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ABSTRACT

EFFECTIVE AND EFFICIENT COMMUNICATION AND COLLABORATION IN

PARTICIPATORY ENVIRONMENTS

SHIRAZ QAYYUM, Ph.D.

Rochester Institute of Technology, 2015

Supervising Professor: Dr. Mohan Kumar

Participatory environments pose significant challenges to deploying real applica-

tions. This dissertation investigates exploitation of opportunistic contacts to enable ef-

fective and efficient data transfers in challenged participatory environments.

There are three main contributions in this dissertation:

1. A novel scheme for predicting contact volume during an opportunistic contacts (PCV);

2. A method for computing paths with combined optimal stability and capacity (COSC)

in opportunistic networks; and

3. An algorithm for mobility and orientation estimation in mobile environments (MOEME).

The proposed novel scheme called PCV predicts contact volume in soft real-time.

The scheme employs initial position and velocity vectors of nodes along with the data

rate profile of the environment. PCV enables efficient and reliable data transfers between

opportunistically meeting nodes.

The scheme that exploits capacity and path stability of opportunistic networks is

based on PCV for estimating individual link costs on a path. The total path cost is merged

with a stability cost to strike a tradeoff for maximizing data transfers in the entire partic-
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ipatory environment. A polynomial time dynamic programming algorithm is proposed to

compute paths of optimum cost.

We propose another novel scheme for Real-time Mobility and Orientation Estimation

for Mobile Environments (MOEME), as prediction of user movement paves way for effi-

cient data transfers, resource allocation and event scheduling in participatory environments.

MOEME employs the concept of temporal distances and uses logistic regression to make

real time estimations about user movement. MOEME relies only on opportunistic message

exchange and is fully distributed, scalable, and requires neither a central infrastructure nor

Global Positioning System.

Indeed, accurate prediction of contact volume, path capacity and stability and user

movement can improve performance of deployments. However, existing schemes for such

estimations make use of preconceived patterns or contact time distributions that may not

be applicable in uncertain environments. Such patterns may not exist, or are difficult to

recognize in soft-real time, in open environments such as parks, malls, or streets.
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CHAPTER 1

Introduction

This dissertation investigates exploitation of opportunistic contacts to enable effec-

tive and efficient data transfers in challenged participatory environments. In this chapter,

we provide an overview of our research on effective and efficient communication and col-

laboration in participatory environments. We also introduce participatory environments and

provide motivation for the research presented in the rest of the dissertation. Furthermore,

we discuss key research problems and their proposed solutions. The chapter is concluded

with an outline of rest of the dissertation.

1.1 Participatory environments

Participatory environments are formed when a set of users carrying smart devices

come in the vicinity (radio communication range) of each other to execute a common col-

lective task. Such a collection of users may result in the formation of an opportunistic

network. There is no end to end connected path between source and destination nodes

in opportunistic networks. In order to transfer data or messages between interested users,

intermediate nodes may act as ferries by physically carrying information along with them.

Participatory environments and dynamic networks are of considerable interest as they

hold promise in offloading traffic from licensed spectrum to unlicensed spectrum, such as

Wi-Fi or Bluetooth. However, in order to deploy real-world applications in participatory

environment there is a need to study a number of characteristic problems that arise due to

their dynamic nature.

1



1.2 Research problems

In this section, we discuss the research problems that arise in achieving effective

communication and collaboration between participating devices in a dynamic participatory

environment. As the participants are mobile, often there are no patterns in user movement

that can be exploited to achieve reliable and efficient data transfers. Data corruption and un-

der utilization of the network are common problems that arise while deploying applications

in participatory environments.

1.2.1 Contact volume

In recent years, the number of smartphone users has exceeded one billion, thus cre-

ating the opportunity for developing and deploying useful applications in opportunistic

networks. As an example, consider a group of smartphone users running a bandwidth shar-

ing application to download and possibly stream a video. In such an application, a group

of nearby users simultaneously download different chunks of a video with the help of a

low speed cellular network connection and share it among themselves over a high speed

wireless LAN (possibly at no cost) [1]. The advantages of bandwidth sharing include, but

are not limited to increased download speeds, better video quality, reliability and reduced

delays.

Research problem: In the existing bandwidth sharing schemes [2] [3] [4] [5], it is

assumed that the group of users wanting to watch the same video are within proximity of

each other and are not mobile. However, situations where a group of mobile users may

not be within their radio communication range, but can be connected in an opportunistic

network are quite common in such public places as streets, train stations and state fairs.

Therefore, it is of paramount importance to have an accurate prediction of contact volume

i.e., the maximum amount of data that can be transferred between opportunistically meeting

2



nodes. The prediction of contact volume helps applications to determine what files or data

can be reliably transferred to other nodes in the environment.

1.2.2 Capacity and stability of paths

Wireless devices that make up such a network are mobile and resource constrained.

Furthermore, the network needs to be self configurable and be able to route data between

interested users. In order to tap into the full potential of dynamic networks, researchers have

aggressively modeled their structure and properties [6] [7] [8]. Data centric approaches [9]

[10], along with temporal reachability [11], for data transfers have also been proposed in

the literature.

Research problem: To the best of our knowledge, there is no existing literature on

modeling of real-world link capacities along a path in opportunistic networks. In some

works link costs are incorrectly assumed to be uniform throughout the network, while in

some others, bandwidth limitations are not considered [12]. The individual radios and in-

terfaces may also be different in a set of heterogeneous devices, thus giving rise to greater

complexity. Therefore, there is a need to model the real-world path capacities in a partici-

patory environment in order to choose the best path for transferring data between interested

nodes. Despite the dynamic nature of such environments, it is important to maintain stable

paths in order to minimize overheads due to routing table updates. Moreover, frequent path

changes lead to poor data quality and disrupt user experience.

1.2.3 Mobility

As participatory environments rely primarily on user mobility as a mechanism for

transporting content and data in general, identifying and modeling user mobility provides

researchers and network designers with key insights for improving performance, efficiency

and productivity. For example, epidemic routing [13] guarantees shortest latencies in mes-
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sage delivery, however, knowledge of user mobility and diffusion has been exploited by

various schemes to considerably cut down energy expended in already resource constrained

devices with a small tradeoff on delivery times [14] [15] [16].

Research problem: Though there are several existing works in the literature that aim

at modeling human mobility, Self Similar Action Walk (SLAW) and Community-based

Mobility Model (HCMM) are the two popular synthetic state of the art mobility models

[17] [18]. However, participatory environments are dynamic and there may not be existing

patterns, hence there is a need to predict human mobility in real-time to mitigate the effects

of randomness in user movement.

1.3 Contributions

To address the aforementioned research challenges we make the following novel

contributions towards effective collaboration in participatory environments a reality.

1.3.1 Predicting contact volume between opportunistically meeting nodes

We propose a novel scheme called PCV that effectively predicts the contact volume

and enables usability of an opportunistic contact. PCV makes use of the pre-calculated

data rate profile expressed as a function of distance, as well as the instantaneous velocity

vectors of the mobile nodes. This work makes the following major contributions:

1. Analytical model for estimating contact duration and a scheme for Predicting Con-

tact Volume (PCV) in opportunistic contacts to enhance file transfer capability. The

scheme has been shown to work in the absence of user mobility patterns and contact

duration distributions.

2. A novel custom Android Application called DatPro: Data Rate Profiling Agent, to

learn Bluetooth data rate profiles for outdoor environments. Source code available

[19].
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3. PCV algorithm predicts the contact volume for pairs of nodes. The algorithm is sim-

ple, scalable and runs in linear time in terms of the number of opportunistic contacts

a node makes.

1.3.2 COSC: Paths with Combined Optimal Stability and Capacity in Opportunistic Net-

works

In the aforementioned work, we modeled link costs based on the actual amount of

data that can flow between two opportunistically meeting nodes [20]. We define contact

volume as the maximum amount of data that can be transferred between two opportunis-

tically meeting nodes. Our studies show that contact volume is dependent on - initial ve-

locities of nodes, distance between nodes, environmental characteristics such as data rate

profile and radio characteristics. We model real-world link costs for multi hop paths be-

tween source and destination nodes. Main contributions include:

1. Modeling of real world path capacities in opportunistic networks;

2. A scheme to incorporate cost and stability of a path for selecting data transfer paths

that guarantee a minimum number of packet transfers;

3. A polynomial time algorithm to calculate desired paths of minimum cost; and

4. Implementation on a test bed of Google Nexus 5, Android 4.4.3 (KitKat) devices to

validate theoretical findings.

In order to evaluate our scheme, we run rigorous simulations on both real-world

and synthetic mobility traces and discover possible data transfers of up to 120 MB at a

communication range of 150 m between the mobile devices. COSC demonstrates 60%

reduction in file transfer failures when compared to common methodologies.
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1.3.3 Real-time mobility estimation in participatory environments

We present a novel scheme called MOEME: Real-time Mobility and Orientation

Estimation of Mobile Environments MOEME. MOEME empowers both users and system

architects with the knowledge of user mobility. MOEME estimates relative directional

mobilities of all the users in a participatory environment, in addition to counting the number

of users present within a desired spatiotemporal radius. We demonstrate how MOEME

can be used in a variety of scheduling and resource allocation applications. The accuracy

of predicting contact volume can be improved directly with the knowledge of directional

mobility of users. Furthermore, it helps in predicting the total volume of information that

can be pushed from one end of the network to the other or from a particular source node to

a desired destination node.

Major contributions of MOEME include:

1. Estimation of relative directional mobilities of all users in real-time without requiring

their movement histories; and

2. Estimation of the number of users, that are likely to be within a spatiotemporal region

of interest.

To the best of our knowledge MOEME is the first scheme to make the above mentioned

contributions for estimations of user mobilities in mobile environments.

MOEME estimates distance of users and number of users within a distance of 300m with

an accuracy of 89%. The estimates of direction of users are 77% accurate for nodes within

200m.

The novelty of MOEME lies in its ability to estimate user mobilities with no a priori

knowledge of movement histories. MOEME can be employed in indoor as well as outdoor

environments. MOEME is fully distributed, lightweight and has a time complexity ofO(n)

at each node, where n is the number of nodes present in the mobile environment.
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1.4 Outline

The rest of the dissertation is organized as follows: We give an overview of the

related work and state of the art in Chapter 2. In Chapter 3 we give the details of pre-

dicting contact volume between two opportunistically meeting nodes. Chapter 4 extends

that idea and models real-world capacities of multi-hop paths and simultaneously considers

path stability for efficient collaboration among nodes. Next, chapter 5 gives the details of

estimating user mobility in soft real-time. Finally, we conclude in Chapter 6.
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CHAPTER 2

Related Literature

In this chapter we present survey of literature related to this dissertation. The survey

is organized under the three categories: (1) Contact volume, (2) Data flow in opportunistic

networks, and (3) Mobility estimation.

2.1 Contact volume

2.1.1 Finding patterns

There exist several algorithms for predicting future contact times among nodes. The

main purpose of these predictions is to enhance message delivery to destinations with

smaller bandwidth consumption. Long Vu et al. [21] constructed a model called Jyotish

which provides prediction of location, stay duration, and contact of a person altogether with

a considerably high accuracy. Marchini et al. [22] developed a mechanism for successfully

detecting cyclic movements and predicting the next appearance of the mobile node. As pro-

posed by Yuan at el. [23], nodes themselves determine the probability distribution of future

contact times and choose a proper next-hop in order to improve the end-to-end delivery

probability.

2.1.2 Throwboxes and RSSI based techniques

Regarding the measurement of contact volumes, Chowdhury et al. [24] proposed a

framework based on IEEE 802.11n wireless to give an analytical model on contact volumes.

Neto et al. [25] used the findings from [24] and predicts the contact volume as a function

of received signal strength indicator (RSSI). Banerjee et al. [26] came up with the idea of
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using energy efficient throwboxes. These throwboxes are battery-powered stationary nodes

with radios and storage, in an opportunistic network setting. These nodes can predict the

opportunistic contact volume by using a long range radio equipped with a GPS to detect

mobile nodes and to measure their speed and direction.

However, none of the above mechanisms exploit mobility vectors coupled with data

profiles at variant distance to optimize contact volumes. Cyclic pattern detection is not

feasible for environments with high dynamics. Coming up with a probability distribution

function as a predictor of future contact demand sufficient historical information, which

is unavailable in many scenarios. . Although being inexpensive, throwboxes can not be

deployed everywhere to cover areas where opportunistic networks are formed once in a

while. Finally, the idea of calculating of contact volume as a function of RSSI has been

proven to be inadequate [27].

2.1.3 Contact volume application

Color Barcode Streaming for Smartphone Systems (COBRA) is an interesting piece

of work that utilizes Visual Light Communication (VLC) to transfer information between

off the shelf smartphones, using a display screen and on board camera [28]. The foremost

contribution is the design of a new color barcode. The researchers have primarily used three

more colors i.e., red, green, blue, in addition to the standard black and white, to encode

information in a bar code. Special corner blocks and timing references are introduced

along with the main code blocks for accelerated extraction and processing at the receiver

side.

1. Corner blocks: The unique feature of the corner blocks is that the color scheme

allows the system to identify the orientation of the bar code in addition to the usual

corner tracking.
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2. Timing reference blocks: Allows direct access to color code sections for faster

decoding.

2.1.3.1 Adaptive code generation

Authors consider the fact that, though theoretically smaller code blocks allow to pack

in more information, doing so may lead to higher blur, which in turn decreases the system

throughput. Therefore, COBRA adaptively adjusts the size of the code block. The idea is

that whenever the acceleration experienced by the device is higher, bigger code blocks are

used and vice versa.

2.1.3.2 Color ordering and blur assessment

The authors have designed clever techniques to optimize the order of the colors to

minimize the blurring effect. Intuitively, most blur occurs at the boundary of different

colors, however, placing similar colors adjacent to each other can reduce the blur consid-

erably. Moreover, the concept of blur assessment is employed, wherein each image (the

system sends multiple images of the same code) is labeled with a Degree of Blur (DOB)

value. The image with the lowest DOB is used for further processing. Apart from this, the

authors use HSV values to match the detected color against the most plausible color. This

enhances the image, making it more crisp for code extraction.

2.1.3.3 Implementation of COBRA on smartphones

The authors have developed a real-world implementation of COBRA on smartphones

and tested its performance against prior work, such as PixNet [29].
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2.2 Data flow

One of the earliest works on data transfers in opportunistic networks falls under

the category of routing. There are schemes such as single copy [30] and multiple copy

[31] that try to improve message delivery ratio while making a trade-off between end-to-

end delays. Sadiq et al., presented a method that utilizes nodes’ diffusion and proximity

to improve both delivery ratio and delays [14]. The fastest method to perform routing

in intermittently connected mobile networks is epidemic routing, which entails flooding

the message throughout the network [13]. However, this has obvious drawbacks, such as

overflowing buffers and significant battery consumption on resource constrained mobile

devices. Though routing in essence is related to our work, it generally deals with messages

that are short and do not require considerable contact volume.

2.2.1 Data dissemination

Data dissemination has been studied for conventional Mobile Ad Hoc Networks

(MANETs) [32] [33]. In general, these systems assume that network paths are rather stable

and in some cases generate significant amount of traffic just to maintain knowledge of other

nodes’ caches. Therefore, they are not suitable for user-based opportunistic networks.

2.2.2 Informed mobile prefetching

Prefetching is a technique where data or instructions are loaded in anticipation of

their need in the future [34]. In mobile systems, this hides latency over poor and inter-

mittent wireless connection, but at the same time energy and cellular data usage costs can

grow considerably. In this paper the authors propose a scheme called Informed Mobile

Prefetching (IMP), that boosts performance of higher level application layer by prefetch-

ing data items specifically labeled by an application. The key idea IMP hinges on is an

adaptive tradeoff between budgeted resources, such as, battery life and data usage. IMP
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runs a control loop to check the state of budgeted resources and accordingly adjusts the

conversion rate to reduce latency. IMP tries to utilize resources as best as possible, without

exceeding the upper bound. The argument is that most schemes will try to minimize the

use of budgeted resources, overlooking the fact that data plans do not roll over to the next

month. A similar argument applies to battery life, i.e., when a user knows she will recharge

the battery by the end of the day, prefetching should be carried out rather aggressively to

reduce latency and improve user experience as best as possible.

2.2.2.1 Decision algorithm

There are three parts to the decision algorithm used:

1. Performance: The performance benefit of prefetching is calculated as the product of

time (Tfetch) to fetch an item in the future and the application/class specific accuracy.

Tfetch is estimated by taking into consideration, the type of network that might be

available in future (WiFi or Cellular), its latency and the size of the data item to

fetch. Similarly, the application accuracy is estimated using ratio of number of items

correctly prefetched to the total number of items prefetched in the past.

2. Energy consumption: The total energy benefit of a prefetch is given by Eprefetch −

Efetch × Accuracy. Where Eprefetch = Tprefetch × (PWiFi or P3G). Depending on

which network is available and/or cheaper to use currently.

3. Data usage: Modeling the data usage cost is easier and intuitive. It is given by

Dprefetch − Dfetch × Accuracy. Where Dfetch = S × (1 − AvailabilityWiFi).

AvailabilityWiFi is a boolean value, indicating whether the WiFi network is avail-

able or not in the future. Similarly, the value of Dprefetch depends on whether the

WiIFi network is available at the time of prefetch or not.

IMP calculates the net benefit of prefetching by using the above mentioned three

quantities. The quantity
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Tfetch × Accuracy − (cenergy × (Eprefetch − Accuracy × Efetch) +

cdata× (Dprefetch − Accuracy ×Dfetch))

is calculated. If it is positive for a given network, IMP will prefetch it.

2.2.2.2 Implementation

Apart from the decision algorithm for informed mobile prefetching, the authors of

the paper have shown a real world implementation of their scheme. They have modified

two mobile applications i.e., News reader and K9 email application. They have tested the

performance of IMP against other schemes. As mentioned in the paper these schemes

are: ”never prefetch anything, prefetch items with size less than an application-specific

threshold, prefetch over WiFi when it is available but never over the cellular network, and

always prefetch everything.”

2.2.3 Data centric approaches

There are other methods in the literature that take the data centric approach to in-

formation dissemination in opportunistic networks. Conti et al., define how a semantic

representation of information can be used to determine relevance of information to be ex-

changed in opportunistic networks [9]. Pietilanen et al., approach the problem of data

dissemination from a social networking point of view [10].

2.2.4 Time varying graphs

A closely related work to ours is by Bui Xuan et al., who have proposed algorithms

for calculating shortest (in number of hops), fastest and foremost (i.e., earliest arrival) paths

in TVGs [35]. All these algorithms are designed to compute the shortest paths to all desti-
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nations from a source and a fixed starting time. However, they do not take into account the

costs associated with the links, instead, their work focuses on number of hops in calculating

the shortest distance. Casteigts et al., study deterministic computations to broadcast data

where edges in a TVG do disappear, but appear infinitely often [36]. However, they also

only take into account the hop counts.

2.3 Mobility estimation

2.3.1 Routing

In dynamic and pervasive networks, a significant amount of research has focused on

efficient routing schemes [37] [38] [39] [40] [41] and content dissemination frameworks

[42] [43] that exploit repetitive patterns in human movement. Recently, there has been

some focus on content and service distributions in open environments, such as parks, malls

etc. where history from past visits is not available [14] [44] or repetitive patterns do not

exist at the time scale of few minutes (0 to 15 minutes).

2.3.2 Multi Dimensional Scaling

Multi Dimensional Scaling (MDS) is a powerful centralized technique for node local-

ization [45]. As the scheme is centralized it is quite accurate and performs well. However,

as the message over head is high (relaying a lot of messages to a central authority), the

required memory, power and computational complexity is high

2.3.3 Two phased localization based on Simulated Annealing

This is a two phased technique, where in the first phase, simulated annealing is used

to get the distance estimate of the localizable nodes. In the second phase, the error caused

by flip ambiguity is removed. This is a centralized approach, which means the communi-

cation overhead and computation costs are high, but the accuracy of localization is good.
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The technique is most suitable in an environment where the nodes are well connected and

resilient to failures. Moreover, it is important that the central agent, handling all computa-

tions, is powerful and robust.

2.3.4 RSSI based centralized localization

This is a three step process, where in the first step a general map of the network is

formed. In the next step, anchor nodes are used to get a view of distance ranges between the

nodes. Finally, an optimization problem is solved to get an accurate position of the nodes.

The method is both power hungry and complex because of the optimization involved. In

terms of implementation, the memory and networking costs are high as well.

2.3.5 Coordinate System Stitching

There are two main methods that fall under this category of localization.

1. Construction of Global Coordinate System in a network of Static Computa-

tional Nodes from Inter Node Distance: In this approach a spatial map and the

distance matrix are computed for the whole wireless network. Once this step is

completed, discrepancies in the aforementioned data are minimized using Euclidean

translations, rotations and reflections. The scheme has good accuracy without the

need of explicit anchor or seed nodes. However, there is high communication cost

associated with this method. The primary reason being the transfer of coordinate

system information from the source to every other node in the network. For similar

reasons, the addition of each node to the network adds complexity to the scheme

making it less scalable.

2. Cluster based approach: This technique has good accuracy and low communication

overhead. The main advantage of the scheme is deployment for an application where

the nodes are inserted dynamically. However, if the graph is poorly connected, which
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can be a result of a difficult terrain or inaccurate sensors (with high noise variance),

then the cluster based approach may not be able to localize a considerable number of

nodes.

2.3.6 Interferometric Ranging Based Localization

This is a localization approach that requires no other sensors, other than the ones used

for wireless radio communication [46]. However, the problem of localization itself is NP-

complete. As pointed out in the paper, there are genetic algorithms and other RSSI based

techniques that optimize the solution by reducing the search space. Though the accuracy

of these methods is high, but at the same time the messaging overhead is quite large. The

overall advantage of Interferometric Ranging Based Localization is that the measurements

can be very precise, however, the scheme requires large sets of measurements, which makes

it less suitable for smaller WSNs.

2.3.7 Beacon based distributed localization

Beacon based distributed localization techniques can be broadly categorized into

three methods [45].

1. Diffusion based: For the diffusion based method the position of the node is esti-

mated by calculating the centroid of the neighboring already localized nodes. As

the scheme requires a large number of nodes, the overall power consumption can

get considerably large, increasing the computation and memory requirements on the

whole. However, the scheme is robust to failures, as there are many nodes and if

some of them fail, (though not the critical ones) localization with good accuracy can

still be achieved. The strong points of this technique are simple and easy implemen-

tation. As mentioned before, the scheme will work best in an environment, where

deployment of a large number of nodes can be achieved easily.

16



2. Bounding box: As the name suggests, these techniques form a bounding box around

and node and subsequently, redefine its position based on this view. The main ad-

vantage of this technique is good accuracy which is achieved by using beacons or

anchor nodes that are located on multi hop paths. The two of the algorithms dis-

cussed in the paper have a provision of making a tradeoff between communication

and computation costs.

3. Gradient based: In the gradient based approach the nodes keep counters to deter-

mine the hop count from the ‘seed’ nodes. Seeds are similar to anchor nodes, which

are aware of their global coordinates. The advantage of gradient based approach is

that it is scalable in terms of addition of both seeds and regular nodes. Moreover,

it is resilient to node failures. However, the accuracy of the system depends on the

node density in the environment, where more number of nodes translate into higher

localization accuracy. Finally this scheme is easy to deploy but works best in terrains

where there are no obstacles blocking the communication. Such obstacles will lead

to incorrect hop counts.

2.3.8 Plausible mobility

There is only one work [47] that aims to create plausible mobility merely through

user contacts but requires a centralized server to keep track of all contacts in real time.

In contrast, we present the first work that estimates: 1) relative directional mobilities of

all users in real-time without requiring their movement histories; and 2) the number of

users, that are likely to be within a spatiotemporal region of interest, through opportunistic

contacts in a completely decentralized manner.
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CHAPTER 3

PCV: Predicting Contact Volume for Reliable and Efficient Data Transfers in

Opportunistic Contacts

3.1 Introduction

There are various challenges posed by participatory environments for delivering con-

tent and transferring data between participating nodes. In this chapter we identify and deal

with one such challenge. We have focused our attention on two mobile participating nodes,

and leverage their physical properties to reliably and efficiently transfer data between them.

The work presented in this chapter lays the groundwork for extending the scheme to mul-

tiple nodes in the environment.

Employing PCV1, it is possible to exploit contact durations among pairs of interme-

diate nodes to deliver video chunks to a group of mobile users reliably. When the contact

duration is short, it is worthwhile to transfer at least part of the information, as compared

to the full video chunk a node may have. The latter has a higher chance of failure than the

former in opportunistic networks. In such a case, an accurate prediction of contact volume,

defined as the maximum possible amount of data transferable during a contact, can help

in making better choices (in terms of cost, delay, and/or fidelity) at the application level.

Knowledge of contact volume at the start of an opportunistic contact would facilitate effi-

cient management of resources in challenging network environments to meet the needs of

a variety of application and user requirements. It should be noted that the user mobility

patterns are haphazard in dynamic and unpredictable public environments. Existing works

1The work presented in the chapter was completed during 2012-13, when the PhD candidate and the

advisor were affiliated to the University of Texas at Arlington.
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utilizing cyclic mobility patterns or forecast peer interactions [48] [22] for effective infor-

mation dissemination in opportunistic networks, are likely to perform poorly in such an

environment. Furthermore, the use of contact duration distribution [49] for the prediction

of contact volume does not hold promise for similar reasons.

In this chapter, we propose a novel scheme PCV that is used to predict the contact

volume between two opportunistically meeting nodes based on their initial position and

velocity vectors at the time of contact. The energy consumption is reduced by PCV by

switching on Global Position System on a device only at the time of contact. PCV is the

first scheme that also supports bandwidth sharing among mobile users who may or may not

be within each other’s communication range.

PCV is primarily developed to assist applications in opportunistic networks, by mak-

ing data transfers reliable and efficient. Conceptually, PCV serves as a middleware inter-

face between the application and the opportunistic network layers. PCV estimates contact

volume for any pair of nodes meeting opportunistically in soft real-time and subsequently

sends this information to the application layer above. Our major contributions are summa-

rized below.

• System Model: Analytical model to compute instantaneous distance and contact

duration between nodes. These values are used in the PCV algorithm to compute

contact duration and instantaneous distance between the nodes in an opportunistic

network.

• Data Rate Profile: A custom Android Application to acquire data rate profiles of

contacts between nodes in an opportunistic network to facilitate the prediction pro-

cess. Data rate profile incorporates wireless characteristics for different environ-

ments. In order to validate PCV, we have collected data rate profiles for a real world

scenario, wherein the users carried Android smartphones.
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Figure 3.1: Series of transformations applied for calculating contact duration of two nodes

• PCV Algorithm: PCV algorithm predicts the contact volume for pairs of nodes.

The algorithm is simple, scalable and runs in linear time in terms of the number of

opportunistic contacts a node makes.

The primary focus of PCV is to make file transfers reliable and efficient to improve the

usable bandwidth of the underlying opportunistic network. However, we do realize the
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privacy and security issues that may arise out of sharing data among untrusted nodes. To

address this, PCV is designed to have a compartmentalized structure in order to accommo-

date anonymity and encryption techniques. Moreover, PCV can also use any state of the

art routing and forwarding schemes for opportunistic networks [14].

3.2 System Model

In this section, we develop a model for opportunistic contacts between two nodes in

an opportunistic environment. Expressions for contact duration and instantaneous distances

between nodes are derived using nodes’ positions and velocities at the time of contact.

Both contact duration and instantaneous distances of the nodes capture the dynamics of an

opportunistic contact, and are critical for the estimation of contact volume.

3.2.1 Contact Duration

Let N = {n1, n2, n3, ..., nl} be the set of l nodes, where all nodes have a homoge-

nous radio communication range d0. Whenever two nodes ni, nj ∈ N, where 1 ≤ i, j ≤ l,

come within each others’ radio communication range, they are said to be in ‘contact’. Let

tij = tji be the duration of this contact. For the sake of simplicity we assume the nodes

to move in a two dimensional space. However, the analysis can easily be scaled to three

dimensional space. Instantaneous position and velocity vectors are used to predict the con-

tact duration. Let

~pi =







pix

piy






, ~pj =







pjx

pjy






~vi =







vix

viy






, ~vj =







vjx

vjy







be the instantaneous position and velocity vectors of the nodes ni and nj , at the start of the

contact.
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3.2.1.1 Inertial Frame of Reference and Euclidean Translation

In node ni’s inertial frame of reference, applying Euclidean Translation to position

ni at the origin, the transformed position and velocity vectors of ni and nj are,

~p′i =







0

0






, ~p′j =







pjx − pix

pjy − piy







~v′i =







0

0






, ~v′j =







vjx − vix

vjy − viy







respectively. Fig. 3.1 illustrates the effect of these transformations in succession. The

duration tij is the time for which nj stays within distance d0 of node ni, which is essentially

the time it takes for a node to traverse a chord in a circle of radius d0, as depicted in Fig.3.1c.

The chord through the circle, defined by x2 + y2 = d0 is traced by a line y = mx + σ,

where

m =
vjy − viy
vjx − vix

σ = (pjx − pix)− (
vjy − viy
vjx − vix

× pjx − pix)

Solving the equation of the line and circle simultaneously leads to a quadratic equation in

x, as follows:

(m+ 1)x2 + 2mcx+ σ2 − d0
2 = 0 (3.1)

Let the solutions of the quadratic Equation (3.1) be

~α =







αx

αy






and ~β =







βx

βy







The effective displacement of chord that node nj traverses while staying in contact

with ni is expressed as

~λ = ~β − ~α (3.2)
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Therefore, the final contact duration of the nodes is given by

tij =
λx
v′jx

=
λy
v′jy

(3.3)
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Figure 3.2: Effect of rotational transformation by angle θ

3.2.2 Instantaneous Distance

In order to make an estimate of the contact volume, the instantaneous distance be-

tween nodes ni and nj is calculated as a function of time. This will be used in Section 3.3 to

express the data rate profile as a function of time. In wireless communications, the received

signal power Prec at the receiver varies inversely with the distance d from the sender. The

relationship is concretely represented as Prec ∝ 1/dψ, where the exponent ψ depends on

the environment in which the nodes operate. It is also known that the transmission data

rate depends on Prec, making the data rate a function of instantaneous distance [50]. In a

dynamic environment the nodes are usually mobile during an opportunistic contact. As-

suming a constant data rate between these mobile nodes for the entire duration of contact

is very likely to lead to incorrect estimations of contact volume. Therefore, our proposed
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model accounts for the changing distance and hence, variable data rate during the contact

period.

3.2.2.1 Distance as a function of time

In Section 3.2.1 we see that the essential dynamics of the model are characterized

by ~v′i,
~v′j , ~α and ~β. In order to exploit the inherent symmetry in the problem, a rotational

transformation is applied as follows:

M′ =







v′′ix v′′jx γx δx

v′′iy v′′jy γy δy







=







cosθ sinθ

−sinθ cosθ













v′ix v′jx αx βx

v′iy v′jy αy βy







= RM

where, θ = arctan(
v′jy
v′
jx

). This rotational transformation moves every vector in M by the

angle θ clockwise about the origin to give their rotated counterparts in M′. Fig. 3.2 shows

the result of this rotational transformation. Note that after rotation, the trajectory of nj is

parallel to the horizontal axis, therefore:

γy = δy; v′′jy = 0; ~v′′i =
~v′i = 0. (3.4)

Using (3.4), we can trace the trajectory of node nj after it comes within the communication

range of ni. Thus, for any time t where, 0 ≤ t ≤ t0 (contact duration), the motion of nj in

two dimensional space is given by

x = γx + (v′′jx × t) (3.5)

y = γy (3.6)
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Figure 3.3: DatPro results

From Equations (3.5) and (3.6), the instantaneous distance between ni and nj is given by,

d =
√

(γx + (v′′jx × t))
2 + γ2y (3.7)

3.3 Data Rate Profile

The data rate between wirelessly communicating nodes depends on the distance be-

tween the nodes and the environment in which they operate. Specifically, the environment

characterizes the amount of interference faced by the communicating nodes. For exam-

ple, environments cluttered with buildings, trees or terrain irregularities will give rise to a

higher value of the exponent ψ, i.e., the received power at the receiver drops steeply with

the distance from the sender, thereby lowering the data rate at a given distance d ≤ d0. It is

usual practice to determine the value of ψ empirically for a given environment. Empirical

models have the benefit of limited reliance on detailed knowledge of the terrain and speed

of execution [51]. We have developed an Android Application that learns the data rate pro-

25



file for a given environment. Subsequently, in order to interpolate the discrete set of data

rates obtained from the application, cubic splines [52] are used.

3.3.1 Custom Android Application for Learning Data Rates

We developed a custom Android Application called DatPro in order to obtain data

rate profiles as a function of distance. DatPro is primarily designed to obtain Bluetooth

data rates in a real-world scenario. However, it can be enhanced to work with 802.11n and

WiFi Direct [53]. DatPro serves as a proof of concept and aids the application designers

to better understand the data rate constraints prevalent in a specific opportunistic network

environment.

In this chapter, the DatPro is used to collect data rate profile in the outdoor environ-

ment of our university campus. The experiments were carried out in the walk-ways beside

a multi-storied building and in a parking lot, of the university. Table 3.1 shows the different

wireless devices used for collecting data rate profiles. As all the devices had similar trends

in data profiling, we use results obtained only from Google Nexus One in the following

sections. This particular device ran Android version 2.3.6 operating system and Bluetooth

version 2.1 EDR (Enhanced Data Rate). Fig. 3.3a shows the effect of distance on the file

transmission period. It is evident that with increasing distance, a file requires more time for

transmission, implying the drop in data transmission rate with distance.

Table 3.1: Wireless devices used to gather data rate profiles

Device Name Platform

Google Nexus Android 2.3.6

Motorola Milestone Android 2.1

Acer Iconia A500 Android 4.0

Nook Color Android 2.3.7
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3.3.2 Cubic Splines for Estimating Data Rates

Once the data rates are measured at different distances of separation between the

wirelessly communicating devices, a curve is fitted through these discrete set of points to

compute the data rate function denoted by R(d). Cubic splines are used for curve fitting,

as they have the advantage of giving good estimates without the danger of over fitting.

Moreover, as the first and second derivatives are continuous on the break points, the curve

is nicely smooth [52]. Fitting the data rate points with cubic splines defines the data rate

profile as,

R(d) =



































































R1(d) d1 ≤ d ≤ d2

R2(d) d2 ≤ d ≤ d3

.

.

.

Rk(d) dk ≤ d ≤ dk + 1

where the kth cubic polynomial is represented as

Rk(d) = ak(d− dk)
3 + bk(d− dk)

2

+ ck(d− dk) + dk

and d1, d2, ..., dk are the distance values at the break points. Using cubic spline on the

set of data presented in Fig. 3.3a, we plot the changing data rate against distance in Fig.

3.3b. This data rate profile is used to measure the final contact volume possible when node

ni meets nj . It is also noted that the actual data rates obtained in this environment are

considerably lower (R ≤ 220KBps) than the ones mentioned in the official Bluetooth 2.1

EDR (Enhanced Data Rate) specifications.
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Algorithm 1 Contact volume estimation by PCV

Require: R(d),~vi, ~vj , ~pi and ~pj

for all Opportunistic contacts do

Transform velocity and position vectors to ~v′i, ~v
′
j , ~p

′
i and ~p′j

tij ←Evaluate eq. (3.1), (3.2) and (3.3)

d← eq. (3.7)

Substitute d in R(d) to get R(t)

V ′
c ← Evaluate eq. (4.1)

return V ′
c

end for

3.4 Contact Volume

In Sections 3.2 and 3.3 we have derived the important parameters that PCV uses

to estimate the contact volume, defined as, the maximum amount of transferrable data

during an opportunistic contact. This section glues together contact duration, instantaneous

distances and data rate profile in an algorithm that forms the backbone of PCV.

Let dVc be the small amount of data that can be transferred during a contact. Then

the instantaneous data rate is represented as, dVc
dt

= R(t) where dt is an infinitesimal time

unit. To derive an upper bound on the total amount of data that can be transferred, i.e., the

contact volume V ′
c , the above expression is integrated over the contact duration t0.

V ′
c =

∫ t0

0

R(t) dt. (3.8)

PCV estimates the contact volume at the start of an opportunistic contact as detailed in

Algorithm 1.
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Figure 3.4: Prediction strength for different ranges of actual contact volume

3.5 Performance Evaluation

In this section, we present results of exhaustive simulation experiments pertaining to

both real world mobility traces [54, 55] as well as synthetic mobility traces [17, 56]. Data

profiles from DatPro are used to predict the contact volume.

29



3.5.1 Simulation Setup

The real world traces used for simulation were acquired from two groups of volun-

teers who visited the NC State Fair [54] and Disney Land in Orlando, [55] respectively,

where each of the volunteer’s positions were recorded at 30 seconds intervals. There are 19

and 41 log files for the State Fair and Disney Land traces respectively. We consider each

file as a mobility trace of one independent smartphone bearer agent or node. The State

Fair and Disney Land traces span over a period of less than 3 hours and less than 12 hours,

respectively.

Additionally, we use two synthetic traces based on the Truncated Levy Walk (TLW)

[56] and Self-Similar Least Action Walk (SLAW) [17], to emulate the statistical features

observed in human mobility.

An opportunistic contact begins when the distance between the nodes is ≤ d0 and

ends when the distance is >d0. The contact volume calculated through PCV is called

predicted contact volume. We also define the state of a node, as its velocity at the beginning

of a contact.

In our simulations, during each opportunistic contact, the objective is to transmit a

file. At the instance when two agents come in contact of each other, the PCV algorithm

makes a prediction of the contact volume. If the file size (SF ) is less than the predicted

contact volume (Vc), then PCV initiates transmission. Otherwise the transmission is de-

layed. If the predicted volume is in the range of 70%-100% of the actual contact volume,

we term the prediction as Stronger Prediction. Otherwise, we call it a Weaker Prediction.

The choice of range for differentiating between stronger and weaker prediction is justified

in Table 3.3, which demonstrates the results obtained from all the test scenarios. The range

is chosen carefully based on the minimization of the false negatives. Through experimenta-

tion, we observed that the percentage of false negatives falls with decrease in PCVR range

as illustrated in Table 3.3. For example, for Disney World the percentage of false negatives

30



Disney World    State Fair TLW SLAW

10

20

30

40

50

60

70

80

90

100

B
a

n
d

w
id

th
 W

a
s
ta

g
e

 (
%

)

 

 

Without PCV With PCV

Figure 3.5: Bandwidth wastage with and without prediction.

drops from 7% at a PCVR range of 50% to 100%, to 5% at a range of 70% to 100%, and

remains at 5% for the range of 80% to 100%. As this trend is consistent across all traces,

we have chosen 70% to 100% as a safe choice for stronger prediction. It should be noted

that a weaker prediction is not synonymous with a wrong prediction, which we elaborate

in section 3.5.2.

Simulation details and Relevant Metrics: We developed a custom simulator in

MATLAB. To retrieve each node’s position every second in real world traces, we use linear

interpolation between two sample points from the trace, which are temporally 30 seconds

apart.

We generate synthetic traces of 50 persons for 6 hours, using TLW [56] by modifying

the implemention suggested in [57]. We set the Levy exponent for flight length distribution

as αl = 1.6 and Levy exponent for pause time distribution as βl = 0.8. The choice of αl

and βl is also inspired from [57], where the authors successfully generated the inter-contact

time distribution of the UCSD trace [58]. The simulation area is chosen as 1 km x 1 km, and

the pause times are kept within the range of 30 seconds to 5 minutes. Position information
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Figure 3.6: Effects of chunk sizes and waiting times on bandwidth recovery for Disney

World trace

is logged after every 10 seconds. We generate the intermediate poisitions between two

sample positions using linear interpolation. In addition, synthetic mobility traces of 50

Table 3.2: Distribution of files transferred

File Type

Percentage

among all files
(mean, standard deviation)

in megabytes

Image 48 (0.5,0.4)

Text 35 (0.75,0.6)

Video 3 (15,12)

Audio 3 (6.3,5.5)

Others 11 (2.3,2)

Table 3.3: Percentage of false negatives at different estimated contact volume ranges [Con-

tact Volume Ratio (Predicted vs Actual) = PCVR]

PCVR Disney World State Fair TLW SLAW

0.5− 1.0 7% 9% 7% 6%

0.6− 1.0 6% 7% 6% 5%

0.7− 1.0 5% 7% 5% 4%

0.8− 1.0 5% 7% 5% 4%
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people for 6 hours, are generated using SLAW [17], also by modifying the implementation

suggested in [59]. Thus 600 waypoints are generated within a square area of side length

of 1500m. The distance parameter αs is set to 3, Levy exponent for pause time βs is set to

1, Hurst parameter for waypoints (H) is set to 0.75. A node’s pause time varies from 10

seconds to 5 minutes. We record each node’s position at 30 second interval and retrieve the

intermediate positions through linear interpolation.
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Figure 3.7: Cumulative distributive function (CDF) of stronger and weaker predictions

against nodes’ initial state
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In order to determine the file sizes, to be transferred in the simulation, we consider

PCV’s prospect in potential human centric applications aimed at online social network

(OSN) and Pocket Switched Network (PSN). This makes the distribution of the downloaded

multimedia contents by smartphones as a feasible candidate for determinining the sizes of

our synthetic files.

To this end, results from [60] and [61] are used for assessing the downloaded contents

both in terms of the number of files and bytes and the average file size. In addition, using

the results from [62], we use log-normal distribution with separate parameters for each type

of files. The combined decisions are elaborated in Table 3.2.

The following performance metrics are considered in the simulation studies:

• Prediction Strength: Reliablity and success potential of the predictions with PCV, for

different ranges of actual contact volume.

• Bandwidth Saving: The range of possible bandwidth savings through the implemen-

tation of PCV.

• File Chunk size and Waiting Time Frame: Impact of variable chunk sizes and variable

waiting time frame, on bandwidth savings, after initial file transmission distruption.

• Initial State: Influence of nodes’ initial state, defined by their velocity, on the predic-

tion accuracy.

• False Negative: Impact of false negative predictions in PCV.

Table 3.4: Percentage of maximum possible data transmission in real experiments (com-

pared to Bluetooth Specification)

Disney World State Fair TLW SLAW

36.4% 41.9% 32.8% 37%
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3.5.2 Simulation Results

The maximum amount of transferable data during a contact volume is computed

using the DatPro results plotted in Fig. 3.3b. Table 3.4 shows the comparison between the

practical higher limit of total data volume calculated through DatPro and theoretical higher

limit mentioned in Bluetooth specifications. However, without a sophisticated prediction

mechanism, even the practical higher limit is difficult to achieve.

Fig. 3.4 shows the percentage of stronger and weaker predictions for different ranges

of actual contact volumes. As evident from the charts, the predictions are stronger for larger

contact volumes. This gives an insight about the PCV’s effectiveness in reducing bandwidth

wastage, as the system suffers most in terms of energy and bandwidth due to its failure

to transmit larger files. Again, recall that a weaker prediction does not imply a wrong

prediction. Both over-prediction and under-prediction may eventually lead to successful

transfer of many files. However, over-prediction runs the risk of initiating the transfer of

a file larger than the actual contact volume, which is destined to fail, thereby resulting

in bandwidth wastage. On the other hand, under-prediction may lead to disallowance of

the initiation of eligible file transfers, resulting in unused resource. In our experiments,

the average percetage of successful transmission in case of weaker predictions are 67.3%,

62.1%, 68% and 73% in terms of data volume for Disney World, State Fair, TLW, and

SLAW respectively.

Fig. 3.5 compares bandwidth wastage in two cases: with PCV and without PCV.

From the graph, it is evident that over 50% of bandwidth is wasted when nodes try to trans-

mit during oppportunistic contacts, without predicting. However, if they make decisions

based on PCV, the wastage is reduced to less than 10%. This is demonstrates a significant

achievement of PCV.

Transmitting data in chunks can further reduce the bandwidth wastage. It can be

coupled with a waiting time, which means that the transmitting node will wait for a spe-
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cific time frame to re-establish contact with the recieving node, after the initial contact

is distrupted. Trying to transmit the whole file together, results in wastage of bandwidth.

In Fig. 3.6 we plot the percentage of bandwidth, recovered from this wasted bandwidth,

against different chunk sizes and waiting times in Disney World scenario2. Since more files

transmit successfully with smaller chunks and larger waiting times, the bandwidth wastage

is reduced. On the other hand, very small chunk sizes incur additional overhead whereas

very large waiting times increases buffer consumption. Considering this trade-off, the ap-

plications can decide on the best operating point for a suitable chunk size and waiting time

frame.

From Fig. 3.7 it is evident that the state of the node, which is characterized by its

velocity, also affects PCV performance. Velocities are plotted along the x axis and their

respective cumulative distribution function (CDF) is plotted along the y axis. As we can

see from the graph, for weaker predictions, the CDF grows much faster at the beginning,

meaning that when the nodes have relatively smaller velocity, it is difficult to predict their

movement, which is intuitive. For example, if both nodes remain static, the predicted

contact volume can be extremely large, which may not be true in reallity.

One major concern about any prediction scheme can be the false negative generation

rate, that blocks the otherwise eligible transmissions. In a worst case scenario, the available

bandwidth may remain unutilised, thus offsetting the bandwidth savings. To quantify this

aspect, we plotted the percentage of false negatives with respect to the number of files as

well as the unused bandwidth. As illustrated in Fig. 3.8, the portion of the files affected

by false negatives is quite small to have an impact on the overall gain of the system. More

importantly, in terms of bandwidth less than 10% , implying that smaller files are more

likely to be affected.

2Results for Disney World, TLW, and SLAW are similar to State Fair scenario, so we do not report them

due to lack of space
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Figure 3.8: Effect of false negatives

3.6 Discussion

3.6.1 Conserving Battery Power

GPS and accelerometer readings on contemporary smart phones give a measure of

position and instantaneous velocity. Using accelerometer readings instead of GPS has been

shown to consume less energy [63] [64]. Moreover, as accelerometers are usually active on

smartphones to detect screen orientations, their usage does not incur additional cost.

In order to minimize battery consumption, PCV, senses a node’s position and velocity

only at the time of contact. At the start of a contact, to detect whether a user is walking

versus other types of movement, such as when the user is stationary but moving the device,

techniques like TransitGenie [65] can be used. Furthermore, once it is known that the user

is actually on the move at the start of the contact, schemes like Triggered Sensing [66] can

be put to use. Here a low-power sensor e.g. accelerometer that detects the movement of

the user, can trigger the GPS to gather velocity and position measurements. PCV then uses

this information to make a prediction of the contact duration.
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3.6.2 Bandwidth Sharing Application

From the simulation experiments, it is observed that single opportunistic contacts in

most cases are inadequate to transfer considerably large volume files. As a result, users

have to rely on the cellular networks to download files of large volume. However, wireless

data plans are still very expensive, which makes the large data bandwidth consumption

unaffordable for many. Experimental results illustrated in Fig. 3.6 demonstrate that large

files can be successfully transferred in multiple small chunks.

For the bandwidth sharing scenario depicted in Section 3.1, a set of mobile nodes

interested in a particular large file, first download separate chunks of the file on the high

cost cellular network and then employ distributed sharing techniques [1] to procure the

remaining chunks, on the low (or no) cost wireless network. PCV can further augment

the distributed sharing process by fine tuning chunk sizes to available contact volume and

efficient usage of available bandwidth.

3.7 Summary

PCV is the first scheme to exploit user mobility for bandwidth sharing applications

in dynamic environments. PCV’s architectural design can incorporate existing works on

security, privacy, forwarding and routing. Extensive simulation results demonstrate the

efficacy of our approach in terms of reducing bandwidth wastage. Moreover, through the

results we address the issue of increasing bandwidth utilization, by introducing chunks

and waiting times dynamically. In future, we plan to design human centric opportunistic

applications deploying PCV. We believe that accurate prediction of contact volume paves

the way for real-world deployment of interesting and useful applications, such as, content

management and filtering, resource scheduling, bandwidth sharing, P2P gaming and video

streaming in dynamic environments.
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We presented the design and evaluation of a novel scheme called PCV that predicts

contact volume to enable reliable and efficient data transfers in opportunistic networks. In

particular, it focuses on two opportunistically meeting nodes in a participatory environment.

In the next chapter we improve upon this idea and extend it to encompass entire source to

destination paths.
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CHAPTER 4

COSC: Paths with Combined Optimal Stability and Capacity in Opportunistic

Networks

4.1 Introduction

In the previous chapter we presented the foundation work for efficient data transfers

between two nodes. However, there are additional challenges faced when multiple nodes

are considered simultaneously. For example, in participatory environments, it is common

for source and destination nodes to be further apart, i.e., without a direct communication

link between them. However, they may be connected via transient multi hop paths. Then it

is natural to look for paths that are optimal in some sense. This chapter rigorously defines

optimality and describes a scheme for identifying such paths.

A recent Cisco [67] report claimed 18 exabytes of mobile traffic in the cellular net-

work in 2013, an increase of 81% compared to that in 2012. For years, cellular network

providers have been looking into alternative solutions to off-load mobile data traffic. Fem-

tocells, WiFi hotspots and opportunistic networking are among the popular options [68].

Although opportunistic networking is considered as a potential solution given the rapid

adoption of mobile devices, there are a number of challenges related to its dynamic property

in connectivity [69]. Typical store-and-forward solutions consider opportunistic network-

ing as a way of best-effort content delivery, should an end-to-end path disappear. Several

novel approaches proposed in the literature exploit inter-contact times and node mobilities

to ensure packet delivery [7]. However, there is a need for further investigations to reduce

delays and overheads in opportunistic networks (ONs).
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We explore the idea of exploiting human mobility patterns to develop an effective

algorithm for data forwarding in opportunistic networks. As users move around with their

mobile devices, clusters of opportunistic networks are formed periodically among different

social encounters. Users within these clusters can utilize the transient connectivity to dis-

tribute bandwidth intensive contents (prefetched video) among peers. Research works on

human behavior and social connectivity have discovered that humans follow a high degree

of spatial and temporal regularity in their movements [70] [71]. In this chapter, we propose

a novel scheme that achieves combined optimal stability and capacity (COSC) in oppor-

tunistic networks. COSC exploits repeating trajectories embedded in the mobility histories

of participating nodes. Whilechapterevious work [20] estimates contact volume that can

be transferred during an opportunistic contact, the work presented in this chapter estimates

capacity of an opportunistic path.
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Figure 4.1: A TVG representation of an opportunistic network where one connected cluster C1, ...C4 comprising {v1, ..., v5} is

highlighted, with a = 1 and b = 4 and a, b ∈ τ [0, 4].. An example of a path set is also depicted, with a single changeover

between t = 1 and t = 2.
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A time varying graph (TVG) [72] is an instant snapshot of clusters of connected

components in ONs. A TVG represents the connectivities between nodes over a series of

discrete time intervals. In other words, TVG captures the pair-wise connectivity of any

two nodes at different timestamps. If we relate this to the human mobility model, we can

map devices’ connectivities reoccurrence (as their users encounter each other) to a TVG

over a period of time. At the start, mobile devices can retrieve the initial mobility graph,

which is relevant to them, from a server. At run time, when users are moving around, their

devices encounter each other. Information about such contacts at runtime can be used to

verify and update initial mobility graphs. When a node needs to forward data, it searches

for matching paths (containing its immediate neighbors) that lead to the desired destina-

tion. It is assumed that human mobility follows repeating trajectories, this predictive path

lookup can reduce significant amount of overhead messages and result in packet delivery

improvement. In COSC, each edge (or link) weight between two nodes of the TVG cor-

responds to the contact volume [20] when the two nodes come into contact. The effective

capacity of a path from a source to a destination is the capacity of the bottleneck link. In

addition to maximizing path capacity, it is also desirable to minimize the degradation in

packet delivery due to path changes over a TVG. The utility of a path is a function of the

path capacity and its stability. In effect, we solve an optimization problem that compares

alternative paths in terms of their utilities over a series of snapshots of a TVG.

This chapter makes the following contributions:

1. Exploit mobility histories to identify suitable path for effective data transfer;

2. Propose solution to adapt to situations when a path does not exist in the mobility

model;

3. Utilize capacity and stability metrics to evaluate available paths; and

4. Perform evaluation with synthetic and real-world mobility traces to demonstrate the

feasibility of solution.
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sectionSystem Design In this section, we discuss three aspects of our system design:

(i) the graph theoretic model, (ii) the connected clusters within the TVGs, and (iii) the

synthetic mobility models that allow more rigor performance evaluation.

4.1.1 Graph theoretic model

Dynamic environment of ONs can be viewed as edges appearing and disappearing

in a time varying graph (TVG). Recently, Casteigts et al., have presented a unified model

of time varying graphs [72]. We modify their general definition in this subsection to model

ONs. Let the set of total nodes in the environment be V and let E ⊆ V × V represent the

set of edges. Events, such as, inclusion and exclusion of edges happen over time τ ⊆ T ,

where T = N, i.e., discretized temporal domain. This work assumes the starting value of τ

to be zero. ρ is the presence function such that ρ : E×τ → {0, 1}. It represents presence of

an edge at a given time - presence (absence) of an edge is represented by ’1’ (0). Therefore

a TVG is represented as a tuple G = (V,E, τ, ρ). Figure 4.1 shows an example of a TVG,

with seven nodes and τ in the range [0, 4].

Edge computation in presence function: When two nodes vx, vy ∈ V come within each oth-

ers’ transmission rangeD, they can form a communication link (edge in a TVG), i.e., when

the predicate

∥

∥

∥
pos(vx)− pos(vy)

∥

∥

∥
≤ D is true, where pos(.) represents two dimensional

position vector of a node. Therefore, the presence function ρ evaluates the aforementioned

predicate at times t ∈ τ to determine if an edge is present between vx and vy in a TVG.

The radio transmission link may be established using either Bluetooth or Wi-Fi Direct,

which have their own characteristic D [53]. However, the experimental evaluation uses

communication ranges of 100 and 150 meters, which are consistent with the ns-2 default

values.
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4.1.2 Time varying connected clusters

Zooming in on any one snapshot of a TVG (t ∈ τ ) reveals a single graph, that may

or may not be connected. Though disconnectedness is not uncommon in snapshots derived

from opportunistic networks, it is however easy to find connected clusters of nodes in it.

Moreover, environments that have high node density are much more likely to contain such

connected clusters, e.g., at a busy train station or a bus ride, wherein the nodes may be

interested in sharing content such as a prefetched video.

A cluster is essentially a subgraph in its parent TVG. A cluster retains its connec-

tivity over a period of time, despite changes in the set of edges [73]. The lifetime of any

given cluster is marked by starting and ending times a, b ∈ τ . Consider one such cluster

comprising a subset of mobile nodes V ′ ⊆ V . At any one starting point a ∈ τ , there is

an edge set Ea among these nodes. As the nodes move in time, the set of edges changes

from Ea to Ea+1, then to Ea+2 and so forth to an edge set Eb. The graph representing

such a connected, time varying cluster comprising vertices V ′, but with varying edges is

represented by Ci(V
′, Ei) for i = a, a + 1, ..., b. Figure 4.1 highlights one such cluster for

a = 1 and b = 4.

The time stamp b ∈ τ and the edge set Eb marks the time after which a cluster

comprising V ′ ∈ V set of nodes fails to stay connected. Essentially, this happens whenever

the connected set V ′ changes. The following three scenarios elucidate this event:

1. A cluster breaks down into smaller clusters, thus ending its lifetime and creating new

ones as shown in Figure 4.2a.

2. Two or more clusters merge together to form a bigger cluster as shown in Figure

4.2b. This case ends the lifetime of multiple clusters to start a single new cluster.
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(a) A cluster breaking into two; marks the end

of one cluster and creation of two.

(b) Two clusters merging into one bigger clus-

ter; ends two clusters and starts a single new

cluster.

(c) The set of nodes changes, though the size

is maintained; ends two clusters and starts two

new clusters.

Figure 4.2: The three scenarios that mark the lifetime of a cluster
3. A cluster may lose and gain equal number of nodes till the next timestamp as shown

in Figure 4.2c. Though such transformation preserves the number of nodes in any

given cluster, it still changes the identity of the original set of connected nodes.

4.1.3 Synthetic Mobility Models

Human mobility patterns are key to understanding information flow in ONs. For-

tunately, a number of human mobility traces have been collected in environments like,

campuses, conferences, state fairs etc., that can be used in simulations pertaining to op-

portunistic networks [74] [75]. To bring more rigor to performance evaluation, synthetic
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mobility models are considered as well. Using traces generated with synthetic mobility

models allow us to study the proposed solution in a variety of other scenarios.

There have been numerous efforts in determining the underlying common and sta-

tionary features of human mobility [12] [71]. It has been shown that the inter contact times

in real-world mobility traces follow a power law distribution [12] as opposed to previously

assumed exponential distribution. Moreover, it is also shown that various other statistical

factors in human mobility, such as, flight lengths, pause times and fractal way-points follow

power law distribution as well. Hence, to make the simulation results descriptive of real-

world phenomena, we use self similar action walk (SLAW) as one of the synthetic mobility

models [17] to generate movement scenarios. We have also used Home-cell Community-

based Mobility Model (HCMM) as another synthetic mobility model [18] for trace gener-

ation. HCMM combines three main properties of human motion: 1) human movement is

governed by social interactions; 2) users visit a few locations where majority of their time

is spent; and 3) users prefer shorter paths over longer ones.

4.2 Path Selection

In this section, we deal with the design choices in order to find paths that enhance

the information flow between a source and destination pair over a series of time stamps.

Let Pi denote a multi hop (can be direct as well) path between two nodes of interest, in

the time varying cluster Ci, for i = a, a + 1, a + 2, ..., b − 1, b. The collection of these

paths is also termed as a path set in this chapter. In order to find the most effective path

set between a pair of connected nodes, we consider path capacity and path stability. Our

objectives include:

1. Maximizing capacity between connected nodes; and

2. Maintaining a stable path.
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COSC finds clusters in ONs and employs a utility function that considers path ca-

pacity and path stability to determine a path. A polynomial time, dynamic programming

algorithm efficiently computes such paths in time varying connected clusters by maximiz-

ing the utility function.

4.2.1 Link capacities

When two mobile nodes vx and vy make contact for a duration of t0xy, the amount of

data can be transferred depends on their velocity vectors [20]. Maximum amount of data

that can be transferred between a pair of opportunistically meeting nodes vx and vy is given

by K(vx, vy).

In wireless communications, the received signal power Srec at the receiver varies

inversely with the distance d from the sender. The relationship is concretely represented

as Srec ∝ 1/dψ, where the exponent ψ depends on the environment in which the nodes

operate. It is also known that the transmission throughput depends on Srec, making the

throughput a function of instantaneous distance [50]. Our model [20] accounts for the

changing distance and hence variable throughput during the contact period. It is interesting

to note that an empirically obtained function of throughput against distance can be trans-

formed into a time dependent function, by expressing the distance in terms of time for the

moving nodes. If the time dependent throughput between vi and vj is denoted by R(t) then

the following equation couples it with the contact volume and contact duration:

K(vx, vy) =

∫ t0ij

0

R(t) dt. (4.1)

The model in this chapter uses the contact volume K(vx, vy) as the edge weight for the

single hop connection between vx and vy ∈ V
′.
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4.2.1.1 Contact volumes on a path

Let eik denote a single edge on a path Pi in an edge set Ei for cluster Ci. The two

nodes forming the direct edge eik, are represented by vk, vk+1 ∈ V
′. Then the edge weight

is given by

w(eik) = Ki(vk, vk+1). (4.2)

The superscript i in the contact volume definition, represents value in the ith time stamp.

Hence the total effective capacity of a path ξ(Pi) is the minimum of all the edge weights

that make up that path,

ξ(Pi) = minw(eik), ∀ eik ∈ Pi (4.3)

As discussed at the start of this section, in order to improve the data transfers, it is desirable

to look for paths that have a higher capacity. ξ(Pi) is the precise mathematical quantity that

our scheme tries to enhance.

4.2.2 Stability of paths

At the start of Section 4.2, we define Pi as a path in Ci for i = a, a + 1, a +

2, ..., b− 1, b, then let ψ(Pa, Pa+1, ..., Pb−1, Pb) represent the total number of changes, i.e.,

the points at which the identity of the path switches from the one in the previous instance

of the subgraph. Formally, it is the number of indices i (a ≤ i ≤ b − 1) for which

Pi 6= Pi+1. For example, considering the highlighted cluster in Figure 4.1, a chosen path

P1 ∈ C1 from v1 to v5 is (v1 → v3 → v2 → v5), which is different from P2 = P3 = P4

= (v1 → v2 → v5). Therefore, ψ(P1, P2, P3, P4) = ψ(P1, P2, P2, P2) = 1, as there is only

one effective changeover in the path set.
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In order to bring stability in the chosen path, it is desirable that it remains constant

for as long as possible, despite the network dynamics. There are a number of reasons for

such a desideratum:

1. Overheads due to routing table updates: A path switch requires exchange of mes-

sages to update routing tables, as nodes in a cluster, maintain routing information.

This may also result in path oscillations [76].

2. Data quality: A switch to a new path entails, stalling the flow in the previous path

and shifting the flow to the new path. This results in overheads, such as flushing

buffers, and closing sockets, readers and writers, leading to poor data quality.

3. Trust: Protocols often need to establish trust whenever, new nodes are used for ex-

changing data, a costly procedure.

Therefore, in order to avoid the aforementioned penalties, a network designer should

try to find paths that do not switch very often, i.e., minimize ψ(.).

4.2.3 Finding a path set

Earlier, we identified two objectives for choosing paths in a connected cluster and

modeled them quantitatively. We put them together using the following utility function,

utility(Pa, ..., Pb) =
b

∑

i=a

ξ(Pi)− θ × ψ(Pa, ..., Pb) (4.4)

utility(Pa, ..., Pb) gives the total utility of the paths that are selected during the lifetime of

a time varying cluster. Note that, the first term
∑b

i=a ξ(Pi) on the right side of Eq. 4.4 is

the total sum of effective capacities all the paths, where each effective capacity of a path is

the contact volume of the bottleneck edge making up the path. The second term gives the

cost associated with path instability. The tuning constant θ can be used to weigh the second

term according to network properties and application requirements. The unit of θ is MB

and it is a quantity that signifies the amount of capacity that is equivalent to a single change

50



over in the path set. A higher value of this quantity would suggest that every change over in

the path set will incur a high penalty. The overall objective of this scheme is to maximize

the utility given in by the Eq. 4.4.

It is possible to find connected components in linear time in a given snapshot of a

time varying graph, i.e., at any t ∈ τ by using breadth first search or depth first search.

Where the common technique of an outer loop can be used to cover all nodes in V .

In order to compute a path set of maximum utility for a time varying cluster, it is

helpful to look at the available options for adding the final Pb. The following are the two

options:

1. Choose Pb−1 as the final path, which will add ξ(Pb−1) to the total utility, but will

avoid the change penalty θ.

2. Choose a new path, that exists in Cb. It is natural to look for a path with maximum

effective capacity, call it Pbest = Pb. This path adds ξ(Pb)− θ to the final utility.

It is desirable to choose a path Pb−1 in Cb−1 that is also present in Cb, i.e., Pb = Pb−1. This

will avoid the change penalty θ. The effect of Cb on the earlier part of the solution can be

anticipated using dynamic programming.

Let Opt(i) denote the solution to the subproblems for the clusters Ca, ..., Ci. To

compute Opt(b), i.e., a solution for the complete time varying connected cluster at hand,

one should look for the last changeover that occurred in the path. Let the last changeover

be between Ci and Ci+1. This means we have a path Pi+1 in all the clusters Ci, ..., Cb.

Therefore, the edges of Pi+1 are present in all of those clusters. Let common(Ci, ...Cj)

represent a graph that is an intersection of all the clusters Ci, ...Cj and let the best path

in such a common graph be Pbest(i, j) for a ≤ i ≤ j ≤ b. Then, if the last changeover

occurred between the indices i and i+ 1, the recurrence relation for the optimal utility can

be expressed as Opt(b) = Opt(i) + (b − i) × ξ(Pbest(i + 1, b)) − θ. However, there is a

special case that may exist for finding a single path for the entire duration of a cluster that

51



incurs no changes i.e., ψ(.) = 0. In this case Opt(b) = (b− a+ 1)× ξ(Pbest(a, b)). Hence

the final recurrence that gives maximum utility, set of paths and guarantees the minimum

number of packets transferred in a cluster is as follows,

Opt(b) =max{(b− a+ 1)× ξ(Pbest(a, b)),

max
a≤i≤b

(Opt(i) + (b− i)× ξ(Pbest(i+ 1, b))− θ)}

The algorithm presented above first computes for each pair i, j, the common(Ci, ...Cj) and

Pbest(i, j) values for a ≤ i ≤ j ≤ b. There are O((b − a)2) such pairs and the complexity

to compute each subgraph isO(|V |2 (b−a)2), where|V | is the number of nodes in a cluster.

The factor of |V |2 arises because of the maximum number of possible edges in a cluster.

A simple linear search is employed to compute the best path in each graph in linear time.

Therefore the total running time of the algorithm is O(|V |2 (b− a)3). The algorithm can be

speeded up by computing the graphs common(Ci, ...Cj) and Pbest(i, j) for a fixed value of

i in order of j = i, ..., b. Then the total polynomial running time of the proposed algorithm

is reduced to O(|V |2 (b− a)2).

4.3 System Architecture and Implementation

In order to implement a software agent that may execute our scheme and compute

a path set of maximum utility, we present a system architecture developed for Android

devices. Figure 4.3 depicts the proposed modular design consisting of two major compo-

nents.

We make use of Android system services to get instances of Wi-Fi P2P manager and

other sensor controllers. The Wi-Fi P2P manager is responsible for discovering and set-

ting up connection to nearby neighboring devices to exchange control information, contact

volume estimates and data streams. Sensors such as accelerometer, gyroscope and GPS
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Figure 4.3: System Architecture

feed information to the contact volume estimator. All of the sensor data is made available

through system calls executed through the Android framework.

4.3.1 Contact volume estimator and aggregator

The contact volume estimator receives sensor data such as device’s accelerometer

readings, along with GPS information to estimate the contact volume between neighboring

devices. The basic idea hinges on the fact that, two mobile devices have a high contact

volume if the contact duration is long. The estimator predicts the contact volume based

on the data rate profile as well as the device’s estimated contact duration inferred from its

velocity and initial position vectors.

The device’s own contact volume estimation is compared against the one received

from neighboring devices and thus aggregated using a pessimistic approach, i.e, the mini-

mum of the two contact volumes is chosen as a final estimate for further computation. It is

possible for the two devices to predict slightly different contact volumes, as it is not a sym-

metric measure [20]. Formally a device vx computes contact volumes K(vx, vi) ∀vi 6= vx,
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Figure 4.4: Path finder’s flowchart. The tuning parameter is provided by a high level ap-

plication. The path finder adaptively switches between using maximum utility path set and

epidemic routing with anti-packets.

where vi ∈ V
′ is an immediate neighbor of vx. Similarly, the neighboring devices estimate

their contact volumes for device vx, i.e., K(vi, vx) and send this control information to

vx. Subsequently vx chooses min(K(vx, vi), K(vi, vx)) for all neighboring vi. Also, note

that the neighboring devices of vx are responsible for sending contact volume information

pertaining nodes that are not in direct connection with vx.

4.3.2 Path finder

The path finder module is responsible for carrying out all the necessary tasks to

compute a maximum utility path set based on the mobility history of the users comprising

the opportunistic network. Figure 4.4 shows a flow chart that describes all the important

processes carried out by the path finder module. Initially the device downloads a relevant

mobility history data trace and preprocesses it. The preprocessing step ensures cleansing

of the data and turns it into a usable form. For example, mobility history data traces can be
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in the form of waypoints, location coordinates or mere device to device contacts. As all of

these forms of data have associated time stamps, preprocessing helps in building a TVG.

The path finder periodically acquires information about its direct one hop neighbors

through a simple device discovery process. Knowledge of direct one hop neighbors at

runtime helps in partially verifying the TVG and saves unnecessary computation.

The node can verify whether its one hop neighbors depicted in the TVG are also its

one hop neighbors at runtime, thereby preventing computation of false paths early on in

the path finding process. If the one hop neighbors do not match with the ones in the TVG,

those nodes can be removed along with their edges before the path computation. Moreover,

the history is updated to reflect a more recent view of the network.

A high level application, that is not part of the path finder module provides the des-

tination node and tuning parameter θ to appropriately penalize the change overs in a path

set. The path finder then computes a path set based on the processed TVG, to maximize the

utility for the given destination node. Though repetitive human movement patterns favor

this approach and guarantee a high hit rate, there is still a chance, that the computed paths

based on mobility history may be nonexistent at runtime. As humans sometimes do deviate

from their usual movement patterns, COSC verifies once more whether the computed path

set is pertinent. If it is, then the computed path set is deemed fit and subsequently used for

data transfers. On the contrary, our scheme adapts and falls back to epidemic routing with

anti-packets [77], wherein, the source infects its immediate neighbors with the data pack-

ets; the neighbors then send the data packets to their next hop neighbors. This process of

data packet infection continues till the destination receives the data, at which point, it sends

back an anti-packet as an acknowledgment. All the nodes that are earlier infected, use the

anti-packets to purge the corresponding original data packets from their buffers. Finally,

COSC has a corrective mechanism and in the case when epidemic routing is invoked, it

learns the new movement patterns and updates the original movement history.

55



4.4 Evaluation

This section evaluates the performance of COSC. First, the distribution of connected

time varying clusters is presented. We then evaluate the total information flow that is pos-

sible in opportunistic networks. Finally, based on information flow results, we compare

COSC with shortest multi hop paths and investigate the improvement achieved by COSC

for file transfer failures.

4.4.1 Simulation setup

For the purpose of this simulation, both real-world and synthetic mobility traces are

considered. The real-world mobility traces were contributed by two groups of volunteers

who visited a State Fair and Disney Land in Orlando respectively. The positions of the

individuals were logged at 30 second intervals for a duration of approximately three and

twelve hours. Therefore the positions of all the users at each time instance (every 30 sec-

onds) is referred as a snapshot. There are a total 19 and 41 log files for State Fair and

Disney Land traces respectively, where the ith log file represents the position of that user

in two dimensional space for the entire duration of the collected trace. In order to simulate

a user-based opportunistic network, we assume, that all log files represent users carrying

mobile devices that are capable of making connections with each other if they come within

the radio communication link.

Apart from the real-world mobility traces, we use Self-Similar Least Action Walk

(SLAW) mobility model for generating additional scenarios that captures the statistical hu-

man mobility characteristics. We span the simulation area to a 500m × 500m two dimen-

sional space, and make use of both slow and fast moving nodes (10 each). The details of

this synthetic mobility trace are provided in Table 5.2. Furthermore, we have also used the

HCMM mobility model to test our scheme with 20 nodes [18]. The details of parameters

used to setup the HCMM trace are presented in Table 4.2 We have used 100 m and 150
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Figure 4.5: Empirical CDF of the lifetime of clusters in different models
m as the two radio communication ranges. The specific values are used to depict ranges of

Wi-Fi Direct [53], which is a prevalent technology in the smart phones and mobile devices

of today.

4.4.2 Connectivity of time varying clusters

In order to find suitable path sets for enhanced information flow in a number of ap-

plications, there is a strong need to find connected components in several human mobility

scenarios. With the aforementioned setup in Section 4.4.1, we ran depth first search on

each of the snapshots of the time varying graphs to first find the individual connected com-
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Table 4.1: SLAW mobility trace used for simulation

Description Slow Fast

Exponent of step length distribution 1.6

Exponent of pause time distribution 0.6

Hurst Parameter 0.75

Velocity of node 1m/s 5m/s

Minimum step length 5m 25m

Minimum pause duration 30s 7.5s

Maximum pause duration 600s 60s

Simulation area 500×500m

Table 4.2: HCMM mobility trace used for simulation

Parameter Value

Velocity of node min: 1m/s, max: 5m/s

Nodes 20

Groups 5

Rewiring probability 0.2

Travelers 5

Grid 4 × 4

Simulation area 500 × 500m

ponents in linear time. Then in order to find clusters that adhere to the definition provided

in this chapter, i.e., follow the lifetime rules of a cluster, each of them was backtracked till

the identity of the nodes did not change. As the traces have been generated with 30 secs

time intervals, we did not include clusters, that just remained connected for a single snap-
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shot of a time varying graph. Figure 4.5 shows the empirical CDF plots obtained for State

Fair, Disney World, SLAW and HCMM mobility traces. The plots, depict the CDF of

the life time of various clusters. It is observed that, for a communication range of 100m,

the real-world traces contained most of the clusters that remained alive for approximately

3 minutes. As approximately 65% of the clusters disintegrated after this time interval.

However, the SLAW mobility trace shows a much more transient behavior, where approx-

imately 80% of the clusters remained connected for less than 3 minutes. We believe it

is because of the inclusion of 10 fast moving nodes, which are highly dynamic and thus,

disrupt the connectivity among other connected nodes. Note that, the definition of time

varying connected cluster presented in this work is strict, as even an inclusion of a single

node to an already connected cluster, starts the lifetime of a new cluster and ends that of

an earlier one. Data trace based on HCMM showed some clusters that were alive for up

to 30 minutes. This is probably true because of the cell based communities present in the

trace. For a communication range of 150 m, the clusters are observed to remain working

for longer time intervals. However, in the SLAW mobility trace, we do not see the effect as

pronounced as in the real-world or HCMM traces as 60% of the clusters remained alive for

less than 5minutes.

4.4.3 Possible data transfer

To quantify the possible data transfers between nodes in a cluster, we randomly select

a pair of nodes whenever a cluster is formed. Based on COSC, we select a path set for that

particular pair and evaluate the contact volume of each path. The contact volume of a single

path is chosen to be the one that makes up the weakest link between the two end nodes. Its

value is valid for a single snapshot of the cluster at hand. Finally, the total contact volume

for the entire path set is computed by summing individual minimum contact volumes. For

example, back in Figure 4.1 we found a path set {P1, P2, P3, P4}. Suppose the contact
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volumes of the weakest links in each of these paths are 10, 20, 20 and 10MB respectively,

where each path is valid for 30 secs interval, then the total contact volume will be the sum of

these quantities, i.e. 60MB. Note that, though the paths P2, P3, P4 essentially represent the

same path, the contact volume of the weakest link maybe different, even when the contact

durations are for 30 secs. The reason for that was investigated in our previous work [20],

where it is shown that the contact volume not only depends on contact durations, but also

on instantaneous distance among communicating nodes. The simulation is repeated 1000

times, and the averages are plotted in Figure 4.6, for three mobility traces. The error bars

represent the standard deviation. It is observed that an average of approximately 125MB

can flow at best in a State Fair setting with 150 m radio link. However, SLAW shows the

minimum average contact volumes on a path set, with 45MB at a 100 m range. HCMM

showed the least percentage change in the contact volume of a path, when the radio range

is increased from 100m to 150m.
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Figure 4.6: Average contact volume on a path set between arbitrarily chosen nodes in

clusters. Longer communication range opens up the opportunity for transferring more data.
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4.4.4 File transfer failure rates

In order to compare the maximum utility path set, obtained using the methodology

described in this chapter, against the well known shortest multi hop path set, we use file

transfer failure rates as a measure. The shortest multi hop path set is formally defined as a

path set in a time varying connected cluster, where all link costs are assumed to be positive
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(a) State Fair - The difference in the file trans-
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Figure 4.7: Percentage of file transfer failure rates at communication range of 100 m. A

comparison of COSC against shortest paths computed based on number of hops
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and equal to 1. Thus a shortest multi hop path set, contains the shortest paths in terms of hop

count for each snapshot of a cluster. For the purposes of this study, we ran the simulation

a 1000 times and the average file transfer failure rates were plotted against file sizes. The

error bars represent the standard deviation. Failure rate is defined as the percent of file

transfer failures. In other words, failure rate is given by number of (failed transfers) / (total

number of attempted transfers). The range of file sizes is chosen based on results shown in

Figure 4.6, i.e., file sizes were picked in the proximity of the maximum possible amount of

data transferrable for each of the three traces at 100 m range. The rationale for doing so is

explained below. For example, if huge file sizes are used in comparison to the found data

limits, it would invariably lead to failed file transfers. On the other hand, using file sizes that

are very small, will let them through almost all the time. Therefore, both the extremes do

not help in revealing any interesting information about our methodology. Figure 4.7 depicts

the comparison of failure rates between COSC against the scheme that uses shortest multi

hop path. Though we compared the two schemes for both 150m and 100m communication

ranges, the plots are drawn only for 100m, because higher ranges reveal similar trends, but

around larger file sizes. For real-world mobility traces, it is observed that the file transfer

failure rate of COSC is approximately 60% less than that of shortest multi hop for file sizes

around 55 MB. Whereas, the advantage in SLAW mobility trace is almost 40% at best.

Moreover, HCMM shows the least failure rate for 70MB file sizes, where the other three

environments have a 30% or more failure rate.

4.5 Summary

This work presents a novel methodology for modeling information flow in user-based

opportunistic networks, that are common to pervasive environments. The network is ini-

tially viewed as a time varying graph, with a presence function that defines transient edges
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based on pairwise contacts. We then present a complete and thorough definition of time

varying connected clusters and define scenarios for their lifetimes. The simulation results

pertaining to connectivity in clusters validate this intuition, as humans are social beings

and are often observed to interact in groups. To the best of our knowledge, this is the first

scheme to estimate contact volumes over paths in participatory environments.

Keeping in mind the dynamic nature of participatory environments and time varying

clusters, we identify two opposing cost objectives that aim to minimize the number of pack-

ets transferred and induce stability in the information flow paths between nodes. We then

present a polynomial time algorithm to solve the resultant cost function. The simulation

results show that using our methodology, nodes can transfer from 45 MB to 120 MB of

information in an opportunistic environment. Furthermore, a reduction of up to 60% in file

transfer failure rate is seen in comparison to shortest multi hop path scheme.

The work described in this chapter makes efficient use of capacity and stability over

paths for transferring data effectively in participatory environments. The capacities over a

path are modeled using PCV for pairwise contacts between participating nodes. In addition

to the capacities, this work incorporates the notion of stability to avoid jitter and frequent

path switching for improved user experience at the application layer. In the next chapter,

we will digress a little, and look into mobility of nodes to improve communication and

collaboration among participants.
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CHAPTER 5

MOEME: Real-Time Mobility and Orientation Estimation for Mobile Environments

5.1 Introduction

In the previous chapters, we presented schemes for effective data transfers among

nodes in participatory environments. While discussing COSC, we pointed out that humans

follow spatial and temporal regularity in their movements [70] [71]. This lead us to ex-

plore human mobility further and find ways to use enhance data transfers. In this chapter,

we present our findings and subsequently develop a lightweight and distributed mobility

estimation scheme that aids our goal of making communication and collaboration more

efficient.

As mobile environments rely primarily on user mobility as a mechanism for trans-

porting content and data in general, identifying and modeling user mobility provides re-

searchers and network designers with key insights for improving performance, efficiency

and productivity. For example, epidemic routing [13] guarantees shortest latencies in mes-

sage delivery, however, knowledge of user mobility and diffusion has been exploited by

various schemes to considerably cut down energy expended in already resource constrained

devices with a small tradeoff on delivery times [14] [15] [16]. With the potential of similar

conceivable advantages there are several works which focus on mathematically modeling

the human mobility patterns [78]. In another work, researchers characterize pause times,

inter-contact times and speeds of users based on real world traces collected over different

periods of time [79]. Recently there has been an effort to model user mobility where the au-

thors use small areas, in which the user mobility does not affect communication, as building

blocks for a more complex queuing model [80]. However, existing schemes that estimate
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mobility rely on repetitive user patterns and user trace data. Information about trajectories

and times of user movement are critical. Moreover, if users deviate from regular patterns of

their movement or if no such patterns exist, which is very common in open environments

such as parks, malls or streets, the models start falling apart, thereby leading to a serious

limitation in guaranteeing accuracy.

To this end, we present a novel scheme called MOEME: Real-Time Mobility and

Orientation Estimation for Mobile Environments. To the best of our knowledge, this is a

unique contribution to estimate mobility of users in mobile environments in real-time with-

out i) a priori knowledge of user movement patterns, ii) a Global Positioning System and

iii) infrastructure support. The key insight which allows MOEME to perform well lies in

its message exchange mechanism. MOEME employs the concept of temporal distances -

devices exchange information about their temporal distance to other devices. We show that

gathering this information for users in real-time is easy and incurs small space complexity.

Coupling this information with the model learned using logistic regression, MOEME pow-

ered devices are able to make estimations about user mobility in real-time. Furthermore,

we see that model learned for MOEME generalizes well and is tested to make accurate

estimations across both real-world and synthetic traces in the presence of haphazard and

random user movements.

MOEME empowers both users and system architects with the knowledge of user

mobility. MOEME estimates relative directional mobilities of all the users in a mobile

environment, in addition to counting the number of users present within a desired spa-

tiotemporal radius. MOEME can also be employed to predict the absolute orientation of

the users in a mobile environment. We demonstrate how MOEME can be used in a variety

of scheduling and resource allocation applications. For example, in our recent work we

predict the ‘contact volume’ i.e., the maximum amount of transferrable data between two

opportunistically meeting mobile nodes [20]. The accuracy of predicting contact volume
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can be improved directly with the knowledge of directional mobility of users. Furthermore,

it helps in predicting the total volume of information that can be pushed from one end of

the network to the other or from a particular source node to a desired destination node.

The novelty of MOEME lies in its ability to estimate user mobilities with no a priori

knowledge of movement histories. MOEME can be employed in indoor as well as outdoor

environments. MOEME is fully distributed, light weight and has a time complexity of

O(n) at each node, where n is the number of nodes present in the mobile environment.

Moreover, MOEME does not rely on Global Positioning System (GPS) or other location

tracking systems [81] [82], which may be power hungry and thus limit the practicality of

the technique.

In our previous work [83], we devised a distributed scheme to estimate the relative

directional mobilities and the number of users in a desired spatiotemporal region. Whereas,

in this chapter we have refined the scheme significantly to estimate the absolute orientation

of users in mobile environments.

5.1.1 Contributions

Major contributions of MOEME include:

1. Estimation of relative directional mobilities of all users in real-time without requiring

their movement histories.

2. Estimation of the number of users, that are likely to be within a spatiotemporal region

of interest.

3. Predict the absolute orientation of the users in a mobile environment.

To the best of our knowledge MOEME is the first scheme to make the above mentioned

contributions for estimations of user mobilities in mobile environments.

MOEME estimates distance of users and number of users within a distance of 300m with
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an accuracy of 89%. The estimates of direction of users are 77% accurate for nodes within

200m.

5.2 Related Work

In dynamic and pervasive networks, a significant amount of research has focused on

efficient routing schemes [37] [84] [85] [86] [87] and content dissemination frameworks

[88] [89] that exploit repetitive patterns in human movement. Recently, there has been

some focus on content and service distributions in open environments, such as parks, malls

etc. where history from past visits is not available [14] [44] or repetitive patterns do not

exist at the time scale of few minutes (0 to 15 minutes). There is only one work [47] that

aims to create plausible mobility merely through user contacts but requires a centralized

server to keep track of all contacts in real time. In contrast, we present the first work that

estimates 1) relative directional mobilities of all users in real-time without requiring their

movement histories and 2) the number of users, that are likely to be within a spatiotemporal

region of interest, through opportunistic contacts in a completely decentralized manner.

5.3 System Description

5.3.1 Types of nodes

We represent the set of all nodes in the pervasive environment by V = {v1, v2, v3, ..., vn}.

Among these n, there are k nodes of interest (NOI). We represent the set of NOIs by P ,

where P ⊆ V . These nodes of interests are used to make predictions about the direction

of motion for the rest of the nodes in the system. The nodes of interests can be static or

mobile. Each vi ∈ P makes a prediction for the nodes in the set V − {vi}, the set of all

nodes except vi.
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Figure 5.1: A mobile environment

5.3.2 Dictionaries at NOIs

Every node vi ∈ P , maintains a dictionary di to keep track of the following informa-

tion in real-time:

1. Set of nodes moving closer: C,

2. Set of nodes moving away: A, and

3. Number of nodes moving closer: µ.

The structure of the dictionary is di = {C,A, µ}, where C ⊆ V , A ⊆ V and C ∪ A =

V − {vi}

The Figure 5.1 depicts a scenario with several regular and monitor nodes. It also

shows the contents of dictionary maintained by v5 ∈ P .
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5.3.3 Underlying network

The underlying network on which MOEME is built on is inherently opportunistic

[68]. The network may comprise of a mix of both static and mobile nodes. However, only

the nodes that are within each other’s communication range can exchange messages. The

purpose of this work is not routing or message forwarding to a destination node. MOEME

uses the information it acquires from other nodes, for local and real-time computation of

directional mobilities of other nodes in the environment.

5.3.4 Temporal distance

To keep track of an approximate measure of distance among nodes in a network, the

notion of temporal distance is used [14]. It also gives a measure of how fast information can

travel among nodes by means of transitive connections among them. At each time instant t,

every node in the network maintains a timer (Section 5.3.5) value for the rest of the nodes

in the network. The timer values give the measure of temporal distance. However, timer

values are not symmetric between nodes due to their distributed nature. It is possible that

at some time instance t0, the timer value that node vi records for vj is different from the

one vj holds for vi.

5.3.5 Timer update

Let tvi(vk) denote the time elapsed since node vi made contact with node vk, where

tvi(vi) = 0. Local timer values for each node are incremented after every time unit, (e.g.,

30s, 60s etc. depending on devices). When two nodes vi, vj come into contact (within

transmission range), vj updates its timer values according to the following rule: ∀vk 6= vj :

tvi(vk) < tvj(vk)− tav, set,
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tvj(vk) = tvi(vk) + tav (5.1)

(5.2)

where tav is the measure of distance between two nodes when they are within each

others’ transmission range. Every node performs this update when it comes into contact

with another node. The value of tav is a small constant greater than zero but less than

or equal to one time unit (increment by which local timers are updated) i.e. tav ∈ (0, 1].

Note that it is a different definition of tav from that in [30] where the value of average

time required to travel between the two nodes is included. A small value of tav is used

as the physical distance between the connected nodes is of little importance. tav captures

the concept of nodes being in contact through other nodes in between. Therefore, value of

tav > 0 creates a gradient in a connected subset of nodes. Figure 5.2 shows an example of

how the timer values are updated according to rule 5.2, when two nodes come within each

others’ transmission range. In this case, the network comprises of four nodes. Each node

maintains timer values for itself tvi(vi) = 0, and the nodes in the rest of the network. tav,

is set to be equal to 0.1 for the purpose of illustration. The timer values at each node vi,

where i = 1, 2, 3 and 4 are shown in a vector of the form





















tvi(v1)

tvi(v2)

tvi(v3)

tvi(v4)





















.

5.3.6 Additional timers at the time of contact

MOEME also employs two additional arrays of timers MT and RT, at each node

vi ∈ V . Both the arrays contain information that depicts the view of the network each vi

observes, just before the time of contact with another node vj ∈ V − vi.
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Figure 5.2: Timer updates

1. MT records the values of all the timers that node vi has for all the other nodes in the

network, just before the time of contact.

2. RT contains the values of timers that some other node vj brings along with it for all

the other nodes in the network, just before contacting vi.

At the time of contact, first the values in RT and MT are updated and thereafter, the values

for regular timers defined in section 5.3.5 are refreshed according to the update rule 5.2.

Both these arrays support the usual indexing operation, where the index represents the

identity of a particular node, e.g. MT[3] shall access the value in MT for node number 3.
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5.3.7 Time since last contact and threshold parameter matrix

Each of the nodes vi ∈ V record the time elapsed tl, since it last contacted some

other node in the network. When a node vi comes into contact with another node vj , tl

is set to zero for both the respective nodes. Hereafter, the value of tl keeps climbing with

incremental time units until another contact occurs for a node.

Each of the nodes also has a copy of threshold parameter matrix Θ, which is unique

to a type of network and is obtained through the machine learning technique, logistic re-

gression. The rows of Θ are the individual threshold vectors corresponding to each time

since last contact, i.e. integers values of tl ∈ [0, 10]. The row values of Θ, timer arrays

MT and RT, and time since last contact tl are together used by vi ∈ P to make a real-time

prediction about the relative directional motion of the rest of the nodes in the network.

5.4 Learning the threshold parameter matrix

In MOEME, each node vi ∈ P strives to estimate the relative direction of motion

of the other nodes in the network. In order to do this successfully, these NOIs keep a

copy of the threshold parameter matrix. MOEME learns this parameter matrix Θ offline

by applying logistic regression on data extracted from mobility traces. The novel aspect

of the proposed scheme is the fact that it is completely distributed in nature. NOIs can

locally make estimates for the directional mobility of other nodes in the network. There is

no centralized agent, thereby making the scheme robust and fault tolerant.

5.4.1 Logistic regression

The objective of machine learning algorithm logistic regression, is to produce a

threshold parameter vector θ that minimizes an appropriate cost function J(θ) for a subset

of the given data [90]. The algorithm was run a number of times, each time on a different

subset of the original data. The original data is filtered according to the tl, the time since
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last contact values, to obtain subsets of the data, where tl takes integers values in the range

[0, 10]. All the obtained θ vectors are transposed and stacked together to form the thresh-

old parameter matrix, Θ. At the time of directional mobility estimation MOEME selects an

appropriate row from the matrix Θ based on tl and processes it with the feature vector x,

where the feature vector is calculated using both MT and RT . Logistic regression serves

us well because the problem at hand falls under binary classification problems [91].

5.4.1.1 Sigmoid function

It has been shown that a naive linear hypothesis

hθ(x) = θTx = θ0 + θ1x1 (5.3)

where,

θ =







θ0

θ1






and x =







1

x1






(5.4)

, will work poorly in the case of classification problems, although it works well for linear

regression [91]. Therefore, in order to get a better estimate, the sigmoid function is used

and the hypothesis is defined as

hθ(x) = g(θTx) (5.5)

where,

g(z) =
1

1 + exp−z
(5.6)

5.4.1.2 Cost function and gradient

The data set used comprises two columns, x1 and y. At each time instance, for each

pair of nodes, x1 and the corresponding y values are calculated. y can take values either
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0 or 1, where 0 means the nodes in consideration are in reality moving away, whereas 1

means they are moving closer. We use the notation xi and yi to denote the ith example in

the training data set, i.e. the ith row in the data set. Simply minimizing the sum of the

squares of errors, where errors are usually defined as a difference in the actual y and the

guessed values, shall not work [91]. Logistic regression algorithm fails to find a suitable

global minima as the resulting cost function in that case is not convex. To resolve this

problem, a better cost function that is shown to have a global minima is used;

J(θ) =
m
∑

i=1

[−yi log(hθ(x
i))− (1− yi) log(1− hθ(x

i))] (5.7)

and the gradient of the cost is a vector of the same length as θ where the jth element

for (j = 1, 2..., n) is given by

∂J(θ)

∂θj
=

1

m

m
∑

i=1

[((hθ(x
i))− yi)(xij)] (5.8)

The cost function in Equation 6 captures the notion of penalizing the learning algo-

rithm when it makes a wrong prediction. Consider the case when y = 1 in the learning

example and the hypothesis outputs hθ(x) = 0, thereby making a wrong prediction. There-

fore, the term − log(hθ(x) in the cost function will be − log(0), which approaches infinity.

However, contrary to this, if the hypothesis produces hθ(x) = 1, which is equal to the

original y = 1 label, then the cost drops down to zero. The same reasoning can be applied

to show the desired behavior of the cost function when y = 0.

On running the algorithm, on a subset of the data a threshold parameter vector θ

is obtained which minimizes the above mentioned cost function J(θ). All such threshold

parameters obtained from different subsets of data form the threshold parameter matrix Θ.
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5.4.2 Feature selection

The choice of features in any machine learning algorithm play a pivotal role in the

overall performance and accuracy of learning. We carefully selected the following features

to use:

1. Time since last contact, tl;

2. Node’s timer value for the node in consideration, vi(vk); and

3. Contacting node’s timer value for the node in consideration, vj(vk).

The rationale for using vi(vk) and vj(vk) is the fact that the difference of these two values

gives us an indication whether the node in consideration is traveling towards or away from

vi. If vi encounters a contacting node vj which has a lower timer value for the node in

consideration vk, then intuitively vi should be moving closer to vk. However, if the vj’s

timer is higher, then for most of the times an opposite inference can be made. We also

make use of tl, though this feature is not fed into logistic regression directly. We primarily

use it to filter the data and run the algorithm on a subset of the data. It has been observed that

the difference, vi(vk)− vj(vk), which forms the column values x1, contains more accurate

information when tl was small. This fact is also intuitive because with the passage of time

the information becomes stale and less reliable.

5.5 Real-time estimation of directional mobility

5.5.1 Estimation at NOIs

As the nodes in the network move around and come into contact with each other

opportunistically, they exchange information about their timers and update MT and RT.

When a node vi ∈ P wishes to estimate the relative directional mobilities of the rest of the

nodes in the network it first calculates the difference of arrays,

∆Ti = MTi −RTi (5.9)
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that it maintains. The subscript i denotes that the above expression is evaluated for the ith

node. The node then checks its tl value, i.e., how long ago did vi make its last contact with

some other node in the network. Based on the current tl value, vi chooses the corresponding

tthl row (θT ) from the threshold parameter matrix Θ. Now if vi wishes to make a prediction

about the direction of motion for node vj , it calculates the following:

z = θT ×







1

∆Ti[j]






(5.10)

The index j fetches the ∆Ti value for vj . Subsequently, this z value is used in Equation

(5.6) to get g(z). If g(z) is greater than or equal to zero, node vi estimates the direction for

vj as approaching closer, whereas, g(z) less than zero would mean otherwise. MOEME

repeats the above mentioned procedure for each vi ∈ V − {vi}.

5.5.2 Time complexity and scalability

MOEME is extremely lightweight in terms of computation. The processing that a

node vi ∈ P has to do to estimate the direction of motion of another node vj ∈ V − {vi},

comprises a fixed number of computational steps. The first step is simply taking the differ-

ence of two values to obtain a real number: ∆Ti[j]. The computation in Equation (5.10) is

a multiplication of two 2 × 1 vectors, where the elements of the vectors are in R. Finally,

the computation of Equation (5.6) is also a fixed number of arithmetic operations. In order

for a node to compute the direction for all the other nodes, the above mentioned steps shall

be repeated n − 1 times, where n is the number of nodes in the environment. Therefore,

the time complexity of MOEME for real-time estimation of directional mobilities is O(n).

The machine learning algorithm we use in the chapter is lightweight and is essentially

an offline training algorithm, which can run on a server machine. Therefore it does not

affect real-time performance of MOEME. The machine learning algorithm we use is fairly
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quick and is able to train a data set with e.g., 18× 18× 90× 2 = 58320 (nodes×nodes×

trace duration in minutes × 60/30) rows in under 3 minutes on a 2.4 GHz processor

and 2 GB RAM, to produce a resultant threshold parameter matrix.

This analysis shows that MOEME can run with blazing fast performance on present

day smart phones, that usually have processor speeds on the order of GHz. Therefore,

MOEME is scalable to mobile environments consisting of nodes on the order of hundreds.

5.6 Direction estimation with orientation sensor

Thus far we have described a methodology to predict the directional mobility and

count of nodes in a spatiotemporal region. However, the directional mobility is limited

to estimating whether the nodes in question are moving towards or away from a node of

interest. In this section, we detail the use of the orientation sensor on smartphone devices

to get additional information about the angle of movement of a node.

5.6.1 Local orientation readings on a device

Modern smartphones are equipped with orientation sensors. For example, an An-

droid device can make use of getOrientation in the SensorManager API [92] to get infor-

mation about its orientation. In this chapter, every node vi maintains a local orientation

reading, which is essentially its own bearing value measured with respect to the magnetic

north. We use the bearing values rounded to the nearest integer and are in the range [0, 360).

The value 0 corresponds to the the true magnetic north and the bearing increases when the

device rotates eastward (clockwise). Figure 5.3 depicts the orientation coordinate system

used in this chapter.
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Figure 5.3: Orientation coordinate system

5.6.2 Sharing of orientation information

In a mobile environment the nodes move and often make contact with other nodes

when they come within each other’s radio communication range. A contact is an event

where the nodes may exchange relevant information that can potentially help in achieving

some goal. In this chapter, we use the notation bvi(vj) to denote the bearing value that node

vi maintains for node vj . In other words, it is the absolute orientation of node vj , perceived

by node vi. When the two nodes vi and vj come within each other’s communication range,

they inform the meeting node about their own orientation, i.e., the local bearing reading

bvi(vi) at vi is given to node vj and vice versa. Moreover, much like the discussion in Sec-
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tion 5.3.5, each node maintains orientation information not just about itself or the meeting

node, but about every other node in the network.

Initially, every node vi ∈ V in the network starts by keeping track of its own local

bearing value using the orientation sensor. The bearing values for all other nodes at this

node are initialized to -1, which means they are irrelevant and cannot be trusted. During

the course of time, when the nodes move and a node vi ∈ V makes contact with vj ∈ V ,

then the node vj updates the orientation values according to the following bearing update

rule:

∀vk 6= vj : tvi(vk) < tvj(vk)− tav, set,

bvj(vk) = bvi(vk) (5.11)

The above update rule means that a node will prefer more recent perspective of ori-

entation values that may be brought to it by other nodes in the network.

5.6.3 Prediction criterion and features

As time progresses, the nodes in the network share timer and orientation information

among themselves, it is of interest to know whether the orientation information they main-

tain about other nodes is likely to be less accurate and hence a lower trust value. Intuitively,

if the orientation information was updated long ago, then it should not be trusted. However,

we relax the prediction criterion and instead of predicting the exact orientation angle of the

nodes, we will tolerate the error within bounds.

In order to understand the scope of prediction consider the following function,
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Q(x) =







































1 if 0 ≤ x < 90

2 if 90 ≤ x < 180

3 if 180 ≤ x < 270

4 if 270 ≤ x < 360

that maps the integers between the range [0, 360) to four different quadrants(divisions).

Now, suppose the predicted bearing value at a node vi for vj is bpredict(vj) and the actual

bearing value of vj is bactual(vj), at some time. Then, if Q(bpredict(vj)) = Q(bactual(vj)),

then we term the prediction as correct. In other words, it means if the predicted value and

the actual value fall in the same division then the prediction is deemed correct. Note that, a

different prediction criterion can easily be chosen by using a function Q(x) with a different

(smaller or greater) number of divisions. In this chapter, we have chosen four divisions as

they naturally correspond to the quadrants. Moreover, note that it is not necessarily a very

tolerant criterion, as the bearing values close to the boundaries i.e., 0, 90, 270 etc. may

deviate only by a few degrees, and result in a wrong prediction.

To make predictions about the orientation of another node vj , a node vi uses the

following two features as input to the sigmoid function:

1. Timer value for node vj; and

2. Bearing value for node vj .

While training the data set the actual bearing values of the nodes are plotted against

the aforementioned features and a decision boundary is computed. The decision boundary

can later be used to make predictions about the orientation of the nodes in real-time. Figure

5.4 shows one such data set at a node that was obtained during the training process. It

shows whether the orientation values at a node fall within the same division. It can be seen

that for higher timer values the actual value of the bearing is likely to move out of the same

quadrant/division.
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Figure 5.4: Data at an arbitrary node and time showing whether the orientation values fall

within the same quadrant/division

5.7 Implementation

The architecture depicted in Figure 5.5 can be broken down into three major parts,

i.e. Wi-Fi Direct, Network and Estimation, wherein each module is responsible to carry out

a specific group of related tasks. MOEME is implemented and tested on Google Galaxy

Nexus phones with a 1.2 GHz dual-core ARM Cortex-A9 CPU and 1 GB of memory. The

phones are powered by Android 4.3 Jelly Bean.
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5.7.1 Wi-Fi Direct module

Wi-Fi Direct lets mobile devices connect with each other directly without the need

of an intermediate access point to over a 100m. The technology is available in Android

versions greater than 4.0 and is supported by the above mentioned phones we use for im-

plementing MOEME.

As part of MOEME the Wi-Fi Direct module is responsible for carrying out tasks

related to establishing the connectivity with other nearby devices. Wi-Fi manager first

tries to discover nearby peers by running a separate thread of execution. The interval be-

tween successive discovery initiations can be tweaked based on the environment, where a

crowded environment would call for discovering often. Once the discovery returns a list of

nearby devices, MOEME tries to connect to up to four available devices in the surround-

ing. This limitation on the design is placed to keep the implementation more responsive

and agile. However, this does not mean MOEME misses out a chance to connect to other

devices. Once the timer values are exchanged between the current set of connected devices,

MOEME moves forward and connects to a set of mutually exclusive devices the next time

around. Once there are no new devices to exchange timers with, a device cycles back to

connect with the first set of nearby peers, if any or all of them are still available.

The information about connection setup or a disconnect is relayed via Wi-Fi Direct

broadcast manager over to client/server maker. As the name suggests this sub-module is

responsible for opening up server or client sockets depending on whether the connection

earlier resulted in making a device a ’group owner’ or not respectively. A group owner

essentially acts as a hub, thereby routing messages among a peer to peer group. Therefore,

a group owner is responsible for running and terminating several worker threads, each of

which talks with the respective client device. On the contrary, each of the client devices

simply connect to the group owner and synchronize their local timer values.
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Figure 5.5: Architecture of MOEME implementation on an Android framework

5.7.2 Network module

The network module in Figure 5.5 shows the lower level networking layer. Sockets

are essentially pipes between the estimation module and the Android framework, that carry

streams of information wrapped around by conventional buffered readers and writers. The

Android framework takes care of dealing with the low level networking i.e., sending and

receiving the actual bits of information. Apart from this, the framework also monitors the

state of several other ongoing processes, such as, peer listening and connection calls.

5.7.3 Estimation module

The primary purpose of MOEME is to estimate mobilities of users in the surrounding

environment. The estimation module, contains implementation of the logic described ear-

lier in timer update rule and real-time estimation of orientation/directional user mobilities.

First, timer processor receives new information about a peer’s timer values. MT and RT

are updated along with the orientation information, in an SQLite database. Subsequently, a
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node’s own timer values and local orientation information are pulled out from the database

and transferred over to the connected peer. Subsequently, the timer values and orientation

information are updated according to the timer update rule 5.2 and bearing update rule 5.11

respectively.

Finally, the mobility estimator reads the most current view of the network and esti-

mates the directional mobilities and orientation of the users it has information about. The

results of the estimation are then presented to the user in the form of Android activities.

Which are basically a way for the user to interact with an Android UI. Android makes it

easy for several applications to communicate with each other. Therefore, it is possible for

other applications to use services of MOEME, given the correct privileges are in place.

5.8 Simulation and Analysis

Performance of prediction is evaluated for estimating direction, distance, and count

of nodes within a certain region. The performance varies when there has been a long time

since last contact (represented by time range) and when nodes are located physically further

apart (represented by distance range). Extensive simulations are run on real as well as

synthetic mobility traces. The real mobility trace has been collected from participants that

carry GPS receivers which log position at 30 second intervals. These traces are collected

in five different environments, but we show representative results from a State Fair [93] in

Figures 5.6 and 5.7. State Fair’s area is 500m x 500m and the nodes have typical walking

speeds with recurrent pauses at different stalls.

In order to make a comparison with suitable number of nodes, track logs from each

day are considered to be that of a separate user. These logs have durations from around one

to twelve hours each day. We truncate all logs to 90 minutes during which 18 user devices

record their location. As the trace logs have different durations, ranging from one hour to
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twelve hours, the logs were clipped to make the analysis consistent, i.e., for the first 90

minutes. For longer than 90 minutes, the number of nodes that log information for a longer

duration decreases sharply. So we decided to use 90 minute duration with 18 logs available

(instead of e.g. 4 hours duration with only 7 logs available for that duration).

A similar preprocessing steps were performed on the other four real-world mobility

traces. We show the orientation prediction accuracy of MOEME for all of them in Figure

5.8. Table 5.1 shows the number of nodes along with the duration to which each trace was

clipped for uniformity.

Table 5.1: Real-world mobility traces used in this chapter to show orientation prediction

accuracy

Trace Number of nodes Duration (minutes)

State Fair 18 90

Orlando 41 131

New York 39 74

NCSU 35 103

KAIST 92 253

Synthetic mobility traces are generated using SLAW mobility model [94] with 20

nodes. Length of each step, and pause duration is different for all nodes throughout the trace

duration, where we only specify the exponent of distribution from which a random value is

selected for every node at every step. The environment is made further heterogeneous by

changing velocity, minimum/maximum pause durations, and minimum step length for two

classes of nodes i.e., 10 slow and 10 fast moving nodes. Details about trace settings are

provided in Table 5.2.
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Table 5.2: SLAW mobility trace used for simulation

Description slow fast

Exponent of step length distribution 1.6

Exponent of pause time distribution 0.6

Hurst Parameter 0.75

Velocity of node 1m/s 5m/s

Minimum step length 5m 25m

Minimum pause duration 30s 7.5s

Maximum pause duration 600s 60s

Simulation area 500×500m

5.8.1 Simulation setup

Figures 5.6 and 5.7 show the average of results at all nodes at different times. Since,

the accuracy results belong to a Bernoulli distribution, the 99% confidence interval are

extremely close to the average values due to large number of samples (greater than 2000).

Therefore, the confidence intervals are not plotted. Parameters used for prediction are

tav = 3min and the linear fit line to compute timer thresholds based on distance threshold is

distance =
√

tvi(vj)+28. This line is based on linear fit between square root of timers [14]

and actual distances between nodes in the state fair trace. Thus, to estimate if distance

between two nodes is less than a specific value, we check the node’s timer if it is less than

the value satisfied by the above equation1. We make predictions for three measures:

1. Direction: relative direction of users with respect to NOI;

2. Distance: distance of a user from NOI to be less than a specific threshold,

1The unit of distance and time is in meters and minutes respectively
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3. Count: number of users whose distance from NOI is less than a specific threshold;

and

4. Orientation: the absolute bearing value of users predicted at a NOI.

The prediction of above measures is analyzed against two variables: distance range

and time range. For example, when distance range is 200 m, it means that the prediction

is made for a selection of users that are within 200m of any NOI. When time range is

10 min, it means that the prediction is made for a selection of users whose timer value

has been updated at the NOI within previous 10 min. Thus, a smaller time range means

that prediction is made for a selection of users about whom some information (the time

value) has been updated recently. Intuitively, prediction for small values of time range and

distance is better because it means that the user is situated nearby and the information (time

value) about the node has been updated recently.

5.8.2 Direction estimation

From the logistic regression model, we find different values of θ specific to state fair

trace for different values of time since last contact. In order to generalize, we find that use

of θ0 = 0 gives good results for both the state fair as well as synthetic mobility models.

This simplifies to simply using MT–RT, and inferring the movement of user to be moving

close to NOI for positive difference in timers. Figure 5.6c shows the precision, recall and

accuracy for all users (i.e. the results are average by considering each user to be the NOI)

at different distance ranges. Precision and recall show the efficiency of prediction when

a specific user is moving closer to the NOI. The recall is greater than 90% at all distance

ranges, however, precision and accuracy drop from 90% to 75% when the distance range

increases from 100m to 300m. This is because, for users that are further away, it takes

longer for new information to reach a NOI. However, even a 75% accuracy is extremely
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Figure 5.6: Direction and distance estimation

useful as there does not exist any other mechanism to estimate direction of users in physical

proximity by using the opportunistic transfer of information and without any GPS device.

In contrast to prediction robustness against users that are located further away, time

since last contact (represented by time range) sharply decreases the precision and accuracy.

This is reflected in Figure 5.6d, where prediction accuracy drops from 90% to 50% in

just over 2.5 minutes. This is because there is almost zero correlation in direction of user

movement between two instants of time separated by more than 3 minutes. We believe this
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is a special case of state fair traces and in other environments with directional flow, the

prediction accuracy will drop more gradually. However, this effect needs to be tested based

on collection of real mobility data from additional environments with directional flows.

5.8.3 Distance estimation

Since, the direction estimation is sensitive to time range, we estimate the distance

of users in proximity. Thus, we find if a particular user is within a specific distance of

NOI where this specific distance is given by the distance range. Figure 5.6a shows that

distance prediction (precision and accuracy) drops from 100% at 100m (100m is also the

transmission range of NOI) to 80% at 300m whereas recall initially decreases to 80% but

then increases back to 90% at distance range of 400m. The drop in precision and accuracy

is intuitive but the increase in recall is an artifact of specific user mobility in the state fair

trace and is a result of linear fit of: i) distance with square root of temporal distance; and

ii) the space constraint of approximately 500x500m in state fair. Figure 5.6b shows that

distance prediction is only moderately affected by the time range i.e. the accuracy drops

from 0.80 to 0.77 when time range increases from 0 min to 25min. The reason is that

even though users change direction a lot more rapidly (very likely in 3 min [Figure 5.6d]),

they do not move out of a region that quickly. Thus a user within 400m of NOI is likely to

remain in the region for another 20 minutes even though it may keep on changing directions

more quickly.

MOEME scheme performs better in dense environments. With higher ranges, the

latency for receiving timer values is larger in environments such as the ones we are tar-

geting (parks, malls, streets etc.). With longer delays there is a higher probability that

the user would change direction thus making it difficult to use the prediction made by

MOEME. This is an inherent characteristic of human mobility in some dynamic environ-
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ments. MOEME would perform better with high range if users do not change direction

frequently.
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Figure 5.7: Count prediction

5.8.4 Count estimation

In addition to the distance estimate, we also count the number of users within a

certain region as defined by the distance range. Since, this count may not be exact, we
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test the prediction with different levels of tolerance i.e. a tolerance of 1 means that actual

count and predicted count can differ at most by one. Therefore, prediction accuracy is

higher when tolerance is 3 as opposed to 1. This is also reflected in Figure 5.7a. Similar to

distance estimation, the count estimation is more robust to time ranges in comparison with

distance ranges. When tolerance is 1, the count prediction drops to 50% at a distance range

of 200m - but with tolerance equal to 2, the accuracy is close to 80% as shown in Figure

5.7a.

Figure 5.7b shows the effect of time ranges. For tolerance equal to 1, the accuracy

drops below 50% at 15min but at tolerance equal to 3, the accuracy stays above 80% for up

to time range of 25% which is quite good.

In order to analyze the error in count more deeply, Figure 5.7c and Figure 5.7d show

a histogram of different in actual and predicted count. As seen from the figure, the tolerance

of 3 enables an accuracy of up to 80% in state fair and 70% in SLAW mobility model. The

error in SLAW mobility is more dispersed as it is a random movement model and there is

much less correlation in directions of user movement.

5.8.5 Orientation estimation

The orientation of users is predicted at NOIs using the trained logistic regression

model. The plot shown in Figure 5.8 is generated for users in five different real-world mo-

bility traces. The simulation is run a 1000 times, and in each run arbitrary NOIs are chosen

that make predictions about the orientation of other nodes for the entire duration of the

trace. It is observed that the prediction accuracy is 100% accurate when the timer informa-

tion is just exchanged. This is because, the bearing values exchanged at the time of contact

are fresh and depict accurate information about the actual orientation of nodes. However,

the prediction accuracy drops as the temporal distance increases between the nodes. This

means that no new information about the bearing values of the nodes in question is known,
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Figure 5.8: Prediction accuracy of orientation against timer values. The accuracy is plotted

for the five different real-world mobility traces.

hence the prediction accuracy drops sharply. KAIST trace shows the worst prediction ac-

curacy, and we believe it is because it has the maximum number of nodes for which the

timer and bearing values are not updated soon enough.

5.8.6 Successful downloads in a video sharing application

In order to show an application of MOEME, a video sharing service is simulated in

a mobile environment. At the start of the experiment, a cluster of three nodes is chosen,

wherein each node downloads a chunk of video from the cellular network and maintains
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it for future downloads over speedy and free local Wi-Fi links. Other mobile nodes in the

environment can download individual chunks of original video from the provider nodes

if they come within communication range and the Wi-Fi link is not broken for the entire

duration of the download.

As MOEME powered devices can estimate directional mobilities, a simple heuristic

is used to improve performance. The provider nodes in the cluster estimate the direction

of movement from each other and keep a memory of past λ number of same consecutive

direction predictions. Figure 5.9 shows λ varying from 1 to 6 on the x-axis. Provider nodes

continuously monitor each other’s movement. Suppose a provider node vi is found to move

away from the cluster for λ consecutive predictions, a suitable current non provider node

moving towards the cluster for λ consecutive predictions is identified to take over from vi as

a new provider. Figure 5.9 plot the average successful percentage of downloads performed

for 2000 runs of simulation. It is observed that, using a simple heuristic based on MOEME,

for a communication range of 50 m, average number of downloads served is improved by

more than 16%. The gain of MOEME over methods that do not use directional information

is most noticeable for short communication ranges. However, it is observed, that the overall

performance of servicing video downloads improves for longer communication ranges.

This is because, link failures in such an environment are relatively less. Moreover, it is

observed that with λ = 2, MOEME performs best and the performance asymptotically

degrades with higher λ. This is because, it is a stricter condition and finding nodes that

keep their relative directional movement constant over longer period of times are hard to

find in a dynamic mobile environment.
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MOEME performs better in all three cases
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5.9 Summary

This chapter presents the first fully-distributed and real-time scheme to estimate di-

rection, distance and users in the proximate environment as well as the count of users

within a specific distance of any node of interest (NOI). The prediction of direction utilizes

a logistic regression model and gives more than 77% accuracy for nodes within 200 m of

the NOI whenever the NOI’s timer is updated for a particular user. The estimates of dis-

tance and count are more robust even when no new contact has occurred in the past 10 to

15 minutes and prediction accuracy is greater than 80% for users with 300m of the NOI.

The proposed scheme demonstrates similar performance in terms of prediction accuracy

for real and synthetic mobility traces. It is also shown that MOEME can be employed to

enhance the percentage of successful downloads by over 14 % for a video sharing service

in a mobile environment. This opens up possibilities for intelligent resource allocation and

event scheduling in various other multimedia applications.
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CHAPTER 6

Conclusion

6.1 Summary

In this dissertation we have presented solutions to three important problems pertain-

ing participatory environments, that serve as building blocks to achieve richer collaboration

and data transfers. Participatory environments are highly dynamic and thus, there is usu-

ally no end to end connection between source and destination nodes. In this dissertation

we presented three novel schemes:

1. A novel scheme for predicting contact volume during opportunistic contacts (PCV);

2. A method for computing paths with combined optimal stability and capacity (COSC)

in opportunistic networks; and

3. An algorithm for mobility and orientation estimation in mobile environments (MOEME).

The PCV scheme serves to find the maximum allowable data transfer between a

pair of opportunistically meeting nodes, whereas COSC utilizes PCV, and determines the

combined optimal stable and capacity paths in participatory environments. MOEME is

a distributed and scalable scheme that can be employed to predict users’ mobilities in a

dynamic environment. MOEME also has the capability to detect the orientation of mobile

nodes on top of directional mobilities.

PCV is a lightweight scheme with a flexible architecture. To demonstrate its flexible

structure, we show how PCV uses data rate profile learnt with DatPro Application. We

have also presented a linear time algorithm to compute the contact volume between pairs

of nodes in an environment. Extensive simulation results demonstrate the efficacy of our
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approach in terms of reducing bandwidth wastage. Moreover, it is shown that the effect of

false negatives is minimal in PCV.

COSC builds on top of PCV, wherein two objectives are taken into account for im-

proving data transfers between source and destination pairs. COSC takes into account both

capacity and stability to come up with a utility function that can be solved optimally using

a dynamic programming approach. However, as the optimal paths computed may not be

applicable at run-time due to the dynamic nature of the environment, COSC has the abil-

ity to fall back to more traditional routing mechanisms. Moreover, the results obtained in

this study can be used to evaluate the suitability of applications in different user movement

scenarios.

MOEME can be employed to estimate the directional mobilities and orientation of

participating nodes in a dynamic environment. It is particularly useful for indoor environ-

ments where GPS signals are weak and prone to large errors. MOEME is fully distributed

and uses logistic regression to classify directional mobilities and orientations. It is also

shown that MOEME can be employed to enhance the percentage of successful downloads

by over 14 % for a video sharing service in a mobile environment. This opens up possi-

bilities for intelligent resource allocation and event scheduling in various other multimedia

applications. All the simulation results shown in this dissertation are conducted on a variety

of synthetic and real-world mobility traces that encompass scenarios with a wide range of

statistical properties.

6.2 Broader applications

The work presented in this dissertation has a wide variety of applications. Consider

an emergency evacuation scenario in an indoor movie theatre. The goal of any successful

evacuation plan is to guide people out of the building as quickly and safely as possible.
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However, it is observed during evacuations that: 1) humans tend to crowd only a subset

of all available exits; and 2) people may not be aware of all available exits. The solutions

presented in this dissertation are directly applicable to the described scenario. By equip-

ping exits with smart and appropriate technologies, MOEME can be employed to estimate

people’s directions and orientations during evacuation. Whenever, certain exits tend to get

crowded, a subset of users can be informed (via opportunistic message exchange) of other

available exits in a building. Furthermore, COSC can be employed to find suitable cost

effective paths for relaying these messages.

PCV and COSC, are also worthwhile options for gaming and entertainment applica-

tions. As mobile phones are getting powerful everyday, programmers and developers are

creating fully functional 3D games, utilizing every computing cycle graphics cards have to

offer. Though, such graphics intensive games promise a fine user experience on standalone

smartphones, they may not perform very well in a p2p multiplayer environment. Thus,

it is important to make communication and collaboration among devices more efficient to

deliver a better experience for multiplayer gaming applications. Moreover, the proposed

schemes have applications in several other real life situations including video sharing, par-

ticipatory sensing and crowd sourcing.

6.3 Future work

6.3.1 Contact volumes over multiple devices

These days it is common to see people carrying more than one smart device. Cur-

rently, PCV takes into account a single device per person, and models the interaction be-

tween two such people. PCV can be extended by developing prediction models for people

carrying multiple devices, where devices carried by one person are always within the com-

munication range of each other.
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6.3.2 Path sharing in COSC

COSC is a scheme to find a path set that has combined optimal stability and capacity

over a time varying graph. However, COSC does not allow users to share links among

several paths. For example, consider two source destination pairs s1, d1 and s2, d2. The

path set over a TVG between s1, d1 may contain an edge ei in the i-th timestamp. Currently,

COSC does not find optimal cost paths between s2, d2 that may partially utilize the edge ei.

It will be interesting to determine the performance of path sets that share edges with each

other.

6.3.3 UAVs & drones

The work presented in this dissertation is primarily tested on real-world human mo-

bility traces and synthetic human mobility models. This work can be extended by testing it

on other mobility models, such as those in Unmanned Aerial Vehicles (UAVs) and drones.

6.3.4 Vehicular networks

The work presented in this dissertation can be employed in vehicular networks.

Though the trajectories followed by vehicles have more patterns and relatively simpler

than human mobility, there is nonetheless an overlap. Vehicles can also make use of the

store-forward paradigm, especially while stopping at traffic signals. Is it possible to predict

mobility and orientation of vehicles in real-time using MOEME? Can COSC still find com-

bined optimal stable and capacity paths in a TVG, where vehicles are modeled as vertices?
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