PR_Ratio (%) 20.97 28.80 22.11 29.87 21.00

WLori (unit 103) 83 577 3563 53 625 1 199 304

WLmerged (unit 103) 71 506 2189 31 008 1 068 961

WR_Ratio (%) 85.62 87.77 61.44 57.82 89.13

Times (s) 0.08 0.24 1.07 36.7 2377

Times of parser 0.07 0.15 0.29 3.8 2153

Fig. 17. Average computational complexity of our algorithm.

larger, the power reduction ratio gets larger. If α is close to

0, the wirelength reduction ratio will be better than the power

reduction ratio. To balance wirelength reduction and power

reduction, we use the curves to select a suitable value for

α. Because the variation of α has the more apparent effect

on wirelength reduction than power reduction, the value of α

close to 0 is preferred. In the following experiments, we select

0.1 as the value of α.

3) Comparison Results: The comparison results between

[6] and our approach are listed in Table II. Column 1 lists

the names of benchmark circuits. In [6], their algorithm

was implemented on 2.66-GHz Intel i7 PC under the Linux

operation system, and our algorithm was implemented on a

3.33-GHz Intel Core i7-980X processor with 16-GB memory.

In Table II, we compare the results of PR_Ratio, WR_Ratio

and execution times with [6]. The comparison results are

listed in row 8. The values PR_Ratio and WR_Ratio can be

computed by the following equations:

PR_Ratio(%) =
poweroriginal−powermerged

poweroriginal

· 100%

WR_Ratio(%) =
wire_lengthmerged

wire_lengthoriginal
· 100%

where the powermerged and wire_lengthmerged are the measured

power and wirelength after the program is applied, and the

poweroriginal and wire_lengthoriginal are the measured power

and wirelength of the original test case. As shown in Table II,

Fig. 18. Distribution of flip-flops in the original design (120 flip-flops,
power = 12 000, wirelength = 83 285).

our results of PR_Ratio, WR_Ratio and execution time are all

better than the results in [6]. Our execution time of cases with

number of flip-flops smaller than about 10 000 is larger than

[6], because we have to spend additional time to build the

combination table. However, with the help of the combination

table, our experimental results of the execution time of c6

(about 170 000 flip-flops) is much less than [6].

B. Average-Case Performance

In this subsection, we provide another set of cases supported

by [9] to test our program. The content of test circuits and

experimental results are shown in Table III. Compared to the

cases in Table I, the available types of flip-flops are different

from Cases 1 to 5. Case 5 is the largest circuit of about

1 700 000 flip-flops. Because the execution time is dominated

by the number of flip-flops in the circuit, Case 5 is applied to

help to demonstrate the efficiency and robust of our algorithm.

Row 1 in the table lists all test cases and row 2 shows types of

different flip-flops that can be used in each test case. Rows 3

and 4 respectively, show numbers of flip-flops and total power

consumption in original test cases. After some flip-flops are

replaced by our algorithm, the power consumption of each

design is shown in row 5, and row 6 computes the ratio

of power reduction by our algorithm, which is denoted by

PR_Ratio. From rows 7 to 9, it shows the wirelength reduction

by our algorithm. Rows 7 and 8 show the original wirelength

and the wirelength after our program is applied. Finally, the



634 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4, APRIL 2013

Fig. 19. Resulting distribution of flip-flops (34 flip-flops, power = 9484,
wirelength = 71 304)

Fig. 20. Distribution of flip-flops in the original design. (5524 flip-flops,
power = 552 400, wirelength = 3 562 985).

ratio of wirelength reduction, which is denoted by WR_Ratio,

is shown in row 9.

The values of PR_Ratio in all cases are between 20 and 30.

Besides, the wirelength are less than the original circuit in all

cases, and the best value of WR_Ratio can achieve 42.18%

improvement. Row 10 shows the execution time of each case.

Because of the long execution time of parser, we show the

execution time of parser in row 11.

Fig. 17 displays the curve of the execution time with respect

to various flip-flop numbers in a circuit. The test cases are

obtained by duplicating Case 1 various times. The x-axis

represents the number of flip-flops, and the y-axis denotes

the percentage of a execution time compared with the longest

execution time. As the number of flip-flops increases, the

execution time of parser will be longer than execution time

which does not include parser. For this reason, the execution

time in Fig. 17 does not include the execution time of parser.

The largest case, which contains about 1 700 000 flip-flops,

takes the longest execution time (about 10 min). According to

Fig. 17, it shows that the timing complexity of our algorithm

is O(N1.12) instead of O(N2).

Figs. 18 and 19 show the original distribution of flip-flops

and the resulting distribution of flip-flops after applying our

program. In the figures, flip-flops are denoted by green circles

and pins by blue circles. Blue lines represent the wires that

Fig. 21. Resulting distribution of flip-flops. (1378 flip-flops, power =
430 260, wirelength = 2 189 215).

connect pins and flip-flops. In Fig. 18, there are 120 1-bit

flip-flops and 240 pins in the original circuit in Case 1. After

applying our program, there only exist 27 4-bit flip-flops, five

2-bit flip-flops and two 1-bit flip-flops in the new design shown

in Fig. 19. In Fig. 20, there exist 5524 2-bit flip-flops and

11 048 pins in the original circuit in Case 3. There only exist

two 6-bit, 1284 4-bit, 34 2-bit, and eight 1-bit flip-flops for

the new circuit shown in Fig. 21 after applying our program.

VI. CONCLUSION

This paper has proposed an algorithm for flip-flop replace-

ment for power reduction in digital integrated circuit design.

The procedure of flip-flop replacements is depending on the

combination table, which records the relationships among the

flip-flop types. The concept of pseudo type is introduced to

help to enumerate all possible combinations in the combination

table. By the guidelines of replacements from the combina-

tion table, the impossible combinations of flip-flops will not

be considered that decreases execution time. Besides power

reduction, the objective of minimizing the total wirelength

also be considered to the cost function. The experimental

results show that our algorithm can achieve a balance between

power reduction and wirelength reduction. Moreover, even

for the largest case which contains about 1 700 000 flip-flops,

our algorithm can maintain the performance of power and

wirelength reduction in the reasonable processing time.

REFERENCES

[1] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L.
Allmon, “High-performance microprocessor design,” IEEE J. Solid-State

Circuits, vol. 33, no. 5, pp. 676–686, May 1998.
[2] W. Hou, D. Liu, and P.-H. Ho, “Automatic register banking for low-

power clock trees,” in Proc. Quality Electron. Design, San Jose, CA,
Mar. 2009, pp. 647–652.

[3] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of technology scaling
in the clock power,” in Proc. IEEE VLSI Comput. Soc. Annu. Symp.,
Pittsburgh, PA, Apr. 2002, pp. 52–57.

[4] H. Kawagachi and T. Sakurai, “A reduced clock-swing flip-flop (RCSFF)
for 63% clock power reduction,” in VLSI Circuits Dig. Tech. Papers

Symp., Jun. 1997, pp. 97–98.
[5] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang, “Power-aware

placement,” in Proc. Design Autom. Conf., Jun. 2005, pp. 795–800.



SHYU et al.: EFFECTIVE AND EFFICIENT APPROACH FOR POWER REDUCTION 635

[6] Y.-T. Chang, C.-C. Hsu, P.-H. Lin, Y.-W. Tsai, and S.-F. Chen,
“Post-placement power optimization with multi-bit flip-flops,” in Proc.

IEEE/ACM Comput.-Aided Design Int. Conf., San Jose, CA, Nov. 2010,
pp. 218–223.

[7] Faraday Technology Corporation [Online]. Available: http://www.
faraday-tech.com/index.html

[8] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” ACM Commun., vol. 16, no. 9, pp. 575–577, 1973.

[9] CAD Contest of Taiwan [Online]. Available: http://cad_contest.cs.
nctu.edu.tw/cad11

Ya-Ting Shyu received the M.S. degree in electrical
engineering from National Cheng Kung University
(NCKU), Tainan, Taiwan, in 2008, where she is
pursuing the Ph.D. degree in electronic engineering.

Her current research interests include integrated
circuit design, design automation for analog, and
mixed-signal circuits.

Jai-Ming Lin received the B.S., M.S., and Ph.D.
degrees from National Chiao Tung University,
Hsinchu, Taiwan, in 1996, 1998, and 2002, respec-
tively, all in computer science.

He was an Assistant Project Leader with the CAD
Team, Realtek Corporation, Hsinchu, from 2002 to
2007. He is currently an Assistant Professor with
the Department of Electrical Engineering, National
Cheng Kung University, Tainan, Taiwan. His current
research interests include floorplan, placement, rout-
ing, and clock tree synthesis.

Chun-Po Huang was born in Tainan, Taiwan, in
1986. He received the B.S. degree in electrical
engineering from National Cheng Kung University,
Tainan, Taiwan, in 2008, where he is currently
pursuing the Ph.D. degree in electronic engineering.

His current research interests include design
automation for high-speed and low-power analog-
to-digital converters.

Cheng-Wu Lin received the M.S. degree in elec-
trical engineering from National Cheng Kung Uni-
versity (NCKU), Tainan, Taiwan, in 2006, where he
is currently pursuing the Ph.D. degree in electronic
engineering.

His current research interests include integrated
circuit design, design automation for analog, and
mixed-signal circuits.

Ying-Zu Lin received the B.S. and M.S. degrees
in electrical engineering and the Ph.D. degree from
National Cheng Kung University, Tainan, Taiwan, in
2003, 2005, and 2010, respectively.

He is currently with Novatek, Hsinchu, Taiwan,
a Senior Engineer, where he is working on high-
speed interfaces and analog circuits for advanced
display systems. His current research interests
include analog/mixed-signal circuits, analog-to-
digital converters, and high-speed interface cir-
cuits.

Dr. Lin was the recipient of the Excellent Award in the master thesis
contest held by the Mixed-Signal and Radio-Frequency Consortium, Taiwan,
in 2005, the Best Paper Award of the VLSI Design/Computer-Aided Design
Symposium, Taiwan, in 2008, and the Taiwan Semiconductor Manufacturing
Company Outstanding Student Research Award. He received third prize in the
Acer Dragon Award for Excellence. He was the recipient of the MediaTek
Fellowship in 2009, the Best Paper Award from the Institute of Electronics,
Information, and Communication Engineers, and the Best Ph.D. Award from
the IEEE Tainan Section in 2010. He was a co-recipient of the Gold Award in
Macronix Golden Silicon Design Contests in 2010. He was a recipient of the
International Solid State Circuits Conference/Design Automation Conference
Student Design Contest in 2011, the Chip Implementation Center Outstanding
Chip Design Award (Best Design), and the International Symposium of
Integrated Circuits Chip Design Competition.

Soon-Jyh Chang (M’03) was born in Tainan,
Taiwan, in 1969. He received the B.S. degree in
electrical engineering from National Central Uni-
versity, Jhongli, Taiwan, in 1991, and the M.S.
and Ph.D. degrees in electronic engineering from
National Chiao Tung University, Hsinchu, Taiwan,
in 1996 and 2002, respectively.

He has been with the Department of Electri-
cal Engineering, National Cheng Kung University,
Tainan, since 2003, where he is currently a Professor
and the Director of the Electrical Laboratories since

2011. He has authored or co-authored over 100 technical papers and 7 patents.
His current research interests include design, testing, and design automation
for analog and mixed-signal circuits.

Dr. Chang has been serving as the Chair of the IEEE Solid-State Circuits
Society Tainan Chapter since 2009. He was the Technical Program Co-
Chair of the IEEE Institute for Sustainable Nanoelectronics in 2010, and
the Committee Member of the IEEE Asian Test Symposium in 2009, Asia
and South Pacific Design Automation Conference in 2010, the VLSI-Design,
Automation, and Test in 2009, 2010, and 2012, and the Asian Solid-State
Circuits Conference in 2009 and 2011. He was a recipient and co-recipient of
many technical awards, including the Greatest Achievement Award from the
National Science Council, Taiwan, in 2007, the Chip Implementation Center
Outstanding Chip Award in 2008, 2011, and 2012, the Best Paper Award
of VLSI Design/Computer-Aided Design Symposium, Taiwan, in 2009 and
2010, the Best Paper Award of the Institute of Electronics, Information and
Communication Engineers in 2010, the Gold Prize of the Macronix Golden
Silicon Award in 2010, the Best GOLD Member Award from the IEEE Tainan
Section in 2010, the International Solid State Circuits Conference/Design
Automation Conference Student Design Contest in 2011, and the International
Symposium on Integrated Circuits Chip Design Competition in 2011.


