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Kurzfassung

ProblemGeschäftsprozesse sind in der Industrie allgegenwärtig und Geschäftsprozessma-

nagement daher ein wichtiger Baustein in Unternehmensabläufen. Prozessaus-

führungsumgebungen erlauben die automatische Ausführung von Geschäftspro-

zessen. Die zwei bekanntesten standardisierten Sprachen, um Geschäftsprozesse

zu modellieren, sind die Web Services Business Process Execution Language

2.0 (BPEL) und Business Process Model and Notation 2.0 (BPMN). Zur Auswahl

stehen für beide eine Vielzahl von Ausführungsumgebungen und somit besteht

die Qual der Wahl: Welche Ausführungsumgebung erfüllt die Anforderungen

am besten? Eine rationale Auswahl wird durch das Fehlen von objektiven,

reproduzierbaren und gesicherten Informationen über die Qualität solcher

Ausführungsumgebungen verhindert. Dies kann zu unfundierten und unausge-

reiften Entscheidungen und diese wiederum zu hohen Kosten führen.

LösungDiese Arbeit stellt eine effiziente und effektive Benchmarkinglösung vor, um

die notwendigen Informationen für rationale Entscheidungen aufdecken zu

können. Das Fundament besteht aus einer Abstraktionsschicht und einer Bench-

markingsprache für Prozessausführungsumgebungen. Die Abstraktionsschicht

stellt eine uniforme API bereit um mit jedem möglichen System in gleicher Wei-

se zu interagieren und die Benchmarkingsprache ermöglicht es Benchmarks in

einer kompakten, abgeschlossenen und interpretierbaren domänenspezifischen

Sprache darzustellen. Das Benchmarkingrahmenwerk für Prozessausführungs-

umgebungen führt Benchmarks, die in dieser Sprache repräsentiert sind, auf

Ausführungsumgebungen aus, welche die Abstraktionsschicht implementieren.

Die erzeugten Benchmarkingergebnisse werden durch ein interaktives Das-

hboard visualisiert und somit Entscheidern zugänglich gemacht. Aufbauend

auf dem Benchmarkingrahmenwerk verwendet das effiziente Benchmarkin-

grahmenwerk von Prozessausführungsumgebungen virtuelle Maschinen, um

Testisolierung zu erreichen und um die Zeit bis zum Vorliegen der Ergebnisse

zu reduzieren. Der dabei entstandene zusätzliche Verwaltungsaufwand, der

sich durch die Wiederherstellung von Snapshots ergibt, bleibt akzeptabel. Auf-

bauend auf den gewonnen Erfahrungen werden acht Herausforderungen im

Bereich des Benchmarkings von Prozessausführungsumgebungen identifiziert,

die wiederum in 21 Patternkandidaten resultieren.

ErgebnisDie Ergebnisse zeigen, dass der beschriebene Ansatz sowohl effektiv als

auch effizient ist. Effektiv, da eine Reihe von Qualitätscharakteristiken des

ISO/IEC 25010 Produktqualitätsmodells von sowohl BPEL-basierten als auch

BPMN-basierten Prozessausführungsumgebungen bestimmt werden können. Ef-
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fizient, da das Benchmarking von Prozessausführungsumgebungen vollständig

automatisiert und die Vorteile der Virtualisierung für eine noch höhere Aus-

führungseffizienz und Testisolation genutzt wurden. Dadurch wird die Hürde,

gute Benchmarks zu erstellen, signifikant herabgesetzt. Dies ermöglicht die

Bewertung von Prozessausführungsumgebungen und erleichtert somit die dazu

in Bezug stehenden rationalen Auswahlentscheidungen.
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Abstract

ProblemBusiness processes have become ubiquitous in industry today. They form the

main ingredient of business process management. The two most prominent

standardized languages to model business processes are Web Services Business

Process Execution Language 2.0 (BPEL) and Business Process Model and Nota-

tion 2.0 (BPMN). Business process engines allow for automatic execution of

business processes. There is a plethora of business process engines available,

and thus, one has the agony of choice: which process engine fits the demands

the best? The lack of objective, reproducible, and ascertained information

about the quality of such process engines makes rational choices very difficult.

This can lead to baseless and premature decisions that may result in higher

long term costs.

SolutionThis work provides an effective and efficient benchmarking solution to reveal

the necessary information to allow making rational decisions. The foundation

comprises an abstraction layer for process engines that provides a uniform API

to interact with any engine similarly and a benchmark language for process

engines to represent benchmarks in a concise, self-contained, and interpretable

domain-specific language. A benchmark framework for process engines per-

forms benchmarks represented in this language on engines implementing the

abstraction layer. The produced benchmark results are visualized and made

available for decision makers via a public interactive dashboard. On top of

that, the efficient benchmark framework uses virtual machines to improve

test isolation and reduce “time to result” by snapshot restoration accepting a

management overhead. Based on the gained experience, eight challenges faced

in process engine benchmarking are identified, resulting in 21 process engine

benchmarking.

ResultResults show that this approach is both effective and efficient. Effective

because it covers four BPEL-based and another four BPMN-based benchmarks

which cover half of the quality characteristics defined by the ISO/IEC 25010

product quality model. Efficient because it fully automates the benchmarking

of process engines and can leverage virtualization for an even higher execution

efficiency. With this approach, the barrier for creating good benchmarks is

significantly lowered. This allows decision makers to consistently evaluate

process engines and, thus, makes rational decisions for the corresponding

selection possible.
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Every moment you are open, as a

humble student, you are

surrounded with infinite

possibilities of choice.

Bryant McGill

1. Introduction

This chapter introduces and motivates this work. First, the context is described

in Section 1.1 followed by the problem statement in Section 1.2. The approach

that presents the idea for a solution to the previously posed problem is described

in Section 1.3. The used research method is described in Section 1.4, and the

contributions that are produced by applying this research method are detailed

in Section 1.5. Last, the remaining structure of the whole thesis is given in

Section 1.6.

1.1. Context

Business

Processes

The age of processes has arrived and is at its peak [53]. Although data (e.g.,

orders, incidents, or invoices) are still important, the focus lies on the processes

(e.g., order handling, incident reporting, or invoice sending processes) instead.

Business processes comprise activities that are conducted to achieve a business

goal [156]. They can stretch either within an organization (i.e., orchestra-

tions) or between organizations (i.e., choreographies) [44, 197]. Furthermore,

business processes can have varying degrees of automation, repetition, and

structuring [278]. Weske [278] defines a business process as follows:

Definition 1.1 (Business Process)

“A business process consists of a set of activities that are performed in

coordination in an organizational and technical environment. These

activities jointly realize a business goal. Each business process is enacted

by a single organization, but it may interact with business processes

performed by other organizations.” [278, p. 5]

Business

Process

Manage-

ment

Today, (business) processes are everywhere [73, 244]. Moreover, they have to

be managed and constantly improved. Managing such processes does not only

cover how to represent, but also how to design, enact, analyze, and improve

them [278]. This discipline is called Business Process Management (BPM),

and the constant optimization of processes that is standard practice in the

industry is known as the BPM lifecycle [261]. According to Gartner Inc. [78],

BPM is central for Business-IT alignment, and for an effective and efficient

organization [278]. BPM is defined by Weske [278] as follows:
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1.1. Context

Definition 1.2 (Business Process Management)

“Business process management includes concepts, methods, and tech-

niques to support the design, administration, configuration, enactment,

and analysis of business processes.” [278, p. 5]

Business

Process

Manage-

ment

System

Today, such business processes are not enacted manually, but automatically

as this ensures a plethora of organizational benefits [278]. This can be done

through implementing a software system that mirrors the behavior of one or

more business processes. One possibility is to implement the business processes

using a programming language such as Java. This would be similar to use an

object-oriented programming language in the field of data persistence. There,

an impedance mismatch was discovered [38]. A better solution is to automate

the processes through a generic software system that can execute instances

of previously defined business processes natively without the need for any

conceptual mapping. Such systems are called Business Process Management

Systems (BPMSs) [53, 125, 278] and are defined as follows by Weske [278]:

Definition 1.3 (Business Process Management System)

“A business process management system is a generic software system that

is driven by explicit process representations to coordinate the enactment

of business processes.” [278, p. 5]

Process

Engines

The terms BPMS and Workflow Management System (WfMS) are used syn-

onymously, similar to Reijers [206]. A process engine is solely responsible for

enacting processes leaving aside all other functionality [278], similar to the

workflow engine of WfMSs [154, 279]. This work concentrates solely on process

enactment. Hence, the term process engine, which is considered the heart of

a BPMS, is used instead of BPMS in the following to account for that spe-

cific focus. Concentrating on process engines also leaves the business process

modeling tools out of scope. The definition by Weske [278] is used:

Definition 1.4 (Process Engine)

“The process engine is responsible for instantiating and controlling the

execution of business processes. It is the core component of a business

process management system.” [278, p. 121]

RUSPSuch generic software systems are known as Ready to Use Software Products

(RUSPs) (or under the older term Commercial Off-The-Shelf (COTS) Software

Products) as they are not developed per project, but developed once by a

vendor and then ready to be used in any suitable project [117]. The defini-

tion according to the ISO/IEC standard is given in the following. Similar to

other generic software such as the text processor Microsoft Word, they are

installed, configured, used, and extended through plugins. Such RUSPs are

only customized through configuration and extension, not through modifying

3



1. Introduction

the underlying source code [117]. The explicit but unsubstantiated exclusion of

open source products from being RUSPs in the ISO/IEC 25051 standard [117]

is questionable. Especially regarding the large and complex process engines, it

does not really matter whether one has access to the source code or not, as it is

not feasible for the vast majority of the users to modify the software. Hence,

the definition for RUSP in the following is also applied for complex and large

open source software.

Definition 1.5 (Ready to Use Software Product)

“[A Ready to Use Software Product] is a software product available for

any user, at cost or not, and use without the need to conduct development

activities.” [117, p. 3]

Standards

and Lan-

guages

Business processes are represented in process models using process languages.

Since the rise of processes, at least 19 different business process modeling

languages have emerged [171]. The two most notable ones are defined as

part of the OASIS standard Web Services Business Process Execution Language

2.0 (BPEL) [181] and the ISO standard1 Business Process Model and Notation

2.0 (BPMN) 2.0 [189]. Using these languages, business processes can be

modeled in a way so that they are directly executable on supporting process

engines by means of business process instances of business process models.

Definition 1.6 (Business Process Instance)

“A business process instance represents a concrete case in the operational

business of a company, [...] [e]ach business process model acts as a

blueprint for a set of business process instances [...].” [278, p. 7]

Business

Process

Example

An example of a business process is given in Figure 1.1. It has been taken

from the BPMN ISO/IEC [115, p. 168] standard and shows a procurement

process from the perspective of a buyer. The buyer has to perform several tasks

such as handle quotations, handle order, and handle shipment but needs his

superior for the task approve order and a colleague for the task review order

which implements the four-eyes principle [115].

Figure 1.1.: Procurement process example using BPMN [115, p. 168]

1The BPMN standard has originally been created under the Object Management Group (OMG),
but later has been converted to an International Standards Organization (ISO) standard.
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1.1. Context

Plethora

of Stand-

ard-based

Process

Engines

Within the field of BPM, there are numerous vendors [191] available. Look-

ing at the standard-based process languages, in particular, 74 implementers

of the BPMN specification [190] can be found, and a list of BPMN process

engines [283] is available as well. Moreover, there are more than ten BPEL

engines available on the market according to Wikipedia [282]. Other listings

of process engines are available as well (e.g., an overview of open source

workflow engines [119]). Among BPEL and BPMN process engines, there are

proprietary as well as popular open source engines available for both standard-

based process languages. In summary, there are a plethora of implementations

available per standard-based process language which compete with each other

in enacting instances of process models defined using the respective language.

The term process engine is used according to the following definition of a

standard-based process engine throughout the remainder of this work.

Definition 1.7 (Standard-based Process Engine)

A process engine that enacts processes represented in process models

using a standard-based process language.

Portability

and Scope

In theory, process models defined according to the standard-based process

language can be migrated from one standard-supporting process engine to

another one. Since vendors want to distinguish their products from the com-

petition, it is expected that these engines do vary greatly [56] and that can be

observed as well [90, 237]. Concentrating on standard-based process engines

excludes process engines that only support a single process language which

is not standardized, e.g., Windows Workflow [30], as if there is only one al-

ternative, there is no agony of choice. Put differently, this work concentrates

on standard-based process languages for which there are multiple implement-

ations (i.e., standard-based process engines) available. This does not limit

the contributions of this work as BPEL [181] and BPMN [115], the two most

popular process languages, are standard-based [129, 171], and for them, more

than ten process engines per language have emerged.

Adoption

and Mar-

ket

In the latest report from Forrester Research2, Richardson et al. [208] estimate

that the BPM market will have reached $6 billion in 2015. The latest Gartner

report Magic Quadrant for Intelligent Business Process Management Suites [54] es-

timates a market for BPMSs at $2.7 billion in 2015. According to the BPTrends3

study about the State of Business Process Management by Harmon and Wolf [92],

19% of the surveyed companies say that BPMSs are the most important tools

in 2015. Furthermore, 19% plan to buy such a BPMS in 2016, resulting in the

need to determine which of the available BPMS to select. Hence, the selection

and comparison of the available process engines is an actual problem in industry

because the decision is imminent shortly.

2http://forrester.com/research/, visited 2017-3-31
3http://www.bptrends.com/, visited 2017-3-31
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Summary To sum up, different engines (i.e., alternatives) enact processes modeled

using standard-based process languages. Shortly, companies need to overcome

the agony of choice in their move towards a higher adoption of BPM in a large

market. Hence, this leads to and supports hypothesis H1.

Hypothesis H1 Today, business procedures are modeled in automatable busi-

ness processes. Process engines can help as they allow executing previously

modeled business processes directly. For the popular business process standards,

there are too many different process engines available, resulting in an agony

of choice.

1.2. Problem Statement

Multi

Criteria

Decision

Making

The situation of choosing one out of a set of competing and discrete alternatives

according to multiple different criteria is known as Multi Criteria Decision

Making (MCDM) [254]. Applied to our context, process engines compete

which each other to enact process models based on a standard-based process

language. To make an informed, rational, and accountable decision, the process

engines (i.e., the alternatives) are compared with each other based on how well

they fulfill project-dependent requirements (i.e., the criteria).

Definition 1.8 (Multi Criteria Decision Making)

“[Multi criteria decision making answers the question:] given a set of

alternatives and a set of decision criteria, then what is the best alternat-

ive?” [254, p. XXV]

Decision

Making

Steps

A variety of different formal methods is available to make a rational de-

cision. Although there are general decision making methods such as the

Analytic Hierarchy Process (AHP) by Saaty [222], there are also specific ones

targeted at the evaluation and selection of RUSPs by ISO/IEC [114], Lawlis

et al. [145], Tarawneh et al. [247]. Even for evaluating BPMSs, there is an ap-

proach put forward by Delgado et al. [45]. They share the same general decision

making process comprising the problem definition, requirements identification,

goal establishment, alternative identification, evaluation criteria development,

decision making method selection, alternative evaluation by criteria, and final

solution validation [8]. Although the decision making methods vary, they all

need to evaluate each alternative against previously specified criteria using

quantitative or qualitative methods. In the example evaluation process for

COTS products [114], the step is called “[e]valuate software products based

on external evaluation results, product documentation, product operating ex-

perience, product prototyping, [and] other product evaluation methods.” [114,

Figure 3 on p. 31] The outcome of those evaluations influences the quality of

the outcome of the selection. The more trusted information (i.e., objective,
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reproducible, and ascertained information) is available, the more profound

the decision will be. Put differently, if the information cannot be revealed or

is not available, resulting in uncertainty, effective decision making is aggrav-

ated [157]. In this work, the focus is on providing a method to reveal the

quality of process engines so that uncertainty in decision making of selecting

process engines is reduced.

Product

Quality

Model

The quality of process engines is understood according to the product qual-

ity model defined in the ISO/IEC 25010:2011 standard [113]. The product

quality model forms a hierarchic structure with quality characteristics and sub-

characteristics to categorize quality attributes (i.e., measurable quality proper-

ties). Within this standard, the product quality model comprises eight quality

characteristics ranging from functional suitability and performance efficiency to

usability and resilience. Using this quality model, the quality requirements as

well as the actual quality properties of process engines can be categorized and

expressed. The quality model has the advantage that it covers both, functional

and nonfunctional aspects, and therefore provides a holistic view of the tech-

nical quality of process engines. It solely focuses on the technical aspects of the

product, leaving aside nontechnical characteristics such as pricing, licensing,

and support contract conditions [45].

Definition 1.9 (Software Quality Characteristic)

“[A software quality characteristic is a] category of software quality

attributes that bears on software quality.” [113, p. 19]

Definition 1.10 (Quality Attribute)

“[A quality attribute is an] inherent property or characteristic of an entity

that can be distinguished quantitatively or qualitatively by human or

automated means.” [113, p. 18]

Quality

Charac-

teristics

and KO

Criteria

The quality characteristic functional suitability is the core quality character-

istic as it corresponds to functional aspects [113]. This quality characteristic

along with its sub-characteristics mostly represent Knock-Out (KO) criteria (i.e.,

hygiene factors by Herzberg [107]). If they are not supported, the process

engine cannot be considered at all, and the evaluation would indicate a “red

flag.” They must be supported because they are necessary to execute process

instances of the process models that are or will be created within that project.

Mature software products should already fulfill Knock-Out (KO) criteria. For

instance, if the required functional attribute for a BPMN process engine is that

the exclusive gateway is necessary and a particular engine does not support it,

the criterion is a KO criterion as without it the project cannot be implemented

using that process engine. The other seven quality characteristics match with

nonfunctional aspects, e.g., performance efficiency or resilience [113]. They

express the Quality of Service (QoS) when making use of the functional suit-

ability characteristics. Nowadays, some of them are seen as KO characteristics
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as well, e.g., robustness and resilience upon failure [153]. For instance, if a

single process instance running into an infinite loop can crash the whole process

engine, this probably renders the process engine unusable for many use cases

which require a stable and working process engine. Not every nonfunctional

attribute, however, is seen as a KO criterion. If, for instance, a BPEL process

engine performs the parallel for each loop sequentially instead of in parallel as

requested, it may still be ok as long as the engine performs well enough despite

that behavior. KO criteria are not useful for MCDM methods that work by

weighting and prioritizing features, comparing mature alternatives with each

other. They can be seen as the first evaluation phase before a more sophisticated

selection method such as AHP is applied.

Infor-

mation

In summary, applying decision making methods requires the availability of

information about the quality of the possible alternatives (i.e., process engines).

Using the terminology of the ISO/International Electrotechnical Commission

(IEC) 25010 standard [113], it requires external measure of software quality. If

such information is not available, or not of the necessary quality, the quality of

the decision suffers. Hence, this leads to and supports hypothesis H2.

Hypothesis H2 Objective, reproducible, and ascertained information about

the quality of process engines is the foundation for a methodical comparison

and selection of the best fitting process engine for a specific set of quality

requirements.

Hidden

Truth

The ultimate truth of the quality attributes of a process engine resides within

the product itself. However, software is complex, hard to build, and hard to

understand. One reason for this is that “[s]oftware is not very visible” [12,

p. 1]. Its characteristics are hidden. Hence, revealing these characteristics

helps in reducing the complexity of software, making them easier to build and

understand. Revealing the quality characteristics of process engines would

make them also easier to understand, and therefore compare and select.

Available

Inform-

ation

Today, information about the quality of process engines is already avail-

able. That information has been extracted from the products by different

stakeholders [117]: the vendor or other third parties such as independent re-

search institutes (e.g., Gartner4 [54, 122, 230, 231], TEC5 [248], Fraunhofer

Institute6 [1, 2], and Forrester7), IT consultancies (e.g., Capgemini Consult-

ing8 [226]), or researchers (e.g., Workflow Patterns Initiative [291], [289],

and others [16, 41, 45, 237, 289]). The information about the quality of

the process engines is presented in different artifacts: product information9,

4https://www.gartner.com/, visited 2017-3-31
5http://www.technologyevaluation.com/, visited 2017-3-31
6https://www.fraunhofer.de/en.html, visited 2017-3-31
7https://www.forrester.com, visited 2017-3-31
8https://www.capgemini-consulting.com/, visited 2017-3-31
9E.g., http://ode.apache.org/ or https://camunda.org/, visited 2017-3-31
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product documentations10, studies [1, 2, 54, 122, 159, 160, 226, 230, 231],

books [152, 204], and scientific papers [16, 41, 45, 237, 289]. Each of them is

evaluated regarding the quality of their provided information subsequently in

the following.

Product

Informa-

tion and

Docu-

menta-

tions

Vendors have detailed knowledge about the characteristics of their products,

and market them on their websites. Some vendors do provide a comparison

to other engines, e.g., on the homepage of bpel-g11, but the feature matrices

typically show that the product of the vendor is the best, and therefore contain

only limited value. A sign for that is that neither the homepage nor the

documentation state what the engine cannot do or where its weaknesses are.

Moreover, product information may not be telling the whole truth12 or may be

filtered through the marketing team in a way to make the presented information

hard to use for comparisons. The documentation of a product does not suffer

from being marketing material, but instead from its size, effectively hiding the

relevant information in large unstructured text documents. It typically lacks a

structured and comparable form of the product quality attributes. Moreover, the

documentation may be out of sync with the product as both are two separate

artifacts. A manual verification of the documentation, however, is not feasible.

StudiesResearch institutes aim to draw pictures of the state-of-the-art to reveal trends.

This ranges from comparing process engines on a high level [54, 122, 230, 231]

and on a more detailed one [1, 2]. The high level studies are conducted using

a standardized questionnaire that is answered by the vendors, and the more

detailed studies via a one-day workshop with the vendors. Consequently, even

the more detailed studies lack detail and relevance because a single day used

in those studies is not enough time to reveal information of high detail and

quality. Consultants that are tasked with a BPM project as Scheithauer and

Klinnert [226] help clients for their selection of the appropriate process engine

by conducting an evaluation of them, but their results are not disclosed, and

are, therefore, not considered available.

BooksDomain experts and vendors write books about the available products, such

as Lessen et al. [152], Rademakers [204]. For instance, Rademakers [204,

pp. 398] provide a summary of the supported language features of the BPMN

engine Activiti. Furthermore, a comparison of Activiti with other BPMN engines

is available by Rademakers [204, pp. 7] as well. In contrast, Lessen et al. [152,

Chapter 9] provide a description of three proprietary and one open source

BPEL engine, but there is no comparison of their features. Both information is

completely outdated by now, as the release of these books was over four years

ago.

10E.g., http://ode.apache.org/userguide/ or https://docs.camunda.org/manual/7.6/,
visited 2017-3-31

11https://code.google.com/p/bpel-g/wiki/BPELComparison, visited 2017-3-31
12See the press release of the NVIDIA Corporation for putting out wrong information about their

product at http://blogs.nvidia.com/blog/2015/02/24/gtx-970/, visited 2017-3-31.
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Scientific

Papers

Published and peer-reviewed scientific papers [16, 41, 79, 237, 289] contain

results about the quality attributes of process engines. This includes the perfor-

mance comparison of three BPMN process engines by Skouradaki et al. [237]

and the performance evaluation of three BPEL process engines by Bianculli

et al. [16]. Workflow patterns are suitable for comparing the quality of process

engines (Section 2.2.3). Wohed et al. [289] present a pattern-based analysis

of long outdated open source BPMSs. A more complete pattern-based eval-

uation [291] is available as well by the Workflow Patterns initiative. Papers

that present the evaluation of modeling tools are related but not relevant as

well [41, 79]. Due to long publication procedures, especially for journals, the

results presented in scientific papers are outdated upon publication. Moreover,

in the mentioned papers, only aggregated results are presented because of the

page-restricting nature of peer-reviewed papers and more detailed results are

missing as well.

Available

Informa-

tion Gap

The available information suffers from being irrelevant, unaccountable, un-

structured, incomparable, and outdated. Although the vendor has the deepest

knowledge about the product, he is biased because he wants to show his product

in the best light possible, whereas the other more objective third parties lack

the knowledge to publish relevant information. That situation aggravates any

comparison of the quality between process engines from different vendors or

between different versions of a process engine from a single vendor over time.

Coping

with Un-

certainty

Due to the lack of available information, there is uncertainty in making the

right decision for a particular process engine. One of the three three reasons

for uncertainty in decision making is incomplete information [157]. Although

there are ways to cope with incomplete information, the first one is to conduct

a thorough information search, applying the strategy of reducing uncertainty to

complete the previously lacking information [157]. In reality, gathering that

information is hard because the information is often unavailable, ambiguous,

misleading, or worthless [58, 88, 157, 290]. This holds for the problem of this

work as well. For instance, the label “standard compliant” raises expectations

which often happen to remain unfulfilled [56].

Revealing

Inform-

ation

There are, however, ways to reveal information that is currently unavailable:

through the initiative of the decision makers themselves [157]. Regarding

Ready to Use Software Products, this is done through Request for Information

(RfI) inquiries and Proof of Concept (PoC) demonstrations [117, 145].

Request

for In-

formation

The Request for Information (RfI)13 questionnaires are collections of require-

ments of the decision maker encoded as questions which are answered by the

vendor. Companies such as Technical Evaluation Centers (TEC) provide stand-

ardized questionnaires [249] and the corresponding vendor answers [248] for

a plethora of process engines. Such standardized questionnaires are not tailored

to the specific needs of the decision maker, which may be irrelevant. Moreover,

13Request for Proposal (RfP) is used synonymously in literature. In this work, however, only
RfI is used for consistency.
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the answers of the vendors are quickly outdated if the vendor does not put

effort into keeping them up to date, similarly to the product documentation.

What is more, the answers are given by the vendor. They are unverified and

given in a way so that the product is presented in the best light. Also, it is not

feasible to add every detailed question to the questionnaire, resulting in less

and more abstract questions instead.

Proof of

Concept

In PoC demonstrations (i.e., evaluation sessions [145]), the decision maker

lets the vendors demonstrate specific use cases with their products. The decision

maker then evaluates how well the product supports those use cases and

extrapolates from that observation information about the quality of the process

engine. Such demonstrations, however, require time from the decision maker

and the vendor. Hence, because of that effort, the use cases are typically

reduced to a minimal set which in turn limit the range of quality attributes they

can cover. A PoC can also be used to verify some of the answers given by the

vendor as part of a RfI questionnaire [159, 160].

Revealing

Informa-

tion Gap

As described, revealing information is hard. Applying the two described

methods requires effort and the revealed information lacks depth. Moreover,

available evaluation approaches [45, 145, 247] completely leave out how

quality attributes can be revealed. Hence, this leads to and supports hypothesis

H3.

Hypothesis H3 Available information is not sufficient to methodically com-

pare and select the best fitting process engine. In practice, this leads to

unfunded and premature selection decisions that cause high long-term costs.

1.3. Approach

TitleThe title of this work is “Effective and Efficient Process Engine Evaluation.”

It comprises the constraints how the problem stated in Section 1.2 has to be

solved. The solution that can evaluate process engines has to be effective and

efficient. These constraints are defined as follows.

Definition 1.11 (Effectiveness)

“The degree to which something actually happens in the way it ought to

happen.” [87, p. 12]

Definition 1.12 (Efficiency)

“The degree to which a system or component performs its designated

functions with minimum consumption of resources.” [203, p. 30]

Effective-

ness

Effectiveness in the context of process engine evaluation can be seen from

a technical and a business perspective. The business perspective comprises

the evaluation of process engines within industry. It includes capturing of
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requirements in projects and checking whether an approach can reveal the

relevant information for those specified requirements. This is out of scope of this

work. Instead, the focus is put on the technical effectiveness which comprises

the ability to extract relevant, objective, and ascertained information on the

quality of process engines in a reproducible way and make them available such

that they can be used as part of a selection decision. The extraction is a generic

procedure for various different quality attributes. Hence, the definition of

technical effectiveness is derived from the definition of effectiveness as follows:

Definition 1.13 (Technical Effectiveness)

The degree to which something technically actually happens in the way

it ought to happen.

Efficiency Efficiency is about minimizing the resource consumption. A resource is an

abstract term for something that is not available indefinitely. To make it more

precise, time is most crucial for process engine evaluation. In case an evaluation

takes too long, it can block or delay dependent steps, e.g., decisions. In case,

however, it can be performed quickly, it may even open up possibilities such

as quick decisions and integration into Continuous Integration (CI) pipelines.

Hence, instead of efficiency, the more precise term execution efficiency is used.

Definition 1.14 (Execution Efficiency)

“The degree to which a system or component performs its designated

functions with minimum consumption of time.” [203, p. 31]

Bench-

marking

To support an effective and efficient process engine evaluation, it is proposed

to apply automated benchmarking through tests. This follows the approach

by the ISO/IEC standards family for selecting RUSP software [114, 117], but

tailors it to process engines. Especially through automated benchmarking, it

should be possible to reveal quality attributes in a traceable, ascertained, and

reproducible way whereas the effort can be managed by appropriate languages,

models, frameworks, and prototypes. It can even be combined with available

information as it allows the decision maker to verify them. Hence, the following

main research hypothesis is posed:

Hypothesis H4 With automated benchmarking, it is possible to retrieve

objective and comparable information on the quality characteristics of widely

different process engines reproducibly and efficiently.

Challenges This raises a variety of challenges that makes it hard to test hypothesis H4

directly. Instead, hypothesis H4 is subdivided into six sub-hypotheses ranging

from H4.1 to H4.6. Each of them focuses on a specific aspect and challenge of

hypothesis H4, and is tested in separate chapters within Part II. The evaluation

of hypothesis H4 itself is based on the testing of each sub-hypothesis. In
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the following, the sub-hypotheses are detailed subsequently, starting with

hypothesis H4.1.

Many-

to-many

Decision

Makers

and Dif-

ferent

Products

Process engines vary widely in their quality characteristics, including the way

they are used, e.g., installed, started, and process models deployed [150]. This

poses the challenge of how to handle such widely differing software products

in a variety of benchmarks. In reality, this is a many-to-many problem in

which many decision makers have to compare many process engines. As a

solution, a Process Engine Abstraction Layer (PEAL) is suggested that reduces

the complexity so that the decision makers can use the abstraction layer and

the vendors can implement the abstraction layer for their products. In other

words, the following hypothesis is proposed:

Hypothesis H4.1 A uniform interface is a suitable solution to interact with

widely different process engines in a similar way.

Clear and

Concise

Bench-

mark

Represent-

ation

Another aspect of benchmarking is the challenge how to represent and

express the benchmarks themselves. This is important as the benchmarks need

to contain all necessary information on how to conduct them and to make

their results reproducible. As a solution, a Domain-Specific Language (DSL)

is proposed with an interchangeable serialization format. In this work, that

language is called Process Engine Benchmark Language (PEBL). Such a Domain-

Specific Language would act as a way to express the benchmarks and their

results in a clear and concise way. In other words, the following hypothesis is

proposed:

Hypothesis H4.2 A domain-specific testing language is a suitable form to

make quality criteria measurable.

Automated

Frame-

work

Conducting a benchmark automatically is important to achieve objective

and reproducible results, and to make benchmarking practical. This includes

ensuring standard best-practices from the test domain such as test isolation. In

this work, the Process Engine Benchmark Framework (PEBWORK) is proposed

as a solution that can conduct benchmarks defined in PEBL on process engines

supported by PEAL. Hence, the following hypothesis is proposed:

Hypothesis H4.3 A benchmarking framework is a suitable means to reveal

objective and well-founded information about process engines.

Results

Presenta-

tion

The benchmarks and their results contain the relevant information that

a decision maker can use in the chosen decision making method such as

AHP. The information, however, is hidden in the large set of data and needs

to be presented in a way so that the information relevant for the decision

maker can be found quickly. Moreover, the results need to be stored in a

database so that other decision makers can make use of them as well without
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actually conducting the benchmark by themselves. The evaluation can be

performed at different points in time independent of the selection. As a solution,

an interactive dashboard is proposed called Process Engine Benchmarking

Interactive Dashboard (PEBDASH) which presents this information in a way

such that the user can navigate to the information relevant to him. The

dashboard gets its information from a database which can accumulate a variety

of different benchmarks with their results to allow for comparison over time

using any previously loaded data. Hence, the following hypothesis is posed:

Hypothesis H4.4 An interactive dashboard is a suitable form to present

benchmarking results and support selection decisions.

Efficiency

and Feas-

ibility

Especially the proprietary standard-based process engines come with complex

and long running installation and startup procedures. For instance, the Oracle

Business Process Engine that is part of the Oracle SOA Suite 11gR1 middleware

comes with an installation guide [193] that requires the user to download five

files summing up to five GB and following necessary installation steps stated on

48 pages. Lenhard et al. [150] showed that installation and startup time varies

greatly between open source process engines as well. This puts a burden on

conducting benchmarks with such process engines, resulting in a much higher

time to result. For larger benchmarks, this may result in waitings days and

not hours for the results. To overcome this challenge, the use of virtualization

is proposed as part of the Efficient Process Engine Benchmark Framework

(ePEBWORK) for creating an execution efficient version of PEBWORK. The

central idea is to be independent of the actual installation and startup times

by using and restoring snapshots of virtual machines with a fresh and already

installed as well as started process engine. Hence, the following hypothesis is

proposed:

Hypothesis H4.5 By leveraging virtualization it is possible to improve the

efficiency of a benchmarking framework significantly.

Know-

ledge

Repres-

entation

Solving all the previously stated challenges creates a set of solutions. To

prevent that other researchers and practitioners have to pose and solve these

challenges over and over again that knowledge should be captured. It is

proposed to capture it in the form of patterns [5]. Those patterns are named

Process Engine Benchmarking Pattern Candidates (PEBPATT) in this work as

they are the first iteration towards a full pattern catalog. Hence, the following

hypothesis is proposed:

Hypothesis H4.6 Patterns are a suitable form to describe the central elements

of process engine benchmarking.
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1.4. Method

Design

Science

To support the hypotheses, design science is applied. Design science “creates

and evaluates IT artifacts intended to solve identified organizational prob-

lems” [108, p. 77]. Such IT artifacts are categorized by March and Smith [164]

into constructs (i.e., languages), models (i.e., problems and solutions using

an existing language), methods (i.e., guidelines, practices, or algorithms), or

instantiations (i.e., tools and implementations) [108, 164, 284]. Because the

term model is used differently in a variety of contexts, in this section, the defini-

tion by March and Smith [164] that “models represent situations as problem

and solution statements” [164, p. 256] is followed. Models and methods are

closely related: methods deliver solutions based on specified problems whereas

models represent both, problems and solutions [284]. In this work, a variety

of IT artifacts is built and evaluated. Hence, design science fits perfectly as a

research method. To ensure that design science is applied correctly (i.e., in

conjunction with approved scientific practice), the seven guidelines of Hevner

et al. [108] and their relation to the thesis will be described shortly in the

following.

Table 1.1.: Artifacts Categorized using Terminology by Hevner et al. [108]

Artifact Type Artifact Evaluation Methods

Construct PEBL Analytical (Expressiveness)
Model PEAL Descriptive (Scenarios)
Model Benchmarks Analytical (Static, Dynamic)
Method PEBWORK Analytical (Good Benchmark Criteria)
Method ePEBWORK Analytical (Performance)
Method PEBPATT Analytical (Challenges, Relationships)
Instantiation PEAL Prototype Testing (Scenarios)
Instantiation betsy Testing (Benchmarks), Analytical (Results)
Instantiation vbetsy Experimental (Performance compared to betsy)
Instantiation PEBDASH Analytical (Requirements), Testing

GuidelinesIn this work, a variety of different artifacts is designed as shown in Table 1.1,

ranging from constructs, models, and methods to instantiations (Guideline 1:

Design as an Artifact). They solve a relevant problem, as they help to close

the information gap by allowing the decision maker to obtain the necessary

information (i.e., objective information about the quality of process engines)

as already outlined at the beginning of this chapter (Guideline 2: Problem

Relevance). The IT artifacts are evaluated using different kinds of evaluation

methods as shown in Table 1.1, comprising descriptive, analytical, experimental,

or testing-based evaluation methods (Guideline 3: Design Evaluation). The

research contributions comprise the created IT artifacts given in Table 1.1

(Guideline 4: Research Contributions). These artifacts have been created and

evaluated with the necessary research rigor, e.g., by applying formal methods,
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peer-review within the research group, and conducting experiments thoroughly

(Guideline 5: Research Rigor). This dissertation project started with initial

versions of PEBL, PEBWORK, and PEAL for a conformance benchmarking of

BPEL engines, and since then, these artifacts have been iterated and improved

over time to cover more engines, additional quality characteristics, other process

languages, and higher efficiency (Guideline 6: Design as a Search Process). Last,

in Section 1.5, the research is communicated to academia primarily through a

plethora of publications and to industry primarily through the open sourced

prototypes, such as the dashboard14 visualizing the produced benchmark results

(Guideline 7: Communication of Research).

1.5. Contributions

The contributions of this work are 1) concepts, 2) benchmarks, 3) prototypes,

and 4) publications. Each of them is outlined in the following.

Concepts The core contributions comprise six concepts that, together, form a body

of knowledge for benchmarking process engines: Process Engine Abstrac-

tion Layer (PEAL), Process Engine Benchmark Language (PEBL), Process En-

gine Benchmark Framework (PEBWORK), Efficient Process Engine Bench-

mark Framework (ePEBWORK), Process Engine Benchmarking Interactive

Dashboard (PEBDASH), and Process Engine Benchmarking Pattern Candi-

dates (PEBPATT). Each is detailed in its chapter, as stated in Section 1.6,

and together, they support hypotheses H4.1 up to H4.6.

Bench-

marks

As part of the evaluation of the concepts, benchmarks have been created.

These benchmarks, however, are contributions by themselves, including the

methods applied to come up with the benchmark. General ideas of the methods

to produce good benchmarks are described (Section 4.5.1). The application of

the benchmarks, however, is subdivided into BPEL-based benchmarks regarding

conformance in Section 4.5.2.1, expressiveness in Section 4.5.2.2, static analysis

in Section 4.5.2.3, robustness in Section 4.5.2.4, and BPMN-based benchmarks

regarding conformance in Section 4.5.3.1 and expressiveness in Section 4.5.3.2.

The key points of the results of these benchmarks for different BPEL and BPMN

engines are available in Section 5.5.2.

Prototypes:

betsy,

vbetsy,

and dash-

board

The concepts are also evaluated regarding their feasibility through pro-

totypes. All prototypes are open source and publicly available on GitHub.

The concepts are implemented in two prototypes: betsy and the dashboard.

BPEL/BPMN Engine Test System (betsy)15 is the prototype for evaluating PEAL,

PEBL, PEBWORK, and ePEBWORK. It supports open source BPEL and BPMN

engines in different versions and configurations within local or virtual envir-

onments. It includes BPEL as well as BPMN benchmarks [81, 94–96, 98–100].

14https://peace-project.github.io/, visited 2017-3-31
15https://github.com/uniba-dsg/betsy, visited 2017-3-31
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Although the variant of betsy that uses virtualization is called virtualization-

enabled betsy (vbetsy), it is integrated into betsy itself [100]. The dashboard16

is an HTML5 web application and the prototype for PEBDASH. It visualizes

data from benchmarks described in PEBL [18].

Other Pro-

totypes

Additional prototypes have been implemented as well. They are either

early versions of the previously mentioned prototypes, separate prototypes that

are used by betsy directly, or completely separate prototypes. Uniform BPEL

Management Layer (UBML)17 is a uniform Web Service and Java API for seven

open source BPEL engines in different versions and configurations [97]. It

is a preliminary version of the implementation of PEAL. Similarly, the betsy-

dashboard18 is a rudimentary HTML dashboard for betsy, which has been

superseded by the actual dashboard prototype. The prototype betsy makes use

of BPELlint and BPMNviz. BPELlint19 is a static code analysis tool for BPEL

that supports 71 out of the 94 static analysis rules [101]. And BPMNviz20 is a

software that supports automated image generation from a BPMN file. Based

on BPELlint, an IntelliJ IDEA Plugin21 called BPELlint-idea has been created to

use BPELlint within IntelliJ IDEA. It is published to the plugin repository22.

Publica-

tions

The contributions described in this thesis are backed by 22 publications as

shown in Table 1.2. Of these 22 publications, 17 papers are peer-reviewed.

Most of the peer-reviewed papers are published as part of international confer-

ences and workshops, and two of these papers have been extended to journal

publications as well. The author of the dissertation is the first author in nine of

the 17 peer-reviewed publications. This dissertation is based on the research

produced and already published in these 22 publications. It puts the produced

research into a consistent shape, and, on top, adds additional insight and dis-

cussion as well. For each upcoming chapter, it is made explicit upon which

of these publications the respective chapter is based on. Most of the research

has been produced in collaboration. Only those parts that have been primarily

researched by the author are included in this work.

Furthermore, apart from already published work, three papers are in the

publishing pipeline that build on the contributions of this work. First, an exten-

ded pattern language [103] that builds upon the pattern candidates [102] is

under review. Second and third, the lessons learned from having benchmarked

a plethora of process engines is gathered as a to be published poster [63] and

as a conference paper [151] under review.

16https://github.com/peace-project/dashboard, visited 2017-3-31
17https://github.com/uniba-dsg/ubml, visited 2017-3-31
18https://github.com/uniba-dsg/betsy-dashboard, visited 2017-3-31
19https://github.com/uniba-dsg/BPELlint, visited 2017-3-31
20https://github.com/uniba-dsg/BPMNviz, visited 2017-3-31
21https://github.com/uniba-dsg/BPELlint-idea, visited 2017-3-31
22https://plugins.jetbrains.com/idea/plugin/7709-bpellint-idea, visited 2017-3-31
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1. Introduction

Table 1.2.: Contributions: Publications by Type and Date

Type Year Where Publications Σ 22

Journal 2016 STT [82] 1
2017 FGCS [85] 1

Conference 2012 SOCA [150] 1
2013 SOCA, ICSOC [95, 96] 2
2014 SOCA, SEKE [98, 99, 212] 3
2015 SOSE [81, 101] 2
2016 SOSE [84, 176] 2

Workshop 2014 OTMW, ICSTW, ZEUS, CLOUDCYCLE [93, 97, 100, 201] 4
2016 ZEUS, PEaCE, PATTWORLD [18, 83, 102] 3

Tech. Report 2012 BB-WIAI [94] 1
2014 BB-WIAI [202, 210] 2

1.6. Outline

Three

Parts

The thesis itself is structured into three parts. The problem and the relevant

background is stated in Part I, followed by the proposed approach regarding

process engine benchmarking in Part II which details the six core contributions

along with their respective prototypes and evaluations. The thesis is concluded

in Part III.

Process Engine Abstraction Layer (PEAL) 

Process Engine Benchmark Language (PEBL) 

Process Engine Benchmarking Pattern Candidates (PEBPATT) 

Process Engine Benchmark Framework 

(PEBWORK) 

Efficient Process Engine Benchmark 

Framework (ePEBWORK) 

H4.1 

H4.2 

H4.3 

H4.5 

H4.6 

Process Engine Benchmarking 

Interact. Dashboard (PEBDASH) 

H4.4 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Figure 1.2.: Structure of Part II: The six core contributions and their dependencies
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1.6. Outline

Nine

Chapters

Part I introduces the work in Chapter 1. The background for the remainder of

the work is presented in Chapter 2. Part II is structured into six chapters which

build upon one another as visualized in Figure 1.2. Each chapter supports its

hypothesis through a concept, prototype, and evaluation. Chapter 3 introduces

the Process Engine Abstraction Layer (PEAL) and Chapter 4 defines the Process

Engine Benchmark Language (PEBL). Together, they build the foundations

which are necessary for the Process Engine Benchmark Framework (PEBWORK)

in Chapter 5. In Chapter 6, the Process Engine Benchmarking Interactive

Dashboard (PEBDASH) visualizes data encoded in PEBL. The more efficient

version of PEBWORK, the Efficient Process Engine Benchmark Framework

(ePEBWORK), is presented in Chapter 7. Last, the challenges and solutions that

have been applied so far are captured as Process Engine Benchmarking Pattern

Candidates (PEBPATT) in Chapter 8. The thesis is concluded in Part III with a

summary of the major contributions, the discussion of competing approaches,

and an outlook on future work in Chapter 9.
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If I have seen further, it is by

standing on the shoulders of

giants.

Isaac Newton

2. Background

Back-

ground

Overview

This work is built upon and related to established methods and terms. In this

work the software tools are evaluated by comparison of their characteristics

using existing decision making methods. A brief overview of decision theory and

its most relevant decision making methods is given in Section 2.1. As this work

focuses on process engines, the runtime environments for business processes

and workflows, Section 2.2 provides an in-depth introduction into Business

Process Management and its corresponding standards, languages, lifecycles, and

patterns. Instead of comparing the characteristics of process engines, this work

focuses on revealing the actual properties of those engines. Those properties

(i.e., the actual characteristics or decision-relevant information) are obtained

through benchmarking and testing. Hence, an overview of software testing,

benchmarking, and software quality is given in Section 2.3. Last, another goal

of this work is to provide an efficient benchmarking of process engines. Hence,

Section 2.4 discusses the advantages and disadvantages of virtual environments,

as well as their suitability for improving the benchmarking efficiency.

2.1. Software Selection Decisions

Software

Selection

Decisions

Regarding the selection of the best fitting alternative out of a set of competing

alternatives, several methods have been developed over time. Section 2.1.1

outlines decision theory, the foundation for evaluating different alternatives.

Most of its original methods focus on a single criterion. As the selection of a

software product requires not only a single criterion but multiple criteria, the

concept of Multi Criteria Decision Making (MCDM) as a more sophisticated

way of decision making is described in Section 2.1.2. In Section 2.1.3, the

popular MCDM method Analytic Hierarchy Process (AHP) [222] is detailed to

provide a better understanding how the results produced within this work can

be applied in an actual selection decision.

2.1.1. Decision Theory and Decision Making

Decision

Theory &

Making

Decision theory is an important discipline within the field of operations research.

Overall, decisions “involve three components – acts, states, and outcomes, with

the latter being ordinarily determined by the act and the state under which it

takes place” [207, p. 6] and are made by the so-called decision makers. In other
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words, “[d]ecision making is the study of identifying and choosing alternatives

based on the values and preferences of the decision maker. Making a decision

implies that there are choices to be considered, and in such a case we want not

only to identify as many of these alternatives as possible but to choose the one

that best fits with our goals, objectives, desires, values, and so on.” [104] To

help the decision makers to make decisions, decision tables and decision trees

are proven methods [173, 246]. With these the decision maker can capture

and describe the acts, states, and outcomes as well as the relationships between

them. In a decision table the acts and states are the columns and rows whereas

the outcomes are put in the cells depending on which act is performed in

which state [207]. A decision tree is a hierarchical version of the flat decision

table [207] in which each leaf represents an outcome and each edge either a

state or an act leading towards the outcome.

Decision

Problem

In the context of this work, the acts represent all the different process engines

from the various vendors – each process engine being another option. The

states are the different usage scenarios in which the engines will be used. These

usage scenarios are normally captured by a list of requirements or user stories.

The outcomes may be measured in money earned or wasted, which indirectly

depends on the extent the requirements are fulfilled. The issue is that there

are a great number of different states and, therefore, outcomes, as a decision

of choosing the best fitting software system involves many criteria. And this

plethora of criteria has to be grouped to make it more approachable (e.g., in

a hierarchy). Consequently, a decision table or tree would not suffice as they

cannot capture all the different criteria and their possible values and influences

on the outcomes in a way useful to the decision maker. Furthermore, decision

makers can either be individuals or groups of varying sizes. And the type of

decision maker influences which decision making technique has to be chosen.

Our targeted problem may involve either an individual IT expert making the

decision in a small company or a group of both IT and business people in large

ones. This is also not captured directly in a decision tree or table. Therefore, a

more sophisticated method for making the decision is necessary which can be

found in the concept of Multi Criteria Decision Making (MCDM).

2.1.2. Multi Criteria Decision Making

MCDM

Taxonomy

An overview of the field of Multi Criteria Decision Making (MCDM) is given by

Triantaphyllou [254]. According to Zimmermann and Gutsche [295], MCDM

is subdivided into Multi Object Decision Making (MODM) and Multi Attribute

Decision Making (MADM). They differ only in their decision space (i.e., their

alternatives). For MODM, the decision space is continuous whereas it is discrete

for MADM. The selection problem in this work is about already known process

engines and which of them fits a specific use case best. This type of decision

clearly has a discrete decision space with the different process engines being the
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different countable alternatives. Hence, this work is treating a MADM problem.

Since most MCDM decisions do have a discrete decision space and therefore

are MADM decisions, the two terms are often treated synonymously [254].

Throughout this work, the more well known term MCDM is used for the MADM

decision problem of selecting the best fitting process engine.

MCDM

Methods

For solving MCDM problems, there are a plethora of methods available that

have been developed over time, e.g., the Weighted Sum Model (WSM) [68,

254], Weighted Product Model (WPM) [27, 172], Analytic Hierarchy Pro-

cess (AHP) [222], revised AHP [13], Analytic Network Process (ANP) [223],

Elimination and Choice Expressing Reality (ELECTRE) [67, 216] and Technique

for Order Performance by Similarity to Ideal Solution (TOPSIS). Every method

available is based on three steps according to Triantaphyllou [254]:

“1. Determine the relevant criteria and alternatives.

2. Attach numerical measures to the relative importance of the

criteria and to the impacts of the alternatives on these criteria.

3. Process the numerical values to determine a ranking of each

alternative.” [254, p. 5f.]

They have two things in common: the alternatives and the decision cri-

teria [33]. Our MCDM problem of deciding which process engine to choose fits

best with AHP as most criteria are structured in a hierarchy as it is normally

done in RfIs and most decisions are made in a group which is also supported

by AHP. Among the many methods for multi-criteria decision making (i.e.,

Figueira et al. [66] describe 24 different ones), AHP also achieves the best

ratings within a comparison of MCDM methods using the same data [28].

2.1.3. Analytic Hierarchy Process

AHP The Analytic Hierarchy Process (AHP) [222] and its more abstract form Analytic

Network Process (ANP) [223] from Saaty, is, in fact, one of the most widely

used and popular MCDM methods. But while AHP uses a hierarchical structure

for the factors of the decision, ANP uses a graph structure instead. Hence,

AHP is a subset or special configuration of an ANP as one can emulate a tree

structure with a graph. Since its inception in 1990 AHP has seen much use.

Vaidya and Kumar [256] found 150 papers that applied AHP and analyzed

27 of them in detail. One of its uses is the selection of software products

or systems. For instance, Lai et al. [142, 143] used it to choose the best

multimedia authoring system whereas Wei et al. [277] determined the best

Enterprise Resource Planning (ERP) system with it. Hence, AHP is well-suited

for our task of evaluating process engines.

AHP in

Detail

The AHP method is divided into three steps. First, the decision problem

has to be structured into a tree with at least three levels. Each criterion

can be subdivided into an arbitrary large subcriteria tree. For reasons of
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comprehensibility the method is described here without any subcriteria using

a tree with exactly three levels in the following. On the first and upmost

level one puts the goal, on the second level one puts the factors or decision

criteria, and on the third and lowest level one puts the different alternatives.

In the second step, the decision criteria are compared pair-wise by stating the

relative importance towards the goal on a scale from 1 up to 9. For instance,

a 1 means both are equally important whereas 9 means that one is extremely

important in comparison to the other. From this, we can determine the local

criteria priority by computing the eigenvalues of the comparison matrix. Next,

the pair-wise comparison is conducted on the lowest level by comparing the

alternatives stating the relative importance towards each decision criterion.

From this, we can determine the local alternative priority by computing the

eigenvalues of each of the comparison matrices. Third, the global priorities

are computed by summing up the multiplication of the criteria priority from

level two with the alternative priority from level three to a single value per

alternative. The alternative with the highest global priority is the best according

to this approach [222].

Revised

AHP

Nowadays, a revised AHP is also available because of shortcomings of the

original AHP which were uncovered by Belton and Gear [13]. Because these

shortcomings only occur on special occasions and the revised AHP is more

complicated to apply, the original AHP is still in use and recommended today,

for instance by the Department of Energy, USA [8].

2.2. Business Processes and Workflows

BPMWhile AHP is useful for the evaluation and comparison of many kinds of

software, this work focuses specifically on process engines. Process engines are

the runtime environment for business processes and workflows and the heart of

large Business Process Management Systems (BPMSs) [278]. A complete BPMS

supports the full Business Process Management (BPM) method which specifies

the lifecycle of a business process. The phases of this lifecycle are described in

more detail in Section 2.2.1. The business processes themselves are described

using languages which are specified in long and complicated standards as

described in Section 2.2.2. Process engines implement these standards and

can execute processes defined in the languages described by the standard. An

overview of them is given in Appendix A.

2.2.1. Business Process Management and its Lifecycle

BPM

Lifecycle

As the name suggests, the BPM lifecycle is centered around business processes,

or processes for short. One version of the lifecycle is shown in Figure 2.1. BPM

comprises a four-step feedback loop to constantly improve a process (or a set of

processes) [267, 278]. First, a process is designed, and then configured so that
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it can be enacted (i.e., executed). The lessons learned through the enactment of

that process are captured in the diagnosis step which then leads to an improved

version of that process in the next process design step. In this work the focus

lies on the system configuration as in this step the user has to decide which

process engine to use so that a particular process (or set of processes) is enacted

according to his requirements [260].

Process Design Diagnosis 

Process 

Enactment 

System 

Configuration 

Process 

Figure 2.1.: The BPM Lifecycle, adopted from van der Aalst et al. [261, p. 5]

Workflows In the introduction the terms revolving around BPM are defined according

to Weske [278]. Besides BPM that manages business processes, there is also

Workflow Management (WfM) that manages workflows. In the following these

terms are compared with each other. The definition of a workflow below

clearly separates a process from a workflow with the workflow being the

automated part of a process. Today processes can often be executed directly

on BPMSs. Hence, in that case, a workflow and a process are the same and,

therefore, they are used interchangeable. In this work the terms are used

in the same way as only executable processes (i.e., workflows) are covered.

According to van der Aalst et al. [261], the methodology Business Process

Management (BPM) extends the methodology Workflow Management (WfM)

by not only concentrating on process enactment by also on diagnosis and

improvement of the processes. Hence, the term BPM is used instead of WfM

throughout this work.

Definition 2.1 (Workflow)

“[A workflow is t]he automation of a business process, in whole or

part, during which documents, information or tasks are passed from

one participant to another for action, according to a set of procedural

rules” [279, p. 8]

2.2.2. Business Process Languages and Standards

Process

Execution

Taxonomy

The taxonomy revolving around a process and its execution is shown in Fig-

ure 2.2. The central element is the process language which consists of both

the syntax (in most cases the XML elements and attributes) and semantics (i.e.,

execution behavior). Typically, the language is specified as part of a stand-

ard. Using the syntax of the language, models of processes can be created.

Those models are typically serialized in XML. An engine executes instances of

such deployed process models by following the execution semantics defined
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by the standard. During the execution of the process instances messages are

exchanged (received and sent) by either existing instances or new instances

are created as a result. Hence, the process languages are Domain-Specific Lan-

guages (DSLs) for describing executable processes according to the following

definition for a DSL.

Definition 2.2 (Domain-Specific Language)

“A domain-specific language [...] is a programming language or execut-

able specification language that offers, through appropriate notations

and abstractions, expressive power focused on, and usually restricted to,

a particular problem domain.” [263, p. 26]

Process

Language

Today, there are a plethora of different process languages available as shown

in a comparative study by Mili et al. [171] in 2010. Since then new versions

of existing process languages were created which differed greatly from their

previous versions, e.g., the language BPMN contains execution semantics and

an even larger feature set compared to BPMN 1.2 [188].

model 

language 

standard instance 
specifies syntax 

semantics 

conforms 

implement 

deploy to execute 

messages 

instance of 

exchange 
engine 

Figure 2.2.: Taxonomy: Standard, Language, Model, Instance, and Engine, partly taken
from Weske [278]

Process

Language

Standards

Leymann et al. [155] discuss the importance of standards for BPM. The

three process languages XML Process Definition Language (XPDL) 2.2 [280],

Web Services Business Process Execution Language 2.0 (BPEL) 2.0 [181] and

Business Process Model and Notation 2.0 (BPMN) 2.0 [115] (and their previous

versions [188]) are defined through industry standards. The XPDL [280]

specification has been created by the Workflow Management Coalition (WfMC),

the BPEL [181] specification by the Organization for the Advancement of

Structured Information Standards (OASIS) and the BPMN [189] specification

by the Object Management Group (OMG) and additionally standardized by the

International Standards Organization (ISO) as [115]. XPDL is not considered

in this work despite being implemented in several engines [281] because XPDL

is mostly only used as a serialization format and converted in either a BPEL or

BPMN model for actual execution. Hence, BPEL and BPMN are detailed within

this section later on.

Standard

Confor-

mance

A criterion for comparing process engines is that of language support, or

which language features are supported by a process engine and which are

not. Because the languages are defined in a standard, the notion of standard

conformance arises. Instead of solely focusing on whether a feature is supported
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by an engine, the standard conformance puts the focus on whether a language

feature is supported in accordance to the standard. In this work, the notion of

standard conformance is used also for the notion of language support, leaving

aside any vendor-specific language features as those would prohibit portability

and lead to undesired vendor lock-in. Standard conformance in regard to the

language features is defined under the term feature conformance as follows.

Definition 2.3 (Feature Conformance)

Feature conformance, or conformance, is defined as the number of sup-

ported language features of a process engine according to the standard in

relation to the number of the overall language features of the language

standard.

2.2.2.1. Web Services Business Process Execution Language 2.0

BPEL 2.0 The Web Services Business Process Execution Language 2.0 (BPEL) consists of

a large XML-based vocabulary to describe processes which can receive and send

XML-based SOAP [270] messages in a WS-based environment that relies upon

the WSDL 1.1 [271] standard. A BPEL process orders the message exchanges

through its control and data flow comprising basic and structured activities as

well as scopes.

Basic

Activities

“Basic activities are those which describe elemental steps of the process

behavior.” [181, p. 84] Messages are exchanged through receive, reply, and

invoke activities, and variables are read from and written to in the assign activity.

With the throw and rethrow activities, faults are thrown and rethrown along the

call hierarchy. The process instance is set on hold for a specific time with the

wait activity or killed instantaneously with the exit activity. The empty activity

simply acts as a placeholder as it has no execution semantics.

Structured

Activities

The structured activities weave the control flow out of these basic building

blocks. The simplest one is executing a collection of activities in sequence. Other

typical control flow constructs known from block-structured programming

languages such as a condition using the if activity with optional elseif and else

branches as well as different loop types, for instance, the while and repeatUntil

activities, are available, too. The special loop forEach supports the (parallel)

execution of different iterations. With pick activities one can wait until either a

message is received or a timeout is fired. Parallel execution is possible using

flow which builds a directed acyclic graph with optional conditions for moving

through the graph, providing a graph-based model. This shows that BPEL is

both graph-based and block-structured [135].

Scopes Scopes provide the execution context of activities. The process is the root

scope of the XML tree. A scope defines variables and their visibility, and can have

faultHandlers, compensationHandlers, and terminationHandlers (FCT handlers)

attached which are required to handle or react upon faults or required for the

teardown of the process or scope. Fault handlers can catch previously thrown
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faults through catch and catchAll constructs and handle them appropriately

or rethrow them in case they should be handled by another fault handler in

the scope hierarchy. Compensation handlers can be registered to explicitly

compensate previous state changes either in the process instance itself or in

external systems which must be reverted or cleaned up after a fault or erroneous

state occurred. The termination handlers are called when the scope is being

left – they can be used to clean up external state, close any open resources,

or simply to log the teardown of the scope. Another type of handler is the

eventHandler. Such a handler can be attached to a scope as well. It can receive

events in the form of SOAP messages as long as the scope it is attached to is

active. The events arrive in parallel and the eventHandlers will process them in

parallel, too.

Message

Exchanges

A BPEL process uses the concept of message exchanges. Receiving a message

creates a message exchange which is required for sending a reply to the pre-

viously received message. Especially, in case multiple different messages are

received and therefore multiple different replies have to be sent to different

callers.

Message

Correla-

tion

Another concept is that of correlation. When the engine receives a message,

it needs to determine to which process instance this message must be routed.

In BPEL one can define correlations based on the content of the message to

setup such routing. Some messages can also trigger the creation of new process

instances.

Static

Analysis

Rules

The BPEL specification comprises 94 static analysis rules [181] that are

numbered from 1 up to 95, with the rule number 49 missing. These rules cover

aspects that are not part of the accompanying XML Schema Definition (XSD)

of the specification and “any process definition that fails one or more of these

checks must be rejected by the WS-BPEL processor.” [181, p. 194] Because

those rules are part of the specification, they are also under the umbrella of

standard conformance. To differentiate between the feature support during

process enactment and the detection of errors in the configuration phase, the

notion of static analysis conformance, or static analysis for short, is introduced.

Definition 2.4 (Static Analysis Conformance)

Static analysis conformance, or static analysis, is defined as the number of

rules a process engine has fully implemented to reject erroneous process

models upon deployment in relation to the overall number of static

analysis rules.

CoreBPELThe BPEL language contains a lot of syntactic sugar and can be reduced to a

much smaller subset named CoreBPEL [110] which has no semantic redundancy.

For instance, a repeatUntil can be replaced by a while loop using an additional

temporary variable to “ensure at least one iteration and expression language

independence when negating the condition” [110, p. 1988].
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Standards An orchestration language like BPEL lives within a world of standards from

the Web Services (WSs) ecosystem. It grounds itself on top of XML, XML

Schema Definition (XSD) and the Web Service Description Language (WSDL).

A plethora of WS-* standards extend the basic WSDL definition by providing

Quality of Service (QoS) attributes (e.g., security [180] or reliability [182]).

Moreover, there are multiple extensions available for BPEL as stated by Kopp

et al. [137] (e.g., BPEL4Chor [43] and BPEL4People [4]).

2.2.2.2. Business Process Model and Notation 2.0

BPMN 2.0 The Business Process Model and Notation 2.0 (BPMN) 2.0 [115] aims to be

“readily understandable by all business users, from the business analysts that

create the initial drafts of the processes, to the technical developers responsible

for implementing the technology that will perform those processes, and finally,

to the business people who will manage and monitor those processes” [115,

p. 1]. Hence, the focus of BPMN is to improve Business-IT alignment by closing

the gap between the design and implementation of processes [115].

Confor-

mance

The language itself can be used in four different settings and has four dif-

ferent conformance levels, one for each setting. It can be used solely for

modeling purposes (Process Modeling Conformance), but also for execution on

BPMN engines (Process Execution Conformance) according to the execution

semantics [115, chapter 13] or on BPEL engines (BPEL Process Execution Con-

formance) by mapping BPMN processes to BPEL models [115, chapter 14]. Last,

it supports the modeling of interacting processes as choreographies (Choreo-

graphy Modeling Conformance) [115, chapter 11]. Using these conformance

levels, one can easily a) determine the focus of a specific process model, and b)

evaluate tools whether and how well they support these conformance levels. An

overview of the different conformance types is also available [115, chapter 2.6].

Language Although the language allows a plethora of different kinds of processes to

be defined (i.e., collaborations, conversations, choreographies, and private or

public orchestrations), the focus is on the ones that can be executed according

to the Process Execution Conformance. Hence, only the related language features

available for that conformance level are discussed. A process is a graph of

activities, events, gateways and sequence flows, the so-called flow elements. Each

of them is detailed in the following subsequently.

Activities In the BPMN specification, there are many different types of activities. The

actual work in a process model is done through tasks (e.g., ship product, send

order, or create user). A task is an activity which can also be executed multiple

times, making it a loop activity or multi-instance activity by specifying additional

attributes and elements for a task. The other activities are (ad-hoc) sub-processes

or calls to them via a so called call activity. Sub-processes are particularly useful

to decompose a large process into smaller parts which can be called, creating a

hierarchic structure.
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GatewaysGateways route the control-flow, which may lead to concurrency, too. The

standard contains exclusive, inclusive, parallel, event-based and complex gate-

ways, supporting a variety of different control-flow strategies and patterns [115,

p. 435]. A typical condition (i.e., an if with an else) is encoded using an ex-

clusive gateway, whereas one can use parallel gateways to describe a fork/join

pattern, creating and then merging multiple branches which execute in parallel.

Event-based gateways defer the selection of different control-flow branches

based on the arrival of a specific event. The first arriving event determines

which control-flow branch is executed. The complex gateway allows specifying

different merging behaviors through a boolean condition which handles the

token semantics of BPMN directly.

EventsEvents are central to BPMN: each process starts through start events and

ends through end events. In between, there are intermediate events or so-

called intermediate boundary events which can be emitted and reacted upon

for a variety of reasons, including the arrival of a message or the occurrence

of a fault. A mechanism for compensation is also available through specific

compensation events and corresponding handlers.

Remaining

Language

Elements

To structure larger processes and make them more human-readable, a process

can be partitioned into several lanes of a pool. However, lanes are ignored by

the engines as they do not have any execution semantics. Pools or participants

can define their own processes.

Data FlowIn BPMN, it is possible to model data flow as well. Those diagrams are used

within this work to describe PEBWORK in Chapter 5. A data flow model consists

of tasks and data objects. Tasks represent the functions which have inputs and

outputs in the form of data objects. The actual connection of a task with a data

object is implemented through a data association, which also specifies through

its direction whether the data object is an input or output of the task. A process

itself can have inputs and outputs as well. In that case, the data objects are

marked with an arrow (filled for output, unfilled for input) in the upper left

corner of their visual representation. A data object can also be specified as a

data store for reuse or an IT System to represent different states within systems.

2.2.3. Workflow Patterns

PatternsAnother way to look at the features of process engines, in general, is that of

patterns. A pattern is defined as follows by Alexander [5].

Definition 2.5 (Pattern)

“[A pattern] describes a problem that occurs over and over again in our

environment, and then describes the core of the solution to that problem,

in such a way that you can use this solution a million times over, without

ever doing it the same way twice.” [5, p. x]
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Workflow

Patterns

A workflow pattern is a pattern that captures specific interactions of a work-

flow (i.e., a pattern in the workflow domain). Within the workflow domain a

plethora of pattern catalogs has been created as shown in Table 2.1. The pattern

catalogs range from low-level pattern catalogs like control-flow, data, time, and

service, to high-level catalogs with activity or process viewing patterns. Most of

them have been created as part of the Workflow Pattern Initiative [291].

Table 2.1.: Workflow Pattern Catalogs

Pattern Catalog Publications

Control-Flow Patterns [257]
Service Interaction Patterns [9, 10, 174, 259]
Time Patterns [144]
Data Patterns [217, 220]
Exception Patterns [221]
Resource Patterns [218, 219]
Activity Patterns [250]
Change Patterns [275, 276]
Process Viewing Patterns [228]
Protocol Patterns [264]
Correlation Patterns [11]

Expressive

Power

According to Felleisen [59], the expressive power (i.e., expressiveness) of

programming languages is determined by “whether a programming language

can express a programming construct.” [59, p. 36] This refers to the effort that

is attached if one wants to express a particular construct in another language.

If the other language does not support this construct, and requires the use of

a variety of other constructs instead as a workaround, the other language is

denoted as less expressive.

Express-

iveness

The workflow patterns build upon the idea of expressive power of program-

ming languages but apply them to workflow and process languages. With these

patterns, one can describe how directly a pattern can be expressed in a given

language (i.e., language expressiveness). A pattern is directly supported by a

given language if there is a single language construct which corresponds to the

pattern at hand, and only partially supported if there is a workaround using a

few language constructs together to implement the pattern (or part of it). If the

workaround would require a huge amount of language constructs, the pattern

is not directly supported. There are already evaluations of process languages

and engines regarding the support for these patterns, but they are published for

older versions of the process engines and hard to reproduce [149, 285, 288].

In the following, the term expressiveness is defined in the context of process

engines.
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Definition 2.6 (Engine Expressiveness)

The engine expressiveness (i.e., expressiveness of a process engine) is

defined as the workflow pattern support of the process engine in relation

to the workflow pattern support of the process language the process

engine supports.

Table 2.2.: Language Support for Workflow Control-Flow Patterns

Control-Flow Patterns[257] BPEL BPMN

WCP-01 Sequence + +
WCP-02 Parallel Split + +
WCP-03 Synchronization + +
WCP-04 Exclusive Choice + +
WCP-05 Simple Merge + +
WCP-06 Multi-Choice + +
WCP-07 Structured Synchronizing Merge + +/-
WCP-08 Multi Merge - +
WCP-09 Structured Discriminator - +/-
WCP-10 Arbitrary Cycles - +
WCP-11 Implicit Termination + +
WCP-12 MI Without Synchronization + +
WCP-13 MI With A Priori Design-Time Knowledge + +
WCP-14 MI With A Priori Run-Time Knowledge + +
WCP-15 MI Without A Priori Run-Time Knowledge + -
WCP-16 Deferred Choice + +
WCP-17 Interleaved Parallel Routing +/- +/-
WCP-18 Milestone +/- -
WCP-19 Cancel Activity +/- +
WCP-20 Cancel Case + +

Language

Express-

iveness

In Table 2.2, the pattern support is provided for the two process languages

(i.e., their language expressiveness). It reveals that the two languages do

not have the same expressiveness: BPMN, actually, is more expressive than

BPEL. This is mainly because BPEL cannot directly handle the patterns WCP08,

WCP09, and WCP10.

CriticismDespite the huge popularity of the workflow patterns, there is also criticism.

According to Börger [24], the workflow patterns fail to “provide practition-

ers with a suitable means [to] precisely and faithfully [...] capture business

scenarios and to analyze, communicate and manage the resulting models” [24,

p. 305]. Nevertheless, for this work, the workflow patterns still can act as a

helpful comparison criterion stating how well an engine supports these patterns

and how far away it is from the comparison baseline which is the support of

the process language itself (i.e., engine expressiveness).
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2.3. Software Evaluation

In this work, the quality of process engines is evaluated which builds upon the

quality standard family of the ISO/IEC called Systems and software Quality

Requirements and Evaluation (SQuaRE) described in Section 2.3.1. The method

to reveal the quality of such process engines is benchmarking as described in

Section 2.3.2. Benchmarking makes use of software testing which is outlined in

Section 2.3.3.

2.3.1. ISO/IEC Standard Family 25000 SQuaRE

The International Standards Organization (ISO) and International Electrotech-

nical Commission (IEC) standardization bodies have consolidated and harmon-

ized several previous software quality standards in a family of standards for

Systems and software Quality Requirements and Evaluation (SQuaRE). Those

standards are subdivided into six different divisions listed in Table 2.3. In the

following, the three divisions that are important for this work are outlined:

25010 [113], 25041 [114], and 25051 [117].

Table 2.3.: The ISO/IEC 250xx standards family [113, 114, 116, 117]

ISO/IEC Quality Division

2500n Management [116]
2501n Model [113]
2502n Metrics
2503n Requirements
2504n Evaluation [114]
25050–25099 Extension, including RUSP Evaluation [117]

2.3.1.1. ISO/IEC 25010

Product

Quality

Model

The ISO/IEC 25010 standard defines a quality in use model and a product

quality model. We solely focus on the product quality model that puts the

product into the foreground in contrast to the quality in use model that con-

centrates on the perceived use of the product in a working environment. The

product quality model is hierarchically structured: it has characteristics (which

can be subdivided into subcharacteristics, sub-subcharacteristics, and so on)

which are described through quality properties. The product quality model

measures the target system and is influenced by the target computer system

(includes computer hardware, non-target software, target data and non-target

data). It categorizes quality into eight characteristics illustrated in Figure 2.3:

functional suitability, performance, compatibility, usability, reliability, security,

maintainability, and portability. “The models can, for example, be used by
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[...] acquirers [...], particularly those responsible for specifying and evaluating

software product quality.” [113, p. 1] The standard also covers properties and

measures. Measures can reveal properties that are then categorized using the

quality characteristics. In the following both are detailed in more depth.

Definition 2.7 (Quality Model)

“[A quality model is a] defined set of characteristics, and of relation-

ships between them, which provides a framework for specifying quality

requirements and evaluating quality.” [113, p. 19]

PropertiesThe standard defines software properties as either assigned or inherent

properties. Assigned properties are “[m]anagerial properties like for example

price, delivery date, product future, product supplier” [113, p. 30]. They can

be “changed without changing the software” [113, p. 30]. Inherent properties,

in contrast, are properties that are caused by the software source code and its

inherent behavior. They comprise the domain-specific functional properties and

quality properties. In this work the focus lies on inherent properties. Assigned

properties are out of scope. In the ISO standard an attribute is an inherent

property (see definition below).

Definition 2.8 (Attribute)

“[An attribute is an] inherent property or characteristic of an entity

that can be distinguished quantitatively or qualitatively by human or

automated means.” [113, p. 18]

MeasuresIn addition, there are internal and external measures. We focus on external

measures. “External measures of system/software quality provide a "black box"

view of the system/software and address properties related to the execution

of the software on computer hardware and an operating system” [113, p. 31].
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Figure 2.3.: Product Quality Model of the ISO/IEC 25010 standard [113]
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They can be measured by testing dynamic properties. The external measure of

software quality is defined in the standard as follows.

Definition 2.9 (External Measure of Software Quality)

“[An external measure of software quality is a] measure of the degree

to which a software product enables the behaviour of a system to satisfy

stated and implied needs for the system including the software to be used

under specified conditions.” [113, p. 16]

2.3.1.2. ISO/IEC 25041

ISO/IEC

25041

The ISO/IEC 25041 standard [114] is an evaluation guide for developers,

acquirers, and independent evaluators of software. Hence, it is a good fit

for this work. The standard defines evaluation as follows: “Evaluation is the

systematic determination of the extent to which an entity meets its specified

criteria. The evaluation of product quality is vital to both the acquisition and

development of software. The relative importance of the various characteristics

of software quality depends on the intended usage or objectives of the system of

which the software is a part; products need to be evaluated to decide whether

relevant quality characteristics meet the requirements of the system.” [114,

p. vi] The standard contains an evaluation procedure to evaluate RUSPs [114,

p. 31]. This evaluation procedure can be combined with a MCDM method such

as AHP to make a decision which RUSP should be selected. In that regard it is

similar to the RUSP selection by Lawlis et al. [145] and Tarawneh et al. [247].

Links to

Thesis

In this work, the goal is to provide information about the quality of the

dynamic product (“system or software product that is measurable during ex-

ecution in testing and/or operational environment” [114, p. 2]). Hence, it

helps in several steps of the norm’s evaluation procedure: step 4 (“[e]valuate

software products based on external evaluation results, product documentation,

product operating experience, product prototyping, other product evaluation

methods” [114, p. 31]), step 6 (“[p]erform acceptance testing and accept/reject

the product” [114, p. 31]), and possibly step 7 (“[p]erform any additional eval-

uation” [114, p. 31]). The PEBWORK framework and the betsy prototype can

be seen as an evaluation tool (“instrument that can be used during evaluation

to collect data, to perform interpretation of data or to automate part of the

evaluation” [114, p. 2]).

2.3.1.3. ISO/IEC 25051

Link to

Thesis

The ISO/IEC 25051 standard [117] provides a set of requirements for evaluat-

ing RUSPs and requirements for testing RUSPs against its requirements [117].

The test documentation comprises a test plan, test descriptions and test results.

Those terms are similar to the ones described in the test taxonomy later in
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Section 2.3.3.1. Hence, we use the terms from the test taxonomy instead of

those defined in that standard.

2.3.2. Benchmarking

DefinitionBenchmarking is a way to reveal properties of software products. In the domain

of computing a benchmark is defined by the OED as a “program or set of

programs used as a standard against which the performance of other programs

(or the computer systems running them) is compared or evaluated” [186]. The

verb “benchmarking” in this case is the “measurement of a computer system’s

capabilities, using standardized or agreed performance-testing programs, whose

results may be used for comparison with those of other computers” [186]. Both

definitions have in common that they focus on performance evaluations. The

definitions by the Institute of Electrical and Electronics Engineers (IEEE) do

have a different point of view. For them, a benchmark is known as a “standard

against which measurements or comparisons can be made” [203, p. 12] as

well as a “procedure, problem, or test that can be used to compare systems

or components to each other or to a standard” [203, p. 12]. In that case

benchmarking is seen as a more general means to compare systems using

various criteria not only focusing on performance alone, which fits the goal of

this work. Hence, the latter definition is used throughout this work.

Definition 2.10 (Benchmarking)

“[Benchmarking is a] procedure, problem, or test that can be used to

compare systems or components to each other or to a standard.” [203,

p. 12]

Organiza-

tions

In the past, both the Standard Performance Evaluation Corporation (SPEC)

and the Transaction Processing Performance Council (TPC) have created numer-

ous benchmarks focusing historically first on hardware (CPUs) and relational

databases (SQL). Later they created more and more benchmarks for different

types of systems and software (e.g., virtualization using the SPEC VIRT [243]

or the TPC-VMS [253]). In 2009, the SPEC created a committee to develop a

Service-Oriented Architecture (SOA) benchmark23 named SPEC SOA. It was

planned to cover a whole SOA including a BPMS using BPEL processes but the

subcommittee has been dissolved and no benchmark has been published.

Good

Bench-

marks

Huppler

[111]

Huppler [111] defines five characteristics of a benchmark which are shown

in Table 2.4. For him a good benchmark is relevant, repeatable, fair, verifiable

and economical. However, Huppler considers them disparate as a trade off

between a benchmark being relevant versus being repeatable, fair, verifiable,

and economical. A relevant benchmark can produce results which help to

achieve some value (e.g., to make better decisions). Hence, relevance is the

23https://www.spec.org/soa/, visited 2017-3-31
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Table 2.4.: Five Characteristics of a Benchmark by Huppler [111, p. 19]

Characteristic Description

Relevant A reader of the result believes the benchmark reflects something
important.

Repeatable There is confidence that the benchmark can be run a second time with
the same result.

Fair All systems and/or software being compared can participate equally.
Verifiable There is confidence that the documented result is real.
Economical The test sponsors can afford to run the benchmark.

primary characteristic as it influences the value of the benchmark directly.

The other characteristics can be seen as secondary characteristics as they can

influence how certain (i.e., verifiable), comparable (i.e., fair), reproducible (i.e.,

repeatable), and costly (i.e., economical) the benchmark is and consequently

the produced results.

Table 2.5.: Seven Characteristics of a Benchmark by Sim et al. [229, p. 6]

Characteristic Description

Accessibility easy to obtain and easy to use
Affordability efficient cost-benefit ratio
Clarity clear, self-contained and as short possible benchmark specification
Relevance representative benchmarked task
Solvability solving the benchmarked task should be doable
Portability benchmark should work on different platforms, architectures, etc.
Scalability work with tools or techniques at different levels of maturity

Good

Bench-

marks

Sim et

al. [229]

According to Sim et al. [229], the “creation and widespread use of a bench-

mark within a research area is frequently accompanied by rapid technical

progress and community building” [229, p. 1]. They state that this is because a

benchmark motivates the comparison of different products, provides example

tasks how to use the products, and measures the fitness of a product for its

purpose. This stands in contrast to a case study or an example as both lack at

least one of these criteria. Sim et al. [229] deduced seven characteristics for a

successful benchmark that are shown in Table 2.5. For them, a good benchmark

should be accessible, affordable, clear, relevant, solvable, portable, and scalable.

Good

Bench-

marks

Summary

These seven characteristics presented by Sim et al. [229] are similar to

the five ones from Huppler [111] to some extent. The mapping is shown in

Table 2.6. Both focus on different aspects, and can be combined for a better list

comprising nine characteristics of a good benchmark.

Evaluation The combined characteristics will be used in this work to evaluate the bench-

mark language PEBL and the benchmarks themselves in Chapter 4 to show

that the language is suited for encoding good benchmarks. Furthermore, the
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Table 2.6.: Comparison of the Characteristics for Good Benchmarks by Huppler [111]
and Sim et al. [229]

Sim et al. [229] Huppler [111] Combined Characteristics

Affordability Economical Affordability
Relevance Relevant Relevance
Portability Fair Portability

Accessibility Accessibility
Clarity Clarity
Solvability Solvability
Scalability Scalability

Repeatable Repeatable
Verifiable Verifiable

benchmarking framework PEBWORK is also evaluated with those criteria in

Chapter 5 to show that it helps in conducting good benchmarks, guaranteeing

important characteristics such as repeatability for free. Hence, the developer

can focus on defining what the benchmark should measure and leave the rest

to the framework.

Other

Bench-

marks

In industry, benchmarking is widely applied by comparing the processes,

products or strategies with the ones of the market leader to imitate them [51].

Of these only the product benchmark is related to this work – as a company

may compare their BPM engine with the ones of the market leader to imitate

the features and characteristics of the probably better product. Drew [51]

summarizes the challenges for doing benchmarking as follows: “Benchmarking

can be both expensive and time-consuming. Ways must be found for doing it

faster, more effectively and economically, without sacrificing rigour or integrity

of approach.” [51, p. 439]

2.3.3. Software Testing

Software

Testing

A way of benchmarking a software system is to use software testing. A rather

informal definition of the term software testing is provided by Myers: “Software

testing is a process, or a series of processes, designed to make sure computer

code does what it was designed to do and that it does not do anything uninten-

ded.” [175, p. 8] The IEEE standard glossary is more formal, stating that testing

is “[t]he process of operating a system or component under specified conditions,

observing or recording the results, and making an evaluation of some aspects

of the system or component” [203, p. 76]. The definition of software testing

used in this work is based on the understanding of the IEEE glossary, and reads

as follows:
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Definition 2.11 (Software Testing)

“[Software testing] evaluate[s] the features of [...] software items.” [203,

p. 76]

This work builds upon this definition of software testing to determine which

features a process engine has and also to detect possible bugs along the way

if features are not working as expected. In the following, all used terms and

methods related to software testing will be detailed.

2.3.3.1. Test Taxonomy

Test Tax-

onomy

Establishing a basic taxonomy, testing means that a test driver executes one or

more test case specifications using a test procedure within a testbed, effectively

testing the system under test, to produce a test report containing the results

of the test along with a test log and a record of all relevant events during the

testing. Each test case specification describes the inputs and expected outputs

as well as any execution condition to test the system under test with. The triplet

of test driver, test procedure, and testbed executes the test, taking into account

the test case specification. The testbed represents the environment which makes

the test possible, including the hardware, and all required software tools and

systems. The test procedure is an algorithm for testing, which is executed by

the test driver [203].

Taxonomy

Mapping

In this work, the test case specification corresponds to a PEBL serialization

of a set of tests and a set of engines (i.e., system under test). PEBWORK is the

test driver that executes such a test case specification by performing the test

procedure as well as setting up and tearing down the test bed when necessary.

The test report and the test log are part of the resulting PEBL serialization of

the test result.

2.3.3.2. Test Design

Test

Strategies

With the test taxonomy determined, the next step is to create the actual tests.

Test design is all about how to come up with the test cases (i.e., which in-

formation to use to create the test cases). In general, there are two different

test strategies, namely, black-box testing and white-box testing, stating what

knowledge about the system under test is available. In the black-box testing

strategy, one has no knowledge of the internals of the system under test, only its

specification. In this work the tested process engines are considered black boxes

although some engines are open source and their internals thus available. Since

we want to be able to test any engine as long as it supports specific process

languages, this information cannot be leveraged. Instead, this work solely

relies on interacting with the engines through their Application Programming

Interfaces (APIs) (e.g., installing/uninstalling, starting/stopping, or deploy-

ing/undeploying), and observing their state changes through the responses of
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their APIs or logs. The logs are particularly important as they allow a peek

inside the internal procedures, errors, and events. In contrast, in the white-box

testing strategy, one has knowledge of the internals of the system under test. In

this work, BPEL and BPMN processes of which their internal structure is known

are tested to deduct whether the engine executes them as expected by their

specification. Hence, this means that the white-box testing strategy is applied

regarding the process models although they are primarily used as resources for

the black-box testing strategy. The problem with both strategies, and testing in

general, is, that the whole system cannot be covered fully because of test case

explosion [175].

Test Meth-

ods

To cover the most important parts of the system there are several methods for

both of the strategies [175, p. 35]. For black-box testing the techniques revolve

around creating or deriving the most effective test cases from a specification.

The typical methods are equivalence partitioning and boundary-value analysis,

both providing a minimal amount of test cases which are representative of

a larger set of the input domain through equivalence classes. There are also

several other methods to derive test cases. Most rely on creating a model

from which they can be generated (i.e., model-based testing). In this work,

model-based testing is used to derive faulty test cases to test the static analysis

rules of BPEL in Section 4.5.2.3 using a formal model of those static analysis

rules. Other testing methods exist as well (e.g., combinatorial testing [141]).

However, they are not used in this work. For white-box testing, the techniques

revolve around creating or deriving test cases using a coverage metric related

to internals of the system under test. For instance, the branch coverage metric

determines whether the tests cover all branches based on the conditionals in

the code. This is applied in the benchmark design so that the language features

such as if or exclusive gateways are fully covered for all possible branches.

Mutation

Testing

In recent years, the usage of mutation testing has spread [120]. The idea

of this method is to verify the quality of the test suite by checking whether an

injected error (i.e., a mutation) in the system under test is found (i.e., killed)

by the test suite [187]. Mutations are created through mutation operators,

which modify only a small part of the program and such mutation operators

can be combined to create combinations of mutations. Usually, the mutation

operators are automated in tools. These techniques, however, can also be

used to derive test cases by applying mutation operators upon correct XML

messages [70, 146]. We make use of this technique to create faulty XML

messages from correct ones to determine the fault tolerance of the processes

and their engines in Section 4.5.2.4.

2.3.3.3. Test Execution

Test Exe-

cution

After one has designed tests, they are typically executed. Determined by the test

procedure, the execution of a test case is typically subdivided into a setup, test,
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and teardown phase. In the setup phase the testbed is created and configured so

that the test itself can be conducted in the next step. In the test phase the actual

test is executed and one or more assertions are evaluated to determine the

result state of the test, producing the test result of the corresponding test case

specification. In the teardown phase the testbed is cleaned up so that resources

which were previously acquired are free again. An important property of a test

is its test repeatability which “indicat[es] that the same results are produced

each time the test is conducted” [203, p. 76]. Making a test repeatable (i.e.,

reproducible) requires that all influencing factors for each test are known and

replayed so that each test behaves deterministically. This has the benefit that

one test cannot affect the results of the other tests, as there are no side effects

then as well (i.e., test isolation). In this work the focus lies on producing

repeatable results. Hence, test repeatability is crucial for this work as well.

Definition 2.12 (Test Repeatability)

“[Test repeatability] indicat[es] that the same results are produced each

time the test is conducted.” [203, p. 76]

Link to

Thesis

Test repeatability is not easily achieved for large software systems such as

process engines. It is often not known how the environment influences the

behavior of such large software systems, and the internal state is hard to save

and restore as well. Hence, this is a challenge for this work that is solved by

PEBWORK and ePEBWORK in Chapter 5 and Chapter 7, respectively.

2.4. Virtualization

Virtual-

ization

Software benchmarking and “[s]oftware testing [...] has much to gain from vir-

tualization” [266, p. 25]. Since its inception several decades ago virtualization

has become ubiquitous in the IT world of today [200]. Commodity processors

implement virtualization instructions natively (e.g., Intel-VT24 and AMD-V25)

and several companies such as Oracle and VMware have released various virtu-

alization software solutions. With these foundations, companies can leverage

the advantages of virtualization (i.e., isolation, hardware independence, avail-

ability, and security) [293]. Cloud providers, for instance, make heavy use of

these technologies and offer different service models, namely, Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)

solutions [169]. All these offerings have in common that they provide virtual

resources on the basis of physical ones through an abstraction layer above

the actual physical hardware [169]. The key technologies that enable such

cloud offerings are Virtual Machines (VMs) and containers. Their functioning,

24http://www.intel.com/content/www/us/en/virtualization/virtualization-

technology/intel-virtualization-technology.html, visited 2017-3-31
25http://www.amd.com/br/products/technologies/virtualization/, visited 2017-3-31
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strengths, and weaknesses are described in Section 2.4.1 and Section 2.4.2,

respectively. The section is concluded with a comparison of the two virtualized

environments and a non-virtualized environment, often called “bare-metal”, in

Section 2.4.3.

2.4.1. VM-based Virtualization

TaxonomyVirtual Machines (VMs) are environments for software which imitate real

hardware. VMs are either System Virtual Machine (SVM) or Process Virtual

Machines (PVMs) [39]. The term process refers to an OS-level process which

runs within an OS and has nothing to do with a business process or process

model. The SVM provides the full system environment in which an OS can run.

In contrast, a PVM is the runtime of an application and its execution is tied to

the execution of the application. For instance, the Java Virtual Machine (JVM)

is such a PVM that is started when running an application written in the Java

programming language and exits when the application terminates. In this work,

the existing software (i.e., the process engine) is run in an isolated environment.

Hence, a SVM is required setting the PVM out of scope [39, 239, 240].

HypervisorThe layer between the actual physical hardware and the environment for the

VMs is called hypervisor or Virtual Machine Monitor (VMM). The hypervisor

has full access to the hardware resources and distributes them among the VMs.

It also manages the lifecycle of VMs. Two types of hypervisors exist: the type

1 or native hypervisor and the type 2 or hosted hypervisor. The first one runs

directly on the bare metal (i.e., on the physical hardware) whereas the second

one is running within an existing host and its OS [200].

Pros &

Cons

VMs offer several advantages. They do provide an isolated system environ-

ment that is hardware independent and can run on different hosts. A crash

of one VM will not affect any of the others. Because of these advantages it

is argued that one should run everything in VMs [32]. These advantages,

however, come at a cost: a major overhead in computing, disk, memory, and

network IO. Such performance costs originate from running the hypervisor on

the host and an additional OS per VM. Especially the IO performance overhead

has prevented the use of VMs in high-performance computing [293]. Another

issue is that a VM takes a long time to start up as it has to boot a full OS.

Some disadvantages can be mitigated using new concepts. The need for large

amounts of disk space can be reduced by using deduplication [121] and the

startup time can be reduced by taking and restoring memory snapshots of

already running VM instances. Some products even offer live migration of VMs,

that is, migrating a running VM from one host to another with only minimal

effects on availability [35].
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Hypervisor

Software

Today, there are multiple companies offering hypervisors of type 2, e.g.,

Oracle VM VirtualBox26, VMware Fusion27, Parallels Desktop28 and Microsoft

Windows Virtual PC29, and type 1, e.g., Xen30, VMware vSphere31 and Microsoft

Hyper-V32. In this work, solely the type 2 hypervisor Oracle VM VirtualBox is

used because this software is open source, free of charge, can be used either

through a GUI or an API, and supports taking and restoring memory snapshots.

2.4.2. Container-based Virtualization

Container Containers are a lightweight virtualization technique compared to VMs as

containers run within the host OS but are isolated from the host OS and

other containers. This allows for a much faster startup as only the isolation

environment has to be started, not another OS. Hence, containers have an

almost insignificant runtime overhead [128, 293].

Technical

Foun-

dations

Today, containers are available on both Linux and Windows. Microsoft, how-

ever, only supports containers since their Windows Server 2016 whereas Linux

already supports containers since 2008. Consequently, in the following, the

term containers refers to Linux containers only. Standardization is in progress

for containers by the Open Container Initiative (OCI)33. The technical basis for

containers are namespaces which were introduced with Linux kernel 2.6.24. A

container is a process with its user space that runs on a Linux host and uses

resources from the kernel space, e.g., RAM and the disk. Multiple containers

can run on a host as it is the same as running multiple processes. The only

difference is that they are isolated from each other. To achieve this, both kernel

namespaces and control groups (cgroups) are used. With kernel namespaces

each container gets its own environment with its network devices, mount points,

CPUs, and RAM. It has no knowledge about any other container running on

the same host. The cgroups limit the actual resources of the container, e.g., the

amount of RAM or the number of cores [293].

Resource

Overhead

As shown by Felter et al. [60], container-based virtualization uses much fewer

resources and performs faster than using VMs instead. Nevertheless, Felter

et al. [60] state that IO heavy applications have to be fine-tuned nevertheless,

as the bottleneck is the hard disk. Similar results are given by Xavier et al. [293]

as well.

26https://www.virtualbox.org/, visited 2017-3-31
27http://www.vmware.com/de/products/fusion/features.html, visited 2017-3-31
28http://www.parallels.com/, visited 2017-3-31
29https://www.microsoft.com/download/details.aspx?id=3702, visited 2017-3-31
30http://xenserver.org/, visited 2017-3-31
31https://www.vmware.com/de/products/vsphere, visited 2017-3-31
32https://technet.microsoft.com/library/hh831531.aspx, visited 2017-3-31
33https://www.opencontainers.org/, visited 2017-3-31
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DockerAlthough there are several products34 supporting container-based virtual-

ization available today (e.g., LXC35, OpenVZ36, or Docker37), Docker is the

most popular one and the de facto standard. Docker Engine is the core of

Docker as it allows running Docker containers. Such containers can either be

created manually step by step or through a Dockerfile which automates this

task. The Docker ecosystem has been growing over the last few years. This

has led to additional Docker services and applications, including Docker Com-

pose to manage applications spanning multiple containers, Docker Machine to

run containers, Docker Swarm to manage clusters of containers remotely, and

Docker Hub which is the public Docker Registry for storing both Dockerfiles and

Images. Being a CLI tool originally, there is a GUI application called Kitematic

available as well. Docker makes a distinction between containers and images.

Only containers are executable but they can be saved to an image for reuse.

Repro-

ducible

Research

An explicit advantage of “the popular emerging technology Docker [is that it]

combines several areas from systems research – such as OS virtualization, cross-

platform portability, modular re-usable elements, versioning, and a ‘DevOps’

philosophy” [22, p. 1]. Hence, Docker enables reproducible research, making

it possible that the computational experiment conducted by one scientist can

be easily validated by another scientist who has now the means to redo the

experiment with a neglectable effort. Of course, reproducing research was

possible before. The effort to do this was, however, generally high. Some other

approaches that try to reduce the effort to reproduce research are based on VMs

and workflow systems. Docker, however, addresses the issues of reproducible

research much better than these two technologies [22], lowering the barrier

further [31]. Apart from reproducing research it is used in other domains as

well (e.g., reproducing exploits [40]).

Faster

Tests

Another important area of application for containers in general and Docker

in particular is that of efficient automated testing. This is, of course, fully

within the scope of this work as we strive to efficiently reveal process engine

characteristics by tests. Rahman et al. [205] used Docker to speed up large

test suites by splitting them into test groups and executing each group within a

container in parallel.

2.4.3. Environment Comparison

Virtual En-

vironment

Compar-

ison

A summary of the virtualization techniques is shown in Table 2.7. As can

be seen, they provide different degrees of isolation. The higher the isolation,

the higher is the associated overhead. Using bare metal provides no isolation

but also no overhead whereas VMs provide the highest degree of isolation

34https://en.wikipedia.org/wiki/Operating-system-level_virtualization#

Implementations, visited 2017-3-31
35https://linuxcontainers.org/, visited 2017-3-31
36https://openvz.org/, visited 2017-3-31
37https://www.docker.com, visited 2017-3-31
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by providing a separate OS but have high memory, disk space, and startup

time, as well as a medium network time overhead. This comparison is similar

to the one by Rahman et al. [205] which compares containers with VMs. In

our case, however, we also compare the bare metal environment and use a

partly different set of comparison criteria. In addition to the general disk space,

startup, and teardown overhead, we also compare both network and memory

overhead as well as their capabilities to create a snapshot of memory and disk.

Table 2.7.: Virtualization Techniques

bare metal VM container

isolation none OS container

snapshot
memory (x) x WIP
disk x x x

space overhead
disk space none high medium
+ deduplication none medium very low
memory none high low
time overhead
startup time none high low
teardown time none high low
network time none medium low

Snapshots Snapshots are an important topic for this thesis as process engines can have

long installation and startup times. In the bare metal approach, a disk snapshot

could be taken by simply copying the folder the process engine is installed

in. As files may be installed in other places as well during the installation,

this simple method is often not sufficient. Moreover, some installations may

set absolute paths making the previous installation unusable in other paths.

The memory snapshot, however, is much more suited for process engines with

long installation and startup times as it allows to simply restore the virtual

environment to a point in time which provides an already started process engine.

But this is only possible in practice for VMs. Docker is working on support

for memory snapshots with experimental support in Docker 1.13 released in

January 2017. The possibilities for memory snapshots of OS-level processes

on a bare metal setup, however, are very limited. One example for such a

system is the research prototype Berkely Lab Checkpoint/Restart (BLCR) for

Linux [91].Overhead

& Dedu-

plication

The overhead of both, VMs and containers is studied by Agarwal

et al. [3] by comparing Kernel-based VMs (KVMs) with Linux containers. The

results are in line with the one in Table 2.7. With deduplication, one can reduce

the disk space overhead for VMs and containers significantly. For VMs, Jin and

Miller [121] outline an approach to save spaces for VM disk images by sharing
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blocks of data instead of using overlays (i.e., only saving the difference to an

existing image). For containers, Docker uses a layered File System in which

each image is immutable and based on another image, only the container which

is based on an image is mutable. Hence, all images are cached and containers

use the cached and immutable version of this image, resulting in exactly one

copy of the image available.

SummaryIn this work VMs are used to ensure test isolation and automation. Moreover,

with the memory snapshots only fully available for VMs, the time to provide

and destroy a fresh process engine is reduced. The container technology is

simply too premature at this point in time to build an efficient benchmarking

solution with it. In the future this will change and one can also benefit from

the lower overhead associated with containers.
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Any problem in computer science

can be solved with another layer

of indirection. But that usually

will create another problem.

David Wheeler

3. Process Engine Abstraction

Layer

Parts of this chapter have been taken from [81, 84, 94, 97, 100, 150].

In this chapter, hypothesis H4.1 (“A uniform interface is a suitable solution to

interact with widely different process engines in a similar way.”) is supported.

This chapter presents the Process Engine Abstraction Layer (PEAL), which

is an abstraction layer to interact with process engines supporting different

process languages in a uniform way through an Application Programming

Interface (API). It is used as part of the Process Engine Benchmark Framework

(PEBWORK) in Chapter 5 to interact with the process engines conducting

benchmarks.

3.1. Motivation

model

once,

run any-

where

For the standardized process languages BPEL and BPMN, the key selling point

was and remains portability, and with it the avoidance of a vendor lock-in [126].

Both imply that the paradigm model once, run anywhere holds for the process

world: a process model described with a standardized process language can

be executed on any process engine which conforms to the process language of

the process model. It is similar to the paradigm write once, run anywhere in the

Java world: a written Java program can be executed on any compatible JVM.

lack of

standards

At first glance, this appears to be sufficient. In reality, however, it is not.

Figure 3.1 depicts the BPM lifecycle [261] with its four phases: process design,

system configuration, process enactment, and diagnosis. Shown on the left is

the status quo, with only the process design phase being engine-independent

as it is based on the standardized process languages such as BPEL [181] and

BPMN [115]. But even the concept of having standards is not enough to

ensure portability [148]. For the other three phases, however, no standards

exist. Therefore, each engine has its way of how it must be interacted with.

Hence, these three phases are all engine-dependent. For instance, in the system

configuration phase, BPEL as well as BPMN engines do not accept the standard-

based process model for deployment but require engine-specific deployment

packages containing additional deployment descriptors or other metadata
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for which no universal standard exists [94, 150]. What is more, the actual

deployment with its engine-specific deployment package requires the user to call

the engine-specific deployment routines. Those deployment routines, however,

also vary greatly from engine to engine, and even between different versions

of an engine [94, 150]. But a successful deployment is obviously necessary to

execute instances of the process in the process enactment phase. And last, the

diagnosis phase, which requires analyzing (audit) logs or monitoring data lacks

a standard, too.

specify

once, eval-

uate any

In the field of software evaluation, the aim can be summarized via the

paradigm specify once, evaluate any. Translated to the field of process engine

evaluation, this means that the steps to evaluate a particular feature of a

process engine are only specified once. Those steps, however, are then used to

evaluate any given engine, be it a new version of an existing engine, a different

configuration, or a new engine altogether. In contrast to a company which may

only work with a single process engine in production, a plethora of process

engines have to be handled to reveal their differences. A step towards this

goal is to use standard conformant process models within these evaluation

steps. Since, however, each engine offers a different interface for the common

management actions, and may even require engine-specific alterations of the

standardized process models, there is a large gap between the status quo and

the desired condition in which process engines can be evaluated easily.

Engine-

Specific

Steps

To evaluate a feature on an engine, one must first specify the corresponding

process model along with the other necessary steps as part of the process design

phase once. Evaluating a feature on a specific engine requires walking the three

phases system configuration, process enactment, and diagnosis of the BPM

lifecycle. Table 3.1 shows these steps grouped by their lifecycle phase in which

they are taken. Namely, during system configuration, the process engine must

be installed and started, and the process model converted to an engine-specific

deployment package. Next, in the process enactment phase, the engine-specific

deployment package has to be deployed to the started process engine so that

Process Design Diagnosis 

Process 

Enactment 

System 

Configuration 

Status Quo Desired Condition 

Process Design Diagnosis 

Process 

Enactment 

System 

Configuration 

Process engine independent Process engine dependent 

Figure 3.1.: The BPM lifecycle by [261] revealing the degree of engine independence
at the moment and in an ideal situation [97, p. 2]
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one can start and interact with instances of the previously deployed process

model. Last, within the diagnosis phase, the states of the instances and the

logs of the engine are required for evaluation purposes. Based on these engine-

specific steps, it is proposed to derive a uniform API which provides these steps

in an engine-independent manner with the engine-dependent behavior pushed

to the internal engine-specific wrapper.

Table 3.1.: Engine-Specific Steps Grouped by BPM Lifecycle Phase

Phase in BPM Lifecycle Engine-Specific Interaction

system configuration install process engine
start process engine
create deployment package

process enactment deploy deployment package
start and interact with process instances

diagnosis get state of instances

Chapter

Structure

The remainder of the chapter is structured as follows. First, related work

is presented in Section 3.2, followed by the design of the uniform API which

is detailed in Section 3.3. Next, the prototype and its evaluation is detailed

in Section 3.4 and Section 3.5, respectively. The chapter is concluded with a

summary in Section 3.6.

3.2. Related Work

Uniform

APIs

Uniform abstraction layers have already been used a lot in other domains such

as for cloud computing providers [132, 165, 211], benchmarking multi-core

performance [74], or accessing Web Services protocol-independently [52].

Uniform

PaaS and

IaaS APIs

In cloud computing, the interfaces of the products of the cloud vendors do

differ a lot despite providing similar services [132, 133], especially for IaaS and

PaaS offerings. Hence, the situation in cloud computing is similar to this work.

But in contrast to the field of BPM, there are several uniform APIs available

today for IaaS (e.g., the Open Cloud Computing Interface (OCCI) [185]) and for

PaaS (e.g., OASIS’s Cloud Application Management for Platforms (CAMP) [183]

and nucleus [132, 211]).

Uniform

Web Ser-

vices API

Another uniform API is the Web Services Invocation Framework (WSIF) [52]

which abstracts away from the protocols that can be used in conjunction with

WSDL-based Web Services (e.g., SOAP [270]) through an abstract service and

programming model. The developer can focus on the functionality by using

the abstract programming model, and the protocol-specific parts are pushed

down the stack where they can be optimized without touching the source code.

This is similar to PEAL that abstracts from the engine-specifics in contrast to

the protocol-specifics of the WSIF.
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BPEL

Manage-

ment

Frame-

work

In the BPM domain, van Lessen et al. [265] propose a management frame-

work for BPEL engines. First, they focus only on BPEL engines while this

work takes BPMN engines into account. Second, they reveal the internal pro-

cess models and their instances in an engine-independent manner through

resources whereas this work focuses on building a uniform API for the engine

itself without touching the internal models. And third, they provide ways to

subscribe to changes in their uniform process and instance model through

WS-Notifications [177–179], which is out of scope of this work. Their idea

of handling process models and their instances in a resource-oriented fashion

as in a REST interface is also available in the uniform API in this work. The

process models and instances, however, are scoped by the engine in which they

run whereas van Lessen et al. [265] have an implicit scope of the standalone

engine that exposes their interface instead.

BPEL

State

Models

Both Kopp et al. [138] and Sonntag and Karastoyanova [242] present state

models for BPEL process models and their activities. There are also state

models available for the process models and their instances in PEAL. But

Kopp et al. [138] and Sonntag and Karastoyanova [242] focus more on the

state models of activities (i.e., internals of the process instances), leaving

aside the state model of the process engine itself, which is covered by PEAL.

When comparing the work by Kopp et al. [138] with that of Sonntag and

Karastoyanova [242], it can be said that Kopp et al. [138] present a superset of

the state models of Sonntag and Karastoyanova [242].

BPMN

State

Models

Delgado et al. [46] created a generic user portal API. This API covers the

common task of interacting with users to get them to approve a task or enter

input. For that, they provide a model of how to represent this user interaction.

PEAL does not cover user interaction except to start a process instance. Hence,

the API by Delgado et al. [46] is orthogonal to PEAL.

WAPI The Workflow Management Coalition (WfMC) defined the Workflow APIs

and Interchange Formats (WAPI) to standardize the communication within a

WfMS and between applications and WfMSs. Those standards, however, are

not applied by the BPEL and BPMN engines covered by this work. Hence, that

API is not considered further in this work.

Uniform

APIs in

TOSCA

With the OASIS standard Topology and Orchestration Specification for Cloud

Applications (TOSCA) [184] one can describe complex cloud application topo-

logies as a typed graph based on node and relationship templates. The type

of such node templates (i.e., the node type) also provides methods to manage

their lifecycles [19, 21]. Typical methods of such a node type are install, start,

configure, stop, and isRunning. A uniform API for BPEL and BPMN engines

would be the perfect basis for building a node type of any BPEL or BPMN

engine. The extension Lego4TOSCA [105] simplifies the creation of such node

types with a uniform API as one can rely on the uniform API of other node

types as well. For instance, a BPEL engine running on an Apache Tomcat could

reuse the management API of the Apache Tomcat which in turn can reuse the
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API provided by the underlying system, building upon an existing high-level

API similar to Lego bricks.

On-

Demand

Provision-

ing

The field of provisioning software on-demand is related as well. Dornemann

et al. [50] provisioned BPEL process models on-demand alongside their process

engine. A more general approach is presented by Vukojevic-Haupt et al. [268]

which works for arbitrary workflow languages, and presents the roles and

components required to ensure on-demand provisioning. Our work provides

building blocks to implement on-demand provisioning.

Bench-

Flow

As part of BenchFlow [61, 62], there is also a library38 to abstract away the

interaction with the systems under test (i.e., BPMN process engines). This

library, however, only contains a deploy and a start process instance method,

and it solely works for BPMN engines.

UBMLThe UBML [97] is a preliminary version of PEAL that has been published

earlier by the author of this work which did not include BPMN engines. PEAL

supersedes the UBML by adding support for BPMN engines and a service to

manage instances of process models.

3.3. Design

In this section, the design of the uniform Process Engine Abstraction Layer

(PEAL) is presented. First, the three core concepts, upon which the API of

PEAL are designed, are described in Section 3.3.1, followed by the actual API

design in Section 3.3.2. An example usage scenario of this API is outlined

in Section 3.3.3 in the form of a service composition (i.e., a new service is

composed on top of the designated API). This section concludes with the

limitations of the chosen API and possible extensions in Section 3.3.4.

3.3.1. Concepts

PEAL abstracts away from the engine-specifics through a) making use of engine-

independent identifiers, b) providing observers to reveal the state corresponding

to each identifier, and c) handling engine-specific artifacts through different

packages.

IdentifierEach engine, process model, and instance of a process model is identified

through its URI-like39 Identifiers (IDs). The IDs reflect that an instance of

a process model runs on a particular engine as the instance ID contains the

process ID which in turn contains the engine ID, as shown on the left-hand

side of Figure 3.2. The different services rely on these IDs to perform their

actions appropriately and they also create and expose them. If appropriate,

the engine-independent identifiers have to be mapped to the engine-specific

38https://github.com/benchflow/sut-libraries, visited 2017-3-31
39It only reuses the hierarchy separated by slashes. The other features of a URI are not used.
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Figure 3.2.: UML Diagram outlining the three API Concepts of PEAL: Identifiers, States
and Packages and their Relationships

ones internally. The engine ID and the instance ID are string-based, whereas

the process model ID is based on a Qualified Name (QName) [274]. The latter

consists of a name and a namespace, as it is typical for XML-based process

languages such as BPEL and BPMN, and therefore a good fit in this case.

States In addition to the typical methods that trigger an action, there is an observer

to check the current state of the engine, process model or instance of the

process model through its ID. As shown in the middle of Figure 3.2, an engine

can either be not installed, installed, or started, and a process model is either

deployed or not deployed. There are three possible states of a process instance:

not started, started, and terminated. The terminated state itself can be more

complex as there are many reasons why a process has terminated, but this is

not relevant on this level.

Packages When interacting with engines, files have to be transferred. These files can

be engine-specific or contain engine-specific data. Such data has to be wrapped

within a ‘package’. For instance, there is the process model package containing

the process model and all its related files, and the deployment package containing

a deployable process model with all the files so that it can be deployed on a

particular engine. For instance, a process model package of a BPEL process

contains the WSDL and XSD files as well, while the deployment package of

Apache ODE, for instance, contains the deployment descriptor in addition the

engine-specific versions of the files in the process model package. Also, the

log package contains engine-specific logs. This package can be used to retrieve

the log data from the engine. All three packages and their relationship can be

seen on the right-hand side of Figure 3.2. In this approach, a package is always

an archive. Hence, the data of a package is stored in binary form (i.e., a byte

array).
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3.3.2. Uniform API

ServicesBased on the three scopes, namely, engine, process model and process instance

(see Section 3.3.1 and Section 2.2.2), three services have been designed: the

engine service, the process model service and the instance service. Their APIs

are depicted in Figure 3.3. The methods are derived from the typical usages as

listed in Table 3.1.

Figure 3.3.: The interface of the Engine, Process Model and Instance Service

Engine

Service

The engine service (see Figure 3.3) comprises the provisioning of engines,

managing their lifecycles, and obtaining the logs. It knows which engines it can

provision and provides a list of IDs for these engines. Using one of these IDs,

it is possible to install and uninstall the engine corresponding to a particular

ID, or check whether it has already been installed. For the installation, a

configuration can be passed to govern the installation itself, e.g., by providing

the port where it should listen for requests. Moreover, any software required by

the engine is either installed along the way on-demand or linked to according

to a given configuration. The typical use case for linking to an existing and

required software is that of the database. The target environment in which

the engine is provisioned into is the one providing this API. Hence, only an

environment in which the engines can be provisioned is allowed to provide this

API. The lifecycle of the engines is controlled through starting and stopping

an already installed engine and checking if an engine is already started. To

assist in troubleshooting, all logs of an engine can be accessed in the form of

a log package which acts as a log snapshot. This is necessary because a) an

engine normally has more than a single log, b) the underlying container also

has several logs, and c) the location of these logs differ from engine to engine,

and from container to container.
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Process

Model

Service

The process model service (see Figure 3.3) handles the deployment of process

models. The deployment itself is a two-step process. In the first step, the process

model package has to be transformed to a deployment package suitable for a

specific engine. Subsequently, the deployment package can be deployed on this

specific engine. What is more, the deployed processes can be queried, and, if

need be, undeployed.

Instance

Service

The instance service (see Figure 3.3) allows creating a new instance of a

deployed process model. Starting a new process instance may require the

passing of variables to initialize the state of the process instance. In addition to

the high-level instance state, one can also get a more detailed instance state,

revealing the cause of its termination. The instance service is solely required

for BPMN as there is no standard how to start an instance of a process model,

whereas for BPEL, one only needs to send a SOAP message to the appropriate

WSDL endpoint [42].

3.3.3. Uniform API Composition

Compo-

sition

Based on the uniform API of PEAL, it is possible to build composite services on

top through composition. An example is provided in Listing 3.1 which shows

two methods, namely, MAKE_AVAILABLE and MAKE_UNAVAILABLE. The first

one ensures that a processModelPackage is deployed onto a running engine

identified by a specific engineId and the latter one reverses this by stopping

and uninstalling the underlying engine if it is no longer required. Hence, both

methods optimize the usage of resources (i.e., RAM and HDD usage), because

resources are only allocated if necessary through on-demand install and start

calls and, if possible, freed through stop and uninstall commands. These two

methods represent typical use cases when working with engines. Thus, this

service composition is a validation of the flexibility of the uniform API of PEAL.

Listing 3.1: Composite Service using the uniform API.

1 def MAKE_AVAILABLE engineId , processModelPackage :
2 if engineService . getState engineId is NOT_INSTALLED :
3 engineService . install engineId
4

5 if engineService . getState engineId is INSTALLED :
6 engineService .start engineId
7

8 let deploymentPackage = processModelService . makeDeployable engineId ,
processModelPackage

9 return processModelService . deploy engineId , deploymentPackage
10

11 def MAKE_UNAVAILABLE processModelId :
12 if processModelService . getState processModelId is DEPLOYED :
13 processModelService . undeploy processModelId
14

15 if processModelService . getDeployedProcessModels is empty :
16 engineService .stop processModelId
17 engineService . uninstall processModelId
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3.3.4. Limitations

Limita-

tions

The chosen API comes with limitations. First, this approach only works with

deployment models containing exactly one process model and not more. This

limitation has been chosen deliberately to avoid having to keep track of a

deployment ID which complicates the ID tree further and to keep the API

simple. For BPEL, it is straightforward as a single BPEL file can only contain a

single BPEL process. In contrast, a single BPMN file can contain multiple BPMN

process models. Second, the instance interaction service is simplistic since it

supports only three operations. However, it is sufficient for the use case of

this work, which is software evaluation and not instance management. Third,

the management as well as monitoring of a process instance is not specified.

Although there are many advanced instance management features such as

suspend/resume, debug, recover, manipulate the state, and rewind [241], they

are supported by a minority only, and not relevant for the typical usage steps

according to Table 3.1. The same holds for translating the engine-specific

history of a process instance to a generic audit trail.

3.4. Prototype

In this section, the prototypical implementation of the PEAL API is detailed.

The prototype is written in Java 8, executable on Windows and Linux alike,

and provides mappings of the uniform API to a plethora of BPEL and BPMN

engines as shown in Table 3.2.

Technical

Details

The API itself is exposed through Java 8 interfaces40 natively and WSDLs 1.1

interfaces via JAX-WS 2.2.10 [34]. The prototype uses no internal state. The

state is still within the underlying engines. Hence, it provides only a thin

wrapper around the functionality of the engines.

3.4.1. Supported Engines

EnginesThe prototype covers three different BPMN engines in five to six versions each,

and seven BPEL engines in different versions and configurations. The most

recent version of each of the eleven engines was picked on August, 28th 2016.

These engines were not picked at random, but selected by collecting lists of all

engines stating that they implement the process language, and then reducing

that list down to the presented engines by evaluating the following criteria for

each engine on the list: 1) the engine is open source and freely available, 2) the

engine understands process models in the standard conformant serialization

format, and 3) process models can be deployed automatically. Moreover, these

engines are actively maintained and rated as mature projects by their respective

vendors. Consequently, these engines are representative to show that the

40https://github.com/uniba-dsg/betsy/tree/master/peal, visited 2017-3-31
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uniform API of PEAL can be mapped to any process engine implementing BPEL

or BPMN. Each engine is described shortly in the following. For an overview of

their licenses, release dates, or the programming language they are developed

in, see Appendix A.

Table 3.2.: Supported Engines with their Configurations by the PEAL Prototype

process language engine name engine version configuration

BPMN Activiti 5.15.1, 5.16.3, 5.17.0, 5.18.0,
5.19.0.2, 5.20.0, 5.21.0, 5.22.0

jBPM 6.0.1, 6.1.0, 6.2.0, 6.3.0, 6.4.0, 6.5.0
camunda BPM 7.0.0, 7.1.0, 7.2.0, 7.3.0, 7.4.0, 7.5.0

BPEL ActiveBPEL 5.0.2
bpel-g 5.3 in-memory

Petals ESB 4.0, 4.1
Apache ODE 1.3.5, 1.3.6 in-memory

OpenESB 2.2, 2.3, 2.3.1, 3.0.1, 3.0.5
Orchestra 4.9

WSO2 BPS 2.1.2, 3.0, 3.1, 3.2, 3.5.1

Activiti “Activiti is an open source BPM platform. In 2010, developers already working

on jBPM decided to build a new BPM engine from scratch exclusively designed

for BPMN execution and this engine is the result. Activiti is supported by

industry, however most core developers are associated with Alfresco who

provides an enterprise edition of Activiti.” [81, p. 25]

camunda

BPM

“[The process engine] camunda BPM is a fork of Activiti which is now

developed and distributed by the German BPM software vendor camunda. Next

to the open source version of camunda BPM, also an enterprise edition is

available.” [81, p. 25]

jBPM “Originally, jBPM was not developed as a distinguished BPMN engine but as

a more general BPM platform. Based on a Process Virtual Machine (PVM), it

supports several process languages (e.g., JPDL and BPEL). Since version 4.3,

jBPM also supports the execution of processes in native BPMN. ” [81, p. 25]

Active-

BPEL

The open source BPEL engine ActiveBPEL is the open source variant of the

same-named product ActiveBPEL by Active Endpoints. It has been released in

version 5.0.2 without any tests in 2008. Since then, Active Endpoints did not

contribute any code to the open source variant, but only to their proprietary

product.

bpel-g “The bpel-g engine is a derivate of the former ActiveBPEL by Active Endpoints.

Whilst ActiveBPEL is no longer available, bpel-g is still under development and

maintained as a Google Code project. The engine comprises the functionality

provided by ActiveBPEL, but is extended to support and integrate with software

libraries, such as Spring.” [94, p. 5]
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Petals ESB“Petals ESB is an open source Enterprise Service Bus (ESB) that includes a

BPEL service engine and a SOAP binding component. It is developed by the

OW2 consortium, just as Orchestra, and is available at http://petals.ow2.

org/. Instead of reusing Orchestra as a BPEL engine, Petals ESB provides a

separate engine, namely EasyBPEL. [...] Just like the other engines, EasyBPEL

is written in Java.” [94, p. 6]

Apache

ODE

“As of today, Apache ODE is the most well-known and most widely used

Open source BPEL engine available. It is maintained by the Apache Foundation

and supported among others by Intalio and JBoss. The engine is implemented

in Java and relies on Jacob, a concurrency framework based on the actor

model [109].” [94, p. 5]

OpenESB“The OpenESB is an open Enterprise Service Bus that includes a BPEL engine.

It is written in Java and preceding its acquisition by Oracle, it was maintained

by Sun. Today, its development is driven by LogiCoy and Pymma Consulting.

OpenESB is commonly collocated with the Glassfish application server to form

a full enterprise integration solution. [...].” [94, p. 5–6]

Orchestra“Orchestra is [...] written in Java and developed by the OW2 consortium

and Bull. [...] Orchestra executes BPEL on a generic process virtual machine.

[..] Orchestra does not require a separate deployment package for deploying to

an engine. Instead, it is sufficient to provide the BPEL and WSDL files directly.

Although not being required, it is still possible to use a packaged format [194,

pp. 21/22].” [94, p. 6]

WSO2 BPSThe WSO2 Business Process Server (WSO2 BPS) is an open source BPEL and

BPMN engine. Internally, it uses Apache ODE for executing BPEL processes and

Activiti for executing BPMN processes. Although it does not implement a pro-

cess engine by itself, it is included for PEAL because it builds so much software

around Apache ODE that its behavior is quite different in comparison to the

standalone Apache ODE. In contrast, the API of Activiti is exposed directly41

instead of hiding the used BPMN engine behind another set of software layers

as it has been done for Apache ODE.

3.4.2. Engine-Specific Mappings

Engine-

Specifics

Each engine requires a custom mapping from its engine-specific API to the

uniform engine-independent API of PEAL. The differences are present in the

actual implementation, but also classified in Table 3.3 for the BPMN engines,

and in Table 3.4 for the BPEL engines. The engine-specifics are grouped into

installation, deployment, and process language specifics.

Installa-

tion

Every engine is implemented in Java and runs within some sort of managed

environment (i.e., container as in runtime environment of a specific Java

application instead of Docker container for arbitrary applications). Because

the engines have a similar setup, it is possible to compare their setup to some

41https://docs.wso2.com/display/BPS350/BPMN+REST+API, visited 2017-3-31
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degree and show which Java version and which container each engine needs. If

additional software apart from the container and the JRE is required, it is listed

as well. When there is a deployable WAR file, which just needs to be deployed

on a suitable container without any installation routines, it is indicated, too.

Deploy-

ment

The deployment itself consists of the deployment package and the deployment

method with which a deployment package can be deployed to an engine. The

deployment package has a specific file extension and contains additional files

on top of the process model that adhere to a specific format. The deployment

methods are either remote REST calls, local CLI calls, or local File System (FS)

interaction. The local FS interaction works by copying a file to a specific place

and waiting for a log to indicate the outcome of the deployment in the form of a

specific log entry. The term for this type of action is Failable Timed Action (P19).

Such deployment methods can also differ in between different versions of the

same engine, e.g., the REST API could change its result from one version to

a newer one. The file extension of the deployment package can either be

the format of the process model itself (e.g., BPMN), or a package containing

multiple files (e.g., a JAR, WAR, BPR, or ZIP file). The format within these

files can either be engine-specific and define a standard for other engines,

or conform to a more open standard such as Java Business Integration (JBI)

or BPR with its Business Process Archive Descriptor (BPRD). The number of

additional files is based on the format of the deployment package.

Process

Language

Specifics

Since BPMN does not rely on as many other standards as BPEL, there are

more engine-specifics for BPMN engines that have to be taken into account. As

BPMN supports the scriptTask which can execute a script defined in a specific

programming language, one needs to know which engine supports which

programming language for the scripts. Moreover, engines do differ in how the

variables in a process need to be set up [81]. Some require that variables have

to be set explicitly, and others require that they should only be used implicitly

instead.

Other

Engine-

Specifics

The engine-specifics mentioned above are the most important and relevant

ones for implementing the uniform API. Nevertheless, other engine-specifics

such as the format of log messages are relevant as well. Such engine-specifics

are described in the text and are not listed in any of the tables below.

jBPM As shown in Table 3.3, the three BPMN engines vary greatly. The BPMN

engine jBPM runs on the JBoss application server 7 and relies on an Apache Ant

build script for its installation and startup procedures. It does not yet support

Java 8. Hence, Java 7 must be supplied. The deployment is complex, as one

needs to 1) build the JAR file with its jBPM specific deployment descriptors, 2)

install the built JAR into the local maven repository via a CLI command, and

3) issue a REST call which deploys the JAR from the local maven repository.

In contrast to Activiti and camunda BPM, jBPM requires that all variables in

the process must be modeled explicitly with jBPM specific data types, and it
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Table 3.3.: Engine-Specifics of the BPMN Engines, based on [81]

engine jBPM Activiti camunda BPM cam. BPM cam. BPM
versions all all 7.0.0 >= 7.1.0 >= 7.4.0

in
st

a
ll

container Jboss AS 7 Tomcat 7 Tomcat 7 Tomcat 7 Tomcat 8
requirements ant, maven maven maven maven
Java Version 7 8 7 8 8

deployable war x x x x

d
e
p

lo
y method CLI + REST REST FS FS FS

file extension JAR BPMN WAR WAR WAR
file format JBPM - CAMUNDA CAM. CAM.

additional files 3 0 3 3 3

scripting engine Java Groovy Groovy Groovy Groovy
process var. explicit implicit implicit implicit implicit

can only execute script tasks written in Java, not in Groovy. What is especially

problematic is that the REST API is not stable and changes between versions.

activitiOf the three BPMN engines, Activiti has the easiest setup as it only requires

the presence of an Apache Tomcat 7 container, onto which the WAR file has to

be deployed. And Activiti works on both, Java 7 and Java 8. The deployment

is the simplest as well, with passing a BPMN file to the engine through a

REST call – no deployment descriptors or any other additional file necessary.

Activiti supports the scripting engine Groovy, and allows that the variables in

the process can be defined implicitly through the Groovy scripts themselves.

camunda

BPM

The complexity of the maven-based installation of camunda BPM is in

between that of jBPM and activiti. It requires an Apache Tomcat 7. Camunda

BPM 7.0.0 requires Java 7, but Java 8 is supported for 7.1.0 and later. Starting

with camunda BPM 7.4.0, Tomcat 8 is required as well. The deployment is

the same for all versions of camunda BPM, as it only requires that a WAR file

has to be built using a camunda-specific format, and then deployed via the FS

interaction for all the versions. The step to undeploy the process has to be done

via the FS-based method for camunda BPM 7.0.0 and 7.1.0. But starting with

camunda BPM 7.2.0 the REST API is capable of performing this task as well.

Regarding the process language specifics, it behaves similarly to activiti.

Apache

ODE and

bpel-g

Analogous to the BPMN engines, the BPEL engines do differ a lot as well as

shown in Table 3.4. The exception from this rule are Apache ODE and bpel-g,

which are similar as both require an Apache Tomcat 7 and Java 8, and both can

be deployed through a WAR file. Also, they use similar deployments: bpel-g not

only reuses the deployment format of Apache ODE but also offers a FS-based

deployment method similar to Apache ODE.

OpenESBOpenESB has one of the most complex installation procedures and deploy-

ment routines. The installation of OpenESB up to version 2.3.1 requires Java 7

and a full blown application server called Glassfish v2. The installation has
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Table 3.4.: Engine-Specifics of the BPEL Engines, based on [94, 150]

engine Apache ODE bpel-g OpenESB OpenESB
versions all all <= 2.3.1 >= 3.0.1

in
st

a
ll

container Tomcat 7 Tomcat 7 Glassfish v2 OpenESB SE 3
requirements
Java Version 8 8 7 8

deployable war x x

d
e
p

lo
y method FS FS CLI CLI

file extension ZIP ZIP JAR JAR
file format ODE ODE JBI JBI

additional files 1 1 3 3

engine Orchestra Petals ESB WSO2 BPS ActiveBPEL
versions all all all all

in
st

a
ll

container Tomcat 7 Petals ESB 4 WSO2 Carbon Tomcat 5
requirements ant
Java Version 8 7 8 7

deployable war x

d
e
p

lo
y method CLI FS FS FS

file extension ZIP JAR ZIP BPR
file format - JBI ODE BPR

additional files 0 3 1 1

to be triggered through its CLI-based installation tool. Starting with version

3.0.1, OpenESB works with Java 8 and uses a much more lightweight container

called OpenESB SE 3. The deployment method, however, has stayed the same:

one needs to build a JAR based on the JBI format and deploy it using CLI

commands, but these commands differ between OpenESB 2.x and 3.x.

Orchestra To install Orchestra, an Apache Ant build script has to be executed which

installs Orchestra on a Tomcat 7 using Java 8. The deployment is also based

on an Apache Ant build script and it requires a simple ZIP file containing the

process model and its necessary files. It requires the simplest deployment

package without any deployment descriptor.

Petals ESB The installation of Petals ESB is straightforward and requires Java 7. The

BPEL engine is installed as a component of the Petals ESB 4. Petals ESB is as

complicated as OpenESB in its deployment, as it also relies on the JBI standard,

and it requires the more complicated FS deployment method.

WSO2 BPS The WSO2 BPS runs on Java 8, and requires the ESB called WSO2 Carbon as

its infrastructure. The deployment is based on the deployment of Apache ODE

because WSO2 BPS uses Apache ODE internally.

Active-

BPEL

The ActiveBPEL engine still relies on Tomcat 5 and is only executable on

Java 7. The deployment is based on the BPR which relies upon the BPRD.

BPEL

Engines

Also, each BPEL engine needs to set the endpoint address in the WSDL

endpoint definition to reflect the location of the service. Moreover, both bpel-g
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and ActiveBPEL need to configure the underlying servlet container to be able

to run on them, and bpel-g has to remove all unimplemented (i.e., unbound)

operations of the WSDL services the BPEL process model is implementing.

Proprie-

tary En-

gines

Proprietary engines can be mapped to the uniform API of PEAL as well. Three

proprietary BPEL engines have been interacted with in a uniform manner in

an early version of PEAL [96]. Because of licensing restrictions, however, the

mappings cannot be published and are not further detailed in this work.

3.4.3. Implementation

The mapping of the uniform API to the engines themselves is implemented

manually in Java. In case the method of the uniform API can be mapped

to one or more calls to an engine-specific REST API, the mapping is easy to

achieve. Often, however, the interaction requires FS interaction, parsing of logs

or calling custom CLI tools, or executing shell/batch scripts. As some actions

may take some time, it is difficult to know when the action has been completed

and whether it succeeded or failed. To solve this, the prototype waits for a

specific amount of time after each action wherein it checks both, the condition

for a success and a failure. If neither of the conditions is reached within that

time, a timeout occurs and the action is marked as failed (see Failable Timed

Action (P19)). Most conditions rely on low-level log messages. Hence, the

log level had to be adjusted to provide Detailed Logs (P17). Moreover, as

timeouts can either be too small or too large, they also have to be calibrated

(see Timeout Calibration (P20)). What is more, XSLT scripts are used to enrich

engine-independent files with engine-dependent information and to generate

deployment descriptors.

Figure 3.4.: The Architecture of PEAL

Architec-

ture

All software necessary to install an engine is loaded and installed from

the Internet on-demand. Hence, the only dependency of this prototype is

Java 8, making the use of this prototype straightforward in other software. The

architecture of the prototype is depicted in Figure 3.4. It reiterates that there is

an API and an implementation of it based on the engines using Apache Ant and

Apache Maven.
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3.4.4. Limitations

The prototype contains various shortcomings and limitations. First, the cre-

ation of deployable packages only works for specific BPEL and BPMN process

models, and not for every process model of those two languages so far. With

more sophisticated deployment descriptor generators and deployment package

builders, a much larger set of process models could be handled. Second, as

the prototype cannot pass configuration options to the engines, each process

engine uses its default ports which may conflict with ports of other software

and other installed process engines. Hence, only one process engine can run

at the same time. This can be mitigated by incorporating isolation through

Linux Containers or VMs. Third, not every engine supports the undeploy step.

This, however, is not critical for this work as the process engine is stopped and

uninstalled for each test anyway, effectively undeploying the process model on

the go. Fourth, the instance service is only implemented for BPMN engines. It

may be useful for BPEL engines as well. Despite these shortcomings, it has been

shown that the goal of creating a uniform API for these management tasks BPM

lifecycle is feasible, but an industry ready implementation of this API requires

more resources.

3.5. Evaluation

The prototype from Section 3.4 has been evaluated by conducting the fol-

lowing evaluation procedure shown in pseudo code in Listing 3.2. This pro-

cedure reflects the typical scenario based on the BPM lifecycle and incor-

porates all the engine-specific steps taken during benchmarking as shown in

Table 3.1. It is based on the service composition methods MAKE_AVAILABLE and

MAKE_UNAVAILABLE as shown in Listing 3.1. After each line of the evaluation

procedure, the appropriate assertions check the state with the relevant IDs to

verify that the result is correct. By performing the evaluation procedure on

both Linux and Windows it is ensured that the prototype is cross-platform. For

the BPEL and BPMN use case, the most simplistic process there is used: the

Aptitude Test (P8). Hence, if this test works, the engine fulfills the minimal

criteria for implementing this uniform API.

Listing 3.2: Use Case Based Evaluation Procedure

1 for each engineId in engineService . getSupportedEngines :
2 let supportedLanguage = engineService . getSupportedLanguage engineId
3 if supportedLanguage is BPEL:
4 let processPackage = bpelPackage
5 if supportedLanguage is BPMN:
6 let processPackage = bpmnPackage
7 let processModelId = makeAvailable engineId , processModelPackage
8 if engineService . getSupportedLanguage engineId is BPEL:
9 // send soapMessage

10 if engineService . getSupportedLanguage engineId is BPMN:
11 instanceService .start processModelId , bpmnVariables
12 makeUnavailable processModelId
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BPEL

Process

For BPEL, a simple echo process as shown in Listing 3.3 is used which receives

a SOAP message containing an integer, copies the integer to the response, and

returns the response as another SOAP message. It is tested by sending a SOAP

message containing the number 1 and asserting that the response also contains

the number 1.

Listing 3.3: BPEL Process with SOAP Message Pair Used for Evaluating the Uniform

API Implementation of the BPEL Engines

1 <process ... >
2 <import ... />
3 <partnerLinks > ... </ partnerLinks >
4 <variables > ... </ variables >
5 <sequence >
6 <receive createInstance ="yes" .../ >
7 <assign ... />
8 <reply ... />
9 </ sequence >

10 </ process >
11

12 <!-- request message -->
13 <Envelope >
14 <Header />
15 <Body >
16 <testElementSyncRequest >1</ testElementSyncRequest >
17 </Body >
18 </ Envelope >
19

20 <!-- expected response message -->
21 <Envelope >
22 <Header />
23 <Body >
24 <testElementSyncResponse >1</ testElementSyncResponse >
25 </Body >
26 </ Envelope >

BPMN

Process

For BPMN, on the other hand, a process containing only a single script task

which is linked from the start event to the end event as a simple sequence

through sequence flows is used. The script task writes a specific execution trace

as shown in Listing 3.4. In the experiment, it is asserted that the expected

execution trace is produced by the previously described BPMN process (i.e.,

that the execution trace contains the element “task1”).

Listing 3.4: BPMN Process with Expected Execution Trace Used for Evaluating the

Uniform API Implementation of the BPEL Engines

1 <definitions >
2 <process isExecutable ="true" ... >
3 <startEvent ... />
4 <sequenceFlow ... />
5 <scriptTask ... /> <!-- writes execution trace ’task1 ’ -->
6 <sequenceFlow ... />
7 <endEvent ... />
8 </ process >
9 </ definitions >

10

11 <!-- expected execution trace -->
12 task1

SetupThe evaluation itself is done on two different systems. First, it has been

conducted on a Dell Latitude E6340 laptop with an Intel i7-3520M@2.90GHz

with 8 GB DDR3 RAM running Windows 10 Pro 64-bit. Second, the evalu-

ation is conducted on Travis CI, a cloud-based continuous integration pro-

vider which executes builds in Docker containers. Those containers run an
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Ubuntu 12.04.5 LTS 64-bit operating system based on the 3.13.0-29-generic

kernel. The procedure has been implemented as JUnit tests42 for both BPMN

and BPEL engines. On the local desktop machine, the tests are executed via

a CLI command. For Travis CI a special configuration file43 is created which

triggers the same command as on the desktop machine but also defines the

environment the prototype is running in.

Results The results of the evaluation conducted on Travis CI are available online44. It

shows that the prototype and its API are suitable to perform the engine-specific

tasks behind an engine-independent abstraction layer. The assertion after each

line returned the expected results, as the tests are all green. The results of the

evaluation on the Windows laptop are not available online, but they produced

the same results as the ones on Travis CI. Hence, the evaluation procedure

works on both Windows and Linux.

Threats

to Com-

pleteness

Three different BPMN process engines and seven different BPEL process

engines are covered by this prototype and its evaluation. For both process

languages, there are more process engines available than only those that

have been integrated into the prototype. However, there are reasons why

it was not possible to integrate more. Regarding BPMN, the reason is that

the other engines do not fulfill the Aptitude Test (P8) [81, 84, 85]. Only

three out of the evaluated 47 BPMN engines fulfill the criteria to be integrated

into this API. The reasons are manifold, including products that have only

modeling and no execution support, no support for the native serialization of

BPMN process models, or the licenses restricts one from benchmarking and

from publishing any benchmarking results. For the BPEL engines, the case

is somewhat different. In contrast to BPMN, fewer implementations exist for

the BPEL specification. Moreover, many BPEL process engines are commercial

ones which come with a licensing agreement that forbids benchmarking and

the publishing of benchmarking results as well. The ones that only support

the older BPEL 1.1 or that seems to be unsupported are neglected, and the

remaining engines are the seven engines which are used in this prototype.

Figure 3.5.: The Fork-based Evolution of the BPMN Engines

Threats

to Validity

The BPMN engines camunda BPM and Activiti are not entirely different

process engines. The first one is a fork from the latter. As shown in Fig-

ure 3.5, the development began with jBPM. Activiti 5.0 has been developed

42https://github.com/uniba-dsg/betsy/blob/master/src/test/groovy/peal/impl/,
visited 2017-3-31

43https://github.com/uniba-dsg/betsy/blob/master/.travis.yml, visited 2017-3-31
44https://travis-ci.org/uniba-dsg/betsy/builds/163700421, visited 2017-3-31
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3.6. Summary

by the lead developers who already had developed jBPM 4. Hence, the experi-

ence in developing jBPM 4 has been used for building Activiti 5. The engine

camunda BPM 7.0 is an actual fork45 of Activiti, starting with Activiti 5.12.0

in March 2013. However, since 2013, both camunda BPM and Activiti have

diverged in their capabilities [81, 84, 85]. This shows that despite having

shared code at some point in time, they have evolved separately, and have

resulted in different engines. Activiti 5.21.0 has been forked46 again in October

2016 to flowable 5.22.0. As flowable 5.22.0 is only a rebranded variant of

Activiti 5.21.0, it is not included in this study.

Testability

and In-

stallability

The effort of mapping the uniform API of PEAL to an engine can be roughly

assessed based on the prototype and its evaluation. This allows making assump-

tions about the testability and installability of those engines, as was done by

Lenhard et al. [150]. But this, however, is out of scope of this work.

3.6. Summary

SummaryThis chapter outlines that there is the need to interact with process engines

through a uniform interface, proposed such a uniform API, and evaluated it

and its prototype through use cases. The API consists of services for managing

the lifecycle of process engines, process models deployed on the engines, and

instances of those process models that are being executed by engines. The

prototype is able to implement the API for seven BPEL engines and three

BPMN engines. The evaluation showed that the API with its prototype is

sufficient to handle the typical scenarios according to the BPM lifecycle. Hence,

hypothesis H4.1 (“A uniform interface is a suitable solution to interact with widely

different process engines in a similar way.”) is supported.

Future

Work

Future work comprises 1) creating a TOSCA process engine node type, 2)

a unified monitoring and audit trail service, and in the long run 3) moving

Business Process as a Service (BPaaS) [162] forward. A TOSCA process engine

node type is desirable because it would allow to use the PEAL API within the

TOSCA ecosystem. And this, in turn, would allow simplify working with process

engines further. A unified monitoring and audit trail service is planned for

future work as well. This is in line with the effort to provide standards and

uniform APIs for the different phases within the BPM lifecycle. Moreover, this

would help to provide data for the uprising field of process mining [49] as well.

Last, bringing such an API into the cloud as a service would help in bringing

BPaaS [162] forward. The client needs to define his business processes in the

form of process models and then can use the infrastructure of a cloud provider

to bring his process to life.

45http://www.jorambarrez.be/blog/2013/03/18/a-sad-day-for-open-source-

camunda-decides-to-fork-activiti/, visited 2017-3-31
46http://www.flowable.org/blog/2016/10/12/flowable-and-activiti.html, visited

2017-3-31
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The not surprising and very

obvious point is that every

software project becomes a DSL.

Bob Bockholt

4. Process Engine Benchmark

Language

Parts of this chapter have been taken from [81–84, 94–96, 98, 99].

In this chapter, hypothesis H4.2 (“A domain-specific testing language is a

suitable form to make quality criteria measurable.”) is supported.

This chapter presents the Process Engine Benchmark Language (PEBL) which

is used to express benchmarks and their results. Such benchmarks can be con-

ducted with the Process Engine Benchmark Framework (PEBWORK) described

in Chapter 5 to produce results. Both benchmarks and results can be visual-

ized in the Process Engine Benchmarking Interactive Dashboard (PEBDASH)

presented in Chapter 6.

4.1. Motivation

Represen-

tation

Require-

ments

According to Huppler [111] and Sim et al. [229], a good benchmark has to

fulfill different criteria as described in Section 2.3.2. The subset of those criteria

which drive a good benchmark representation are: reproducibility, clarity, and

portability. Within a benchmark, the steps how it should be performed must

be stated. Otherwise, the results of the benchmark cannot be reproduced.

Moreover, the representation must be concise, self-contained, and to the point

to be clear about its intent. Last, the benchmark should be abstract enough so

it can be conducted for different implementations without any changes. Hence,

it must be independent of the system under test.

Solution:

DSL

In this work, a testing Domain-Specific Language (DSL) is proposed which

aims to fulfill the three criteria mentioned above. A testing DSL can use

domain-specific terminology to provide a clear and concise description of the

steps necessary to execute the benchmark. The suggested terminology is a

combination of existing terminology from the testing (see Section 2.3.3.1)

and the BPM domain with its process languages, models, and engines (see

Section 2.2.2). The DSL provides a serialization of a benchmark. Based on such

a serialized benchmark, quality characteristics of the process engines should be

revealable. In other words, hypothesis H4.2 (“A domain-specific testing language

is a suitable form to make quality criteria measurable.”) is put under scrutiny.
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Expressive-

ness

The main requirement of a language for the specification of benchmarks

and their results is expressiveness (see Section 2.2.3). This means that the

elements in this language can be directly used to express a benchmark with its

necessary steps. The more language elements are required to express single

concepts in the domain of benchmarking process engines, the less expressive it

is. According to this characteristic, the proposed DSL will be evaluated.

Chapter

Structure

The remainder of the chapter is structured as follows. First, related work

is presented in Section 4.2, followed by the DSL itself in Section 4.3. The

prototype of the DSL can read, write, validate, and work with serializations

of the DSL and is described in Section 4.4. In Section 4.5, the language is

evaluated whether it can express a variety of different benchmarks.

4.2. Related Work

Testing

DSLs

There are approaches and tools available for testing BPEL-based and BPMN-

based process models that come with their own testing or benchmarking DSL.

Those approaches are either centered around unit or performance testing. In

the following, those approaches are discussed, starting with the ones doing unit

testing followed by the ones doing performance testing.

Unit Test-

ing DSLs

Tools like soapUI47 or BPELUnit [161, 168] have been developed to automate

unit testing of SOA-based systems and BPEL engines, respectively. They both

have a DSL in which tests can be specified. To describe their results, they build

upon XML reports of JUnit. These languages share some concepts with PEBL,

such as the availability of tests, test cases, test partners, test steps, and test

assertions. PEBL, however, is more general as it allows expressing benchmarks

with aggregated metrics for different process languages and multiple capabilit-

ies. A comprehensive overview of academic approaches to WS testing is given

by Bozkurt et al. [26], but is out of scope as it does not directly address testing

process engines.

Perfor-

mance

Testing

DSLs

Similar to the unit testing tools and approaches, there are also perfor-

mance testing tools and approaches that also come with a DSL, such as GEN-

ESIS2 [123, 124], SOABench [16, 17], BenchFlow [61], Benchmark DSS [236],

and DSLBench [29]. The first two are rather generic and set in the middleware

or SOA performance testing domain. As they are performance testing tools,

much of the DSL is about defining the environment in which the performance

is later evaluated as well as the modeling of the user-based workload. Bench-

Flow [61] also uses a DSL48 to describe benchmarks and tests. The benchmark

in Section 4.5.3.4 shows that PEBL can cover their DSL through the use of the

extension element. Skouradaki et al. [236] present a conceptual model as part

of a Decision Support System (DSS), which can be seen as a benchmark DSL.

47https://www.soapui.org/, visited 2017-3-31
48https://github.com/benchflow/benchflow, visited 2017-3-31
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This DSL represents performance benchmarks and their results. It is similar to

the DSL from BenchFlow [61], as it is from the same authors as BenchFlow.

The conceptual model of the DSS is the minimum set of components a bench-

mark for process engines should contain. A subset of this conceptual model is

presented as part of BenchFlow [62, Figure 2]. PEBL is, in contrast, a more

general DSL as it covers benchmarks for multiple quality characteristics, and

does not contain language elements for describing performance benchmark

specific constructs directly. Furthermore, as in performance benchmarking it

is necessary to evaluate a complete system under test, the DSL of BenchFlow

takes the topology of the system under test into account, including the database,

underlying hardware, software, and the network in between the different nodes

in the system topology. These elements are not part of PEBL. What is more, Bui

et al. [29] present DSLBench, a performance benchmarking DSL which can be

used to generate the code of a benchmark application specific to a particular

system under test. The actual benchmark is executed through the generated

benchmark application.

Test Ter-

minology

The test terminology is defined in glossaries [87, 203] and standards [117]

and used in a plethora of testing tools (e.g., soapUI and JUnit) with slight

variations of its meaning. This work builds upon the notion of the IEEE Standard

Glossary [203] that is similar to the ISO/IEC 25051 standard ISO/IEC [117].

The terminology is described in Section 2.3.3.1.

4.3. Domain-Specific Language

Entities The Process Engine Benchmark Language (PEBL) is a Domain-Specific Language

(DSL) that can be used to express both, process engine benchmarks and their

corresponding results. Consequently, the language itself is structured into these

two parts. Benchmarks are defined in the form of tests for features of capabilities

as shown in Figure 4.1. A feature refers to a measurable part of one capability of

a process engine. It is grouped via a tree-like structure to provide an aggregation

hierarchy within metrics can be defined. A test consists of steps to reproducibly

evaluate a specific feature on any engine. The results build upon both, tests

and features, as a test result describes the results of having evaluated a feature

by executing a test on a particular engine. The aggregated results reference the

features and provide measurements of the previously defined metrics within

the aggregation hierarchy. The arrows in Figure 4.1 describe the high-level

dependencies between these elements. The elements are identifiable through

their IDs. This allows describing each element separately in detail, as the only

connection in between them is the ID, and persisting each element separately,

allowing them to be easily exchanged and reused.

V-model PEBL is based on a V-model containing two axes, namely, the benchmark

completeness (left-to-right) and level of abstraction (top-to-bottom), as shown

in Figure 4.1. To complete a benchmark, the path of the letter V is followed. We
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Figure 4.1.: The V-Model of PEBL

start by defining abstract features which are refined to more specific ones down

to actual tests. As a result, we have specified the benchmark. This benchmark

can then be conducted (i.e., executed) on a specific engine, producing test

results. Afterwards, these low-level test results can be aggregated again to

aggregated results and even abstract aggregated results representing special

capabilities of the engines, creating a completed benchmark. The aggregation

itself is done along the line for a particular engine as we are interested in the

aggregated results of an engine and its characteristics.

V-model

from

Software

Engineer-

ing

The term V-model is originally coined by Rook [214] in the field of software

engineering. It is based on the concept that each phase in the waterfall model

requires a corresponding testing phase. This creates a V-like shape because the

steps from the waterfall model start abstract from specifying the requirements

and becoming more specific down to the implementation phase which produces

something that can be tested via unit tests up to acceptance tests to ensure

that the specified requirements are fulfilled. Mathur and Malik [167] have

extended the classical V-model to an advanced V-model which also incorporates

software maintenance. The V-model in this work is based on the idea that each

specification with its metrics can have results that provide measurements for

the previously defined metrics, and both, the specifications and the results can

be expressed at different levels of abstraction.

RolesThe presented V-model requires three different roles: business analysts,

developers, and a benchmark framework. On the left side of the V-model (i.e.,

at the beginning), a business analyst specifies the capabilities and required

metrics necessary to determine the quality of an engine. Next, a developer

refines the features to actual tests and describes how to map the test results

back to the required metrics of the features. Last, a benchmarking framework

can then compute the results based on the specified benchmark, including the

computation of aggregated metrics for the features. Hence, the benchmark
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specification has to be done by humans whereas the results computation and

their aggregation can be automated.

Syntax

and Se-

mantics

According to Fowler [69] there are internal and external DSLs. PEBL is an

external DSL because it has its own syntax and does not depend on a host

language. The only other language PEBL uses is Groovy to express user-defined

executable scripts. These scripts, however, are expressed as strings in PEBL,

effectively ignoring the semantics of Groovy to keep the complexity of PEBL

manageable. PEBL has two serialization formats: XML and JSON. For both,

detailed and specific grammars are specified through the language-specific

schema definition languages: XSD and JSON schema49. The schema definitions

of PEBL can be used to determine whether a given XML or JSON structure is a

valid PEBL serialization.

Extension The structure of PEBL allows expressing benchmarks and their results through

its predefined domain-specific elements and attributes. If these domain-specific

elements do not suffice to express a specific benchmark and its results, there are

two possibilities to cope with this situation. The preferred option is to use the

key-value stores available for each major language element that allows storing

any additional information. An example of this is available in Section 4.5.3.4.

There, it is shown that PEBL can express the performance benchmarks only with

the help of these key-value stores. Moreover, some elements such as the test

step execute script acts as a generic test step which can be used as an extension

for a custom test step as well. The other option is to extend the language itself,

creating a more expressive version of PEBL. The downside, however, is that

any tool which needs access to the extension elements requires an extension to

its parser and validation. Hence, the second option should be used with care.

In the following, each element of PEBL is described in more detail starting

with the benchmarks in Section 4.3.1 followed by the benchmark results in

Section 4.3.2.

4.3.1. Benchmarks

The benchmark specification of PEBL is subdivided into the feature tree and

the tests. A test is used to determine whether a feature is supported. They are

detailed in the inverse order of their dependency.

Features The UML class diagram in Figure 4.2 shows the classes available to describe

a feature. Features, feature sets, groups, languages, and capabilities each have

an ID, a name, and a description. Moreover, they can be extended through

their key-value store. Together, they form a tree-like structure with a capability

as the root, the language, group, and feature sets as nodes, and the features

as leafs: the feature tree. The link to the quality model of the ISO/IEC 25010

standard [113] has to be set at the capability level through the characteristics

49https://github.com/uniba-dsg/betsy/tree/master/pebl/src/main/resources/pebl,
visited 2017-3-31

70

https://github.com/uniba-dsg/betsy/tree/master/pebl/src/main/resources/pebl


4.3. Domain-Specific Language

Figure 4.2.: The Feature Tree of the Benchmark Specification of the PEBL

attribute that allows specifying to which of the quality (sub-)characteristics this

capability refers to. The name of the language usually refers to either BPMN or

BPEL, but as there can be other workflow languages in the future, a string is

used instead of a more specific enum type. All of the five elements in the feature

tree can specify metrics. A metric refers to a metric type that has a name, an ID,

a description, a data type (either boolean, double, long or string) and a unit

(e.g., gigabyte, count, or milliseconds). The data type string should be used

for more complex data types as well. A metric type can also contain a Groovy

script. This is necessary for the metrics which cannot be directly measured

through the observation of the engine but have to be computed from previously

measured metrics. This allows that a business analyst can define the metrics

and the features he requires, but a developer can then refine this, adding the

correct Groovy script to compute the metrics based on measurements of other

raw metrics.

Feature

Tree

Levels

The feature tree is a tree with a fixed set of five levels. By design, it cannot be

extended infinitely as one would expect from a normal tree data structure. This

is explicitly done to reduce complexity in both the DSL and the corresponding

implementation. In the evaluation in Section 4.5, all benchmarks fit perfectly

well into this five-level design. Hence, the downside of not being flexible

enough regarding the grouping of features is not a practical issue in benchmark

construction.

TestThe UML class diagram in Figure 4.3 shows the classes available to describe

a test and its links to the classes of the feature tree. A test describes steps to

determine metrics for a given feature declaratively. Hence, a test refers to a

single feature and one or more metrics (e.g., the start of the execution as a Unix

timestamp, the duration of the test execution in milliseconds, or the number of

successful test cases). The test itself has a name, an ID, and a description. It

links to the file containing the standard-based and engine-independent process

model, and other complementary files. The test environment comprises both,

the test partners and the test cases with their test steps which contain test

assertions. If those elements are not expressive enough, there is the possibility

to add additional data to a key-value store that is attached to any element in

this package.
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Figure 4.3.: The Tests of the Benchmark Specification of the PEBL

Domain-

Specifics

At first, the UML diagram in Figure 4.3 does not look domain-specific as its

structure is similar to that of typical testing languages or frameworks containing

tests, test cases, steps, assertions, and test partners. The domain-specific part,

however, of this testing language is encoded within the different variants for

the test partners, test steps, and test assertions. Each of them is detailed in the

following.

Figure 4.4.: The Domain-Specific Test Partners of PEBL

Test

Partner

The language supports two different variants of WSDL-based test partners

as shown in Figure 4.4: a script-based WSDL test partner and a rule-based
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WSDL test partner. Both, the script and the rule-based test partner will be set

up automatically by the benchmark framework because their internal logic is

defined explicitly. For any WSDL test partner, the path to the WSDL file needs

to be specified. The script-based one only needs the corresponding Groovy

script. In contrast, the rule-based one consists of one or more rules which

define the triple of operation, input, and output – with the input and output

being optional. Depending on the invoked operation and the state of the input,

a specific rule is fired and the corresponding output will be returned. One can

explicitly define what SOAP message one expects to receive at the test partner

through XPath predicates and set up a specific SOAP/HTTP message response,

or even a SOAP fault. If this does not suffice, the input can be checked through

a Groovy script (see ScriptPredicate), and the output can be computed through a

Groovy script as well (see ScriptBasedOutput). If no input is given, any arriving

message is accepted, and if no output is specified, no reply is sent. As not every

test requires a test partner, a test partner can be left out as well.

Figure 4.5.: The Domain-Specific Test Steps of PEBL

Test Steps

and Asser-

tions

PEBL contains six different test steps available as shown in Figure 4.5. Their

names follow the typical naming scheme of a verb followed by an object, and

they describe steps or actions that must be performed during a test case: check

deployment, delay testing, send SOAP message, start process, gather traces, and

execute script. Although the first five steps are domain-specific, the step execute

script is available so that arbitrary test steps can be described. In Figure 4.6, the

six different assertions are presented. Each of them asserts a specific condition

after the test step it is associated to has been completed. Similarly to the test

steps, there is also the assert script assertion which handles custom assertions.

An overview of both, the different test steps and assertions with a description

can be found in Table 4.1.
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Figure 4.6.: The Domain-Specific Test Assertions of PEBL

Table 4.1.: The Domain-Specific Test Steps and Assertions of PEBL

Step Description

check deployment Determines whether the process is deployed on the engine or
not.

delay testing Holds the test execution for a given amount of milliseconds.
send SOAP message Sends a SOAP message to an operation of a specified WSDL

service and optionally receive a reply as well.
start process Triggers the start of a process by sending variables defined by

a name, type and value.
gather traces Gathers all available execution traces from logs and engine

APIs.
execute script Describes a custom test step that acts as an extension point

if the other test steps do not suffice. It will execute a given
Groovy script.

Assertion Description

assert exit Asserts that the process instance has terminated.
assert deployed Asserts that the process model is deployed. This requires that

the deployment has been checked before through the check
deployment test step.

assert not deployed Asserts that the process model is not deployed. This requires
that the deployment has been checked before through the
check deployment test step.

assert trace Asserts that the given trace is part of the execution trace.
assert SOAP fault Asserts that the response of a send SOAP message step returned

a fault with a specific fault string.
assert xpath Asserts that the response of a send SOAP message step re-

turned the expected output by evaluating it through an XPath
expression.

assert script Describes a custom test assertion that acts as an extension
point if the other test assertions do not suffice. It will execute
a given Groovy script. The assertion fails if an unhandled
exception is raised.

4.3.2. Benchmark Results

There are three entities (i.e., engine, test result, and aggregated result) to describe

benchmark results in PEBL. Although the engine entity can stand alone, both

the test result and the aggregated result depend on the previously defined tests
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and feature entities. Hence, the engine is described first, followed by the test

result, with the aggregated result described last.

EngineWithin PEBL, the system under test is a process engine. Each has a name and

a version (e.g., Apache ODE v1.3.6) as shown as part of Figure 4.7. Also, each

engine can interpret a specific process language such as BPEL or BPMN, which

has to be specified as well. Last, one can configure such engines, for instance,

stating that they have to use in-memory persistence. The ID is computed based

on all these information. Hence, an engine with a different configuration is

another engine in our terminology. Additional information such as licensing

information, URLs, or the release dates can be stored as extensions as well.

Figure 4.7.: The Test Result and the Engine in PEBL

Test Res-

ult

The raw results are encoded as test results. In Figure 4.7, one can see that the

test results provide results for a given engine and test. Moreover, the tool that

is used to compute the test results can be given as well. The results comprise

measurements of the metrics defined by the referenced tests. Each measurement

provides a value for its corresponding metric as a string. Furthermore, a test

result references engine-dependent files, logs, and the deployment package

containing the executed process model along with its deployment descriptors.

To get insight into the result of each test case, the test case results are available

as well, providing a message if they did not succeed.

Aggrega-

ted Result

As shown in Figure 4.8, the aggregated result comprises measurements

scoped for a particular engine. Each measurement contains a value for a metric

that can be measured via an attached Groovy script. Moreover, the metric of

such a measurement is defined by an element of the feature tree. The script

is used to compute the value using the available test results. Hence, instead

of replicating the tree-like data structure of the feature itself, an aggregated
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Figure 4.8.: The Aggregated Result in PEBL

result only references a metric, resulting in a flat structure within the DSL and

its model.

4.4. Prototype

The prototype is written in Java 8 and makes use of an object to XML mapping

specification named JAXB [34] and its implementation EclipseLink MOXy50.

This software uses EclipseLink MOXy 2.5.2 which in turn implements JAXB 2.2.

The functionality of the prototype consists of three components: 1) read and

write serializations (either JSON or XML) of PEBL, 2) compute the aggregated

results, and 3) validate any instance of PEBL for consistency and faults.

Architec-

ture

The architecture of the prototype is shown in Figure 4.9. The prototype is

structured into three modules according to its three functions: the mapping,

the aggregation, and the validation. Within the mapping, specific annotations

from both, JAXB and EclipseLink MOXy, are used to read and write JSON and

XML instances of PEBL through EclipseLink MOXy. As part of the reading and

writing, any relative paths are converted to absolute ones in memory, and when

it is serialized again, the paths are relativized again. The other part, being

the aggregation module, depends upon the mapping. It can recalculate the

aggregated results by aggregating the available test results. Any previously

aggregated result is replaced by a newly computed one. The computation itself

is hard coded and based on the metric names. In the validation module, checks

are available to determine the integrity and consistency of an instance of PEBL,

e.g., whether the BPEL process models conform to the XSD of the standard,

the WSDL files to their XSD, and the XSD files to the meta XSD. Also, these

files are checked through static analysis with the tools BPELlint [101] and

BPMNspector [86]. The BPELlint tool was also developed as part of this work

although it is not detailed within this work.

Groovy

Scripts

The aggregated results are computed by evaluating Groovy scripts. These

scripts have to implement a specific interface to be able to work with this

prototype. The UML diagram of this interface is given in Figure 4.10. Based on

50http://www.eclipse.org/eclipselink/#moxy, visited 2017-3-31
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Figure 4.9.: The Architecture of the PEBL Prototype

the list of test results, the result has to be aggregated in the form of a string.

Both, the execute script test step and the assert script test assertion are based on

a Groovy script as well. They, however, work on the test case they are part of.

Moreover, in case the assertion fails, an assertion error has to be raised.

Figure 4.10.: Mandatory Interface for User-Defined Groovy Scripts in PEBL

Limita-

tions

The prototype comes with some limitations. First, it does not support the

aggregation of test results to aggregated results through user-defined Groovy

scripts. The scripts are simply ignored. The prototype, does, however, contain

predefined and hard-coded aggregation logic which relies on the names of the

metrics. This logic already builds upon the interface described above, but the

runtime interpretation of Groovy in that part has not yet been implemented.

It should, however, be straightforward with the use of GroovyShell51 as it can

evaluate Groovy scripts while accessing Java objects. The same holds for the

execute script test step and the assert script test assertion as well. Second, there

is no GUI available to edit instances of PEBL in a user-friendly way. One can,

however, edit those serializations using an XML or JSON editor, and validate

them against their schemas. For more validations, the validation module of

PEBL could be incorporated into a GUI as well.

4.5. Evaluation

StructureIn this section, the Process Engine Benchmark Language (PEBL) is evaluated

according to the evaluation method described in Section 4.5.1. Using this

method, benchmarks are crafted to determine a variety of quality characteristics

51http://docs.groovy-lang.org/latest/html/api/groovy/lang/GroovyShell.html, vis-
ited 2017-3-31
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for BPEL engines in Section 4.5.2 and BPMN engines in Section 4.5.3. How the

results of a benchmark are expressed is evaluated in Section 4.5.4.

4.5.1. Method

Suitability Evaluating PEBL means to determine whether this language is suitable to

express benchmarks and their results for a variety of quality characteristics for

different process languages. Consequently, a large set of such benchmarks is

created systematically as part of this evaluation by following the developed

methods Capability to Feature Method (C2FM) and the Feature to Test Method

(F2TM) subsequently. The C2FM provides guidelines on how to decompose

capabilities into testable features and the F2TM provides guidelines on how to

create a test for a testable feature. The suitability is determined by checking

whether the DSL-elements of PEBL did suffice to express these benchmarks and

how much of the extension elements as well as generic user-defined steps and

assertions are required.

Quality Characteristic [113] Engine Capability BPEL BPMN

Functional Suitability Conformance X X

Functional Suitability Expressiveness X X

Usability Static Analysis X X

Resilience Robustness X

Performance Efficiency Performance X

Table 4.2.: BPEL Evaluation Approach for Four out of the Eight Quality Characteristics
of the ISO/IEC 25010 Quality Model [113]

Bench-

marks

The benchmarks that are used for this evaluation are shown in Table 4.2.

Each check mark in the table refers to a single benchmark. These benchmarks

are structured according to two categories: different quality characteristics

and different workflow languages. The more workflow languages and quality

characteristics PEBL can cover with its DSL-elements, the more powerful and ex-

pressive PEBL is. For that reason, both BPEL and BPMN are included as process

languages because they are the two most prominent workflow languages at this

point (see Section 2.2.2). This evaluation focuses on four different quality char-

acteristics, being functional suitability, usability, resilience, and performance

efficiency. These four cover half of the available quality characteristics, and are

crucial aspects of an engine selection decision. Hence, together, these bench-

marks are sufficient to show that PEBL is general enough to cover a variety of

different quality characteristics. A benchmark for such a quality characteristic

is created by focusing on a capability (i.e., a part of the quality characteristic).

The capabilities conformance (i.e., feature conformance), expressiveness (i.e.,

engine expressiveness), and static analysis (i.e., static analysis conformance)

have already been defined and motivated within Chapter 2 whereas the other
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two are defined and motivated in the benchmark description below. A capability

is split into testable features through C2FM in Section 4.5.1.1. Thereafter, these

created features are converted to tests using F2TM in Section 4.5.1.2. The gen-

eral method for this whole hierarchic decomposition is given in the following,

and applications of it are presented later in Section 4.5.2 and Section 4.5.3.

4.5.1.1. Capability to Feature Method

C2FMThe Capability to Feature Method (C2FM) consists of two parts: guidelines on

how to decompose abstract capabilities into specific and testable features, and

aggregation scripts for computing aggregated results based on expected test

results.

Decompo-

sition

An overview of how the quality characteristics and their corresponding

engines capabilities are decomposed is given in Table 4.3. The table shows

the schema of the feature tree, with capability-specific names for each feature

tree entity (i.e., from the group down to the specific feature). The terminology

does fit for both process languages in question. Typically, it is straightforward

to decompose a capability into groups, feature sets, and features. The only

exception is that of performance, which only specifies experiments as features

that are not grouped in any way. This is because performance results are hard to

aggregate as they heavily depend upon the environment. Each decomposition

is detailed later within Section 4.5.

Quality Characteristic Capability Group Feature Set Feature

Functional Suitability Conformance construct group construct construct config.
Functional Suitability Expressiveness pattern catalog pattern pattern impl.

Usability Static Analysis rule set rule rule config.
Resilience Robustness fault scenario message layer mutation

Performance Efficiency Performance - - experiment

Table 4.3.: Capability specific names for group, feature set, and feature

ExtensionAs shown in Table 4.3, each capability uses its name for a feature, feature set,

and group. To account for that in the serialization, these names are specified

through extensions. In the case of expressiveness, for instance, the capability

comprises three extension elements: feature set to pattern implementation,

featureSet set to pattern, and group set to pattern catalog. With these names

instead of the abstract terms, a more informative UI can be provided, as it is

done for PEBDASH in Chapter 6.

Decom-

position

Guidelines

There are two orthogonal decomposition guidelines: 1) use existing hier-

archies, and 2) start with feature sets. For almost all capabilities for which

benchmarks are created, a natural hierarchy already exists (e.g., within the

specification of the process language). Such an existing hierarchy is well suited

to be used for the feature tree, especially to define the groups, and sometimes

the feature sets as well. The second guideline is to start with the feature
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sets. From there, it is possible to refine towards features and to abstract and

categorize towards the groups. In almost any benchmark, the user is most

interested in the feature set level results, as the feature level is too detailed,

and the group level too abstract. Furthermore, the feature set level is typically

already specified, whereas it takes effort to decompose a feature set into its

testable features. For instance, to come up with rule configurations for the

static analysis rules in Section 4.5.2.3, or the construct configurations for the

constructs in Section 4.5.2.1 and Section 4.5.3.1.

Metrics Each element in the feature tree can define metrics. Although there are lots

of different types for these metrics, a ternary result is typical for representing

success (+), failure (−), and a state in between (+/−) that mostly refers to

a partial success (or a partial failure of one is a pessimist instead). Moreover,

ternary representation is the way to express workflow pattern support [257]. A

pattern is either directly, partially, or not directly supported.

Listing 4.1: Predefined Aggregation Algorithms

1 def trivalent - aggregation :
2 if only + then +
3 else if only - then -
4 else +/-
5

6 def best -value:
7 if any + then +
8 else if only - then -
9 else +/-

Aggrega-

tion

Scripts

Because the ternary form for results is often used, two aggregation scripts

are provided to help in defining the aggregation logic: trivalent-aggregation

and best-value. These scripts can be seen as building blocks for more complex

aggregations. They are used multiple times in the benchmarks created as

part of Section 4.5. Their pseudo code is given in Listing 4.1. The algorithm

trivalent-aggregation (line 1 to 4) is the default one as it shows whether all the

values are either + or −, and if this is not the case, a +/− is shown. It is a clear

indicator that can easily show no or full support, but it is hard to know what

the +/− means as it does not say whether the support is tending more towards

full or no support. The algorithm best-value (line 6 to 9) is typically applied

when a feature may be implemented in different ways. To know whether the

feature can be used, we only need to know whether at least any of its variants

is working correctly. A variant of a feature can also be a workaround that is not

a perfect implementation. In that case, this variant may only provide a feature

support of +/− instead of +.

4.5.1.2. Feature to Test Method

F2TM After the features are determined, they are converted to tests through the

Feature to Test Method (F2TM). The procedure for that is depicted in Fig-

ure 4.11. It requires a feature and a process stub as an input and produces

a test as its output. The process stub is important as it contains facilities to
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Figure 4.11.: The Feature to Test Method as a Data Flow BPMN Diagram

inject input and observe the state of instances of this process and, therefore,

makes a feature under test testable. The procedure works as follows. First, the

developer derives a test description from the feature, which is the basis for the

remaining tasks. From that test description, metrics are defined that are to be

measured. Moreover, based on the test description, the process stub is extended

to provide a process that contains the feature under test, for which test cases

and possibly required test partners are created. The test is complete after the

metrics, process, test cases, and test partners are defined.

Process

Model

Stub

Creating a process model from a process model stub is suggested in Fig-

ure 4.11. This can be done in two different ways: Stub Extension (P3) and

Mutated Existing Test (P4). In the first variant, a process model stub is cre-

ated beforehand and then extended at special extension points. The process

model stub has already set up facilities on how to inject input and observe

state changes and output. In between, there are extension points where the

feature under test can be put. In contrast, the Mutated Existing Test (P4) uses

a fully specified process model and modifies it. This has the advantage that

there is a relationship between the existing and the modified process model.

If the existing test is fulfilled, and the modified one is not, it can be said that

the modification introduced an issue. By keeping the difference between the

existing and the modified process model to a minimum, it is simpler to evaluate

whether the modification is correct in isolation. In the following evaluations,

both are used depending on the specific benchmark.

MetricsThe metrics of the feature tree determine the minimal set of raw or atomic

metrics that are required to aggregate the measurements of the latter to meas-

urements of the former. Moreover, a standard set of metrics is specified, even

if the measurements of these metrics stay unaggregated. This set of metrics

includes metrics such as the time when the test started and its duration. An

overview of the standard metrics that are typically available is given in List-

ing 4.2. These normally suffice for the majority of the aggregated metrics which

mostly rely on the testSuccessful or the testDeployable test metrics.
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Listing 4.2: Standard Test Metrics

1 <metricType dataType ="long" id=" executionDuration " unit=" milliseconds "/>
2 <metricType dataType ="long" id=" executionTimestamp " unit=" timestamp " />
3 <metricType dataType ="long" id=" testCases " unit=" quantity " />
4 <metricType dataType ="long" id=" testCaseSuccesses " unit=" quantity " />
5 <metricType dataType ="long" id=" testCaseFailures " unit=" quantity " />
6 <metricType dataType =" boolean " id=" testDeployable " unit=" boolean " />
7 <metricType dataType =" boolean " id=" testSuccessful " unit=" boolean " />
8 <metricType dataType =" string " id=" testResult " unit=" trivalent " />

Process &

Test Cases

& Test

Partners

Making a feature testable requires the usage of existing testing methods from

simple techniques such as creating equivalence classes and ensuring that cover-

age criteria are met up to more sophisticated methods such as combinatorial

testing. They are all required to ensure that the tests test the correct feature

and that the tests are complete in a way that the test result reveals how well a

feature is working.

Test

Validity

Also, there is the practical aspect that while having ensured that the tests are

sufficient we also have to verify that the tests themselves are correct (i.e., that

they can be executed successfully). This requires that the artifacts (e.g., the

process model, the test cases, and the test partner definitions) are valid. The

validation module of PEBL is used to find some errors quickly automatically

(Automatic Static Analysis (P7)). Furthermore, by open sourcing it (Open

Sourcing (P5)) and asking experts such as developers and maintainers of

process engines or researchers in this field for a review (Expert Review (P6)),

the quality of the tests are ensured.

4.5.2. BPEL-based Benchmarks

Dependen-

cies

As part of this evaluation, four different BPEL-based benchmarks have been

created: conformance, expressiveness, static analysis, and robustness. These

four benchmarks are related. Their dependencies are shown in Figure 4.12.

The most basic benchmark that is also used within the evaluation of PEAL

in Section 3.5 is the Aptitude Test (P8). This Aptitude Test (P8) lays the

foundation on which the conformance benchmark builds upon. The remaining

three benchmarks build upon the conformance benchmark as they reuse the

available features and tests to build upon or to compare against.

Figure 4.12.: BPEL Benchmark Dependencies
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Message

Evalu-

ation

(P12)

All benchmarks have in common that Message Evaluation (P12) and Partner-

based Message Evaluation (P13) is used to observe the state of the process

instance. This means that messages (SOAP messages in that case) are sent to

the instances of the process model under test, and the response is checked to

contain specific values via XPath expressions. This may require additional test

partners which also can receive and send predefined or computed messages.

Moreover, the state of the test partners can also be queried for further assertions

such as whether a particular message has been received. An example of

such a message exchange is given in Figure 4.13 for both variants with the

Message Evaluation (P12) on the left-hand and the Partner-based Message

Evaluation (P13) on the right-hand side.

Figure 4.13.: Typical Scenario for Message Evaluation (P12) (left) and Partner-based
Message Evaluation (P13) (right)

Concur-

rency

Detection

(P16)

In some cases, Concurrency Detection (P16) is required as well which is

built upon Partner-based Message Evaluation (P13). A test partner is simulated

which can receive messages, waits for a specific amount of time, and then

responds to the previously received messages. It is measured whether such

request-response pairs do overlap, or, in other words, whether the test partner

receives multiple calls in parallel. An example of the exchanged messages and

their intents is given in Figure 4.14. It subdivides the message exchanges into

three subsequent sections according to the paradigm arrange-act-assert. First,

the test partner is informed that he has to detect concurrency (i.e., arrange).

Next, the messages are exchanged (i.e., act), and last, the test system queries

the test partner whether concurrency has been detected (i.e., assert). Of course,

this method cannot distinguish between real concurrency or the simulation of

concurrency through nondeterministic interleaving.

In the following, all four BPEL-based benchmarks are presented in detail.
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Figure 4.14.: Typical Scenario for Concurrency Detection (P16) using Partner-based
Message Evaluation (P13)

4.5.2.1. BPEL Conformance Benchmark

Parts of this section have been taken from [95].

The first benchmark has been created to evaluate the capability feature con-

formance, or conformance in short, for the language BPEL. It is expressed

in PEBL in the following. The constructs of BPEL (e.g., activities and scopes)

are the feature sets. Those feature sets are organized into construct groups,

and each construct configuration represents a testable feature. The benchmark

for this capability evaluates the quality characteristic functional suitability, or

to be more precise, the two sub-characteristics functional completeness and

functional correctness.

Capability to Feature Method for ConformanceC2FM The features are derived

from the requirements defined in the BPEL specification [181] using the nota-

tional conventions [112] (e.g., MUST, MUST NOT, or REQUIRED) as they define

what the capability conformance means for BPEL. Specifically, features for every

activity, attribute, and fault that is part of executable BPEL are provided. To

ensure that all features of BPEL are covered, Configuration Permutation (P1) is

applied to determine that each configuration of a construct is captured in a fea-

ture. For this, the existing hierarchic structure of the BPEL specification is used.

It comprises basic activities, structured activities, and scopes, which, in turn,

group constructs that can be configured in various ways. An overview of these

three groups with their constructs and the number of construct configurations

is given in Table 4.4. In the following, these groups and their constructs are

explained in more detail.
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Table 4.4.: BPEL Conformance: Config. per Construct within Construct Group

basic activities 78 structured activities 48 scope 43

Assign 27 Flow 12 Compensation 6
Empty 1 ForEach 14 CorrelationSets 2
Exit 1 If 6 EventHandlers 21
Invoke 18 Pick 16 FaultHandlers 13
Receive 5 RepeatUntil 3 MessageExchanges 4
ReceiveReply 14 Sequence 1 PartnerLinks 1
Rethrow 3 While 2 Scope-Attributes 3
Throw 5 TerminationHandlers 3
Validate 2 Variables 2
Variables 3
Wait 3

Groups &

Constructs

The basic activities group contains constructs for every basic activity of

BPEL [181, pp. 84–97]. This includes the invoke, receive, reply, assign, throw,

wait, empty, exit, validate, and rethrow activities, as well as faults related to

them. The second group, structured activities, comprises structured activit-

ies [181, pp. 98–114]. This includes sequence, if, while, repeatUntil, pick, flow,

and forEach activities. Again, faults related to these activities belong to this

group as well. Although being structured, scopes [181, pp. 115-147] are treated

separately. The last group contains constructs for scopes, fault-, compensation-,

termination-, and eventHandlers. Furthermore, the scope-local definition of vari-

ables, partnerLinks, messageExchanges and correlationSets is also investigated

here.

ExampleFor instance, the if activity of BPEL is a construct which is part of the struc-

tured activities group and has six configurations in total. The four functional

configurations, namely, 1) an if without any additional elements (If), 2) an if

with an else (If-Else), 3) an if with an else if (If-ElseIf), and 4) an if with an else

if and an else (If-ElseIf-Else) refer to the good cases when the condition expres-

sion is valid. In contrast, the other two configurations refer to the handling of

invalid condition expressions and specify which fault is required to be thrown

in each case.

Limita-

tions: Un-

specified

Language

Features

Three areas required for executable BPEL are not completely specified and

remain a design-choice for an implementer of the standard. This is the exact

structure of a partner reference, necessary for the assignment of partnerLinks,

the URI scheme used to identify XSL stylesheets and the behavior of the engine

if a fault is propagated to, and not handled by, the root-level scope of a process

that still has open request-response interactions. WS-Addressing EndpointRefer-

ences [272] (encapsulated in a service-ref container of BPEL) are used as partner

references and to identify XSL resources by their filename. This implies that

an engine that supports dynamic binding without EndpointReferences will fail

our test case. Concerning fault propagation, we test for the mechanism applied
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by most high-level programming language, such as Java or C#, which is also

a prerequisite for distributed fault handling [89]: It is expected that an un-

caught fault at root-level is forwarded to the recipients in open request-response

operations.

Limita-

tions:

Com-

position

In this benchmark, the BPEL activities and their configurations are covered.

What is not covered are combinations of arbitrary BPEL activities. This would

lead to test explosion, as they can be nested indefinitely through the structured

activities. The expressiveness evaluation in Section 4.5.2.2, however, covers

combinations of BPEL activities in the form of pattern implementations. Simil-

arly, but in a limited scope, the robustness evaluation in Section 4.5.2.4 covers

two combinations of BPEL activities as well.

Extensions For the conformance benchmark for BPEL, no extension elements are used

except for specifying the benchmark-specific names for feature, feature set,

and group. Extension elements, however, could be used to indicate which

construct configuration is a workaround or alternative for another construct

configuration. This is especially helpful if it is determined that an important

feature is not supported. If, however, there are workarounds or alternatives

available, this would not matter that much. Furthermore, one can specify

which construct configurations are part of CoreBPEL [110] (i.e., a subset of

BPEL without syntactic sugar). With that information, it would be possible to

determine whether a feature is actually syntactic sugar and which feature is

crucial to fulfill as other features could be mapped to that one (or seen as an

alternative).

Metrics In this benchmark, we are interested in metrics of the construct configura-

tions, constructs, groups, and the support in general. Regarding the construct

configuration, it is necessary to know whether they are deployable to the

engines (testDeployableCount that requires testDeployable) and whether they

work according to the specified test cases (testSuccessfulCount that requires

testSuccessful). Regarding the constructs, it is necessary to know whether all,

none, or only some of the configurations are supported (testResultTrivalentAg-

gregation that requires testResult using the trivalent-aggregation algorithm),

and how many configurations are available for each construct (featuresSum).

Furthermore, for the construct groups and the language, the questions how

many features there are (featuresSum) and how many of them are supported in

total (supportedFeaturesCount that requires testSuccessful) are asked.

Feature to Test Method for ConformanceF2TM It is necessary to derive tests for

the previously defined features. F2TM is applied as follows. Each conformance

test describes a specific feature of BPEL in relative isolation. A test comprises

BPEL, WSDL, XSD, and XSLT files as well as test cases and test partners. Every

process model implements the same WSDL interface to enable a unified hand-

ling of the tests. The interface is intended to be as simplistic as possible to

ensure that all engines support it while being complex enough to test all features
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of BPEL. It contains a partnerLinkType and several message definitions, with

all messages containing a single message part of the type integer. Thereby, we

avoid problems that result from the processing of large documents, as it is not

our intention to assess XML processing capabilities here. The portType is made

up of two operations, namely (i) a synchronous one that may also reply with a

fault and (ii) an asynchronous one. The binding for these operations is the most

basic and plain one available, thereby having a high probability of being sup-

ported by every engine: document/literal style over HTTP [271, Sec.3]. This

is the preferred binding for achieving interoperability according to WS-I Basic

Profile 2.0 [292] by the Web Services-Interoperability Organization (WS-I).

Additionally, every message exchanged by these operations is configured to be

useable in correlation sets. A similarly structured WSDL definition is provided

for a partner service that is required to test invoke activities.

Observa-

bility

The tests for a specific feature of BPEL are not strictly isolated, which is also

no requirement for conformance tests [166, pp. 203-208]. Some features are

not testable in isolation, such as faultHandlers that require a fault to be thrown

in the first place. Furthermore, to verify the correctness of a test, it is necessary

to have an output available that can be evaluated. Consequently, all process

definitions we use as conformance tests contain certain elements and most do

contain synchronous operations. Listing 4.3 outlines the general structure that

applies to most tests. The activities therein with their specific configuration

could be verified to be supported by all engines, so they do not influence the

results of other tests. Here, Stub Extension (P3) using Listing 4.3 is applied.

This stub is similar to the process model used in the evaluation of PEAL in

Section 3.5. Hence, it has been asserted that it works on any engine, and based

on that, it can be extended precisely with the feature under test. In other words,

the stub has no effect on the conformance test result.

Listing 4.3: Outline of the Process Definition Stub for BPEL Process Models

1 <process >
2 <partnerLinks />
3 <variables />
4 <sequence >
5 <receive />
6 <!--Test implementation -->
7 <assign />
8 <reply />
9 <!--More test implementation , if message exchanges are involved -->

10 </ sequence >
11 </ process >

Invoke

Example

Listing 4.4 shows an example of a serialization of a nontrivial test, namely,

for the BPEL activity invoke which makes a synchronous call to a test partner. It

closely follows the message sequence on the right-hand side of Figure 4.13. In

the test case, first, it is asserted that the process model is deployed (line 7–9).

Next, a SOAP message containing the number 1 is sent to the WSDL interface

of the process model (line 10–17), which will send the number 1 to the test

partner subsequently. This test partner is a rule-based WSDL test partner who

responds to messages containing the number 1 with a message containing the
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number 1 (line 22–38). The test case is successful if the received response does

contain the number 1 (line 12).

Listing 4.4: PEBL Serialization of BPEL conformance test for feature Invoke-Sync

1 <test feature =" Conformance__BPEL__basic__Invoke__Invoke -Sync">
2 <process >Invoke -Sync.bpel </ process >
3 <description >A receive -reply pair with an intermediate synchronous invoke .<

/ description >
4 <testCases >
5 <testCase name="Good -Case -1" number ="1">
6 <testSteps >
7 <checkDeployment >
8 <testAssertions ><assertDeployed /></ testAssertions >
9 </ checkDeployment >

10 <sendSoapMessage >
11 <testAssertions >
12 <assertXpath expression ="..." expectedOutput ="1" />
13 </ testAssertions >
14 <operation >startProcessSync </ operation >
15 <portType >testInterface </ portType >
16 <message > <!-- send 1 --></ message >
17 </ sendSoapMessage >
18 </ testSteps >
19 </ testCase >
20 </ testCases >
21 <files >TestInterface .wsdl TestPartner .wsdl </files >
22 <testPartners >
23 <ruleBasedWSDLTestPartner >
24 <wsdl >TestPartner .wsdl </wsdl >
25 <rules >
26 <rule operation =" startProcessSync ">
27 <xpathPredicate > <!-- is 1? --></ xpathPredicate >
28 <soapMessageOutput statusCode ="200"
29 mimetype =" application /soap+xml">
30 <!-- 1 -->
31 </ soapMessageOutput >
32 </rule >
33 </rules >
34 </ ruleBasedWSDLTestPartner >
35 </ testPartners >
36 <metrics />
37 </test >

Test Cases

& Test

Partners

As shown in the previous example, the test cases and the test partners

together specify the sequence of messages to be exchanged and the assertions

to be made. To ensure that the activity under test is fully covered, test metrics

such as branch coverage have been applied as well. For instance, the test to

evaluate the if activity contains two test cases: one tests whether the condition

of the if is evaluated to true, and the other one to false. This achieves full

branch coverage for that particular test.

Parallel

Activities

There are three activities that allow parallel execution in BPEL: forEach with

the attribute parallel set to true, a flow with parallel branches, and onEvents

which are executed in parallel if the scope they are attached to is active.

There are two variants to evaluate those features: simply evaluate whether

the activities will behave as expected from a black-box point of view, or try

to determine whether the activity is using concurrency. The latter is realized

through Concurrency Detection (P16) outlined before and the former is covered

with typical functional testing.

Metrics For BPEL conformance tests, the standard test metrics outlined in Sec-

tion 4.5.1.2 are sufficient. No additional ones need to be specified.
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4.5.2.2. BPEL Expressiveness Benchmark

Parts of this section have been taken from [96].

The second benchmark covers the capability expressiveness for the language

BPEL. Similarly to the previous benchmark that covered conformance, this

benchmark evaluates a different part of the quality characteristic functional suit-

ability with its two sub-characteristics functional completeness and functional

correctness.

Capability to Feature Method for Expressiveness C2FMAn overview of the pat-

terns and the amount of different pattern implementations is found in Table 4.5.

For this benchmark, the already available structure of a pattern catalog with

patterns that in turn may be one or more pattern implementations are re-

used. The patterns are the feature sets which are organized in pattern catalogs,

and each pattern implementation represents a testable feature. Four patterns,

namely, WCP-08 Multi-Merge, WCP-09 Structured Discriminator, WCP-10 Arbit-

rary Cycles, and WCP-15 Multi-Instance Without A Priori Run-Time Knowledge,

do not have any pattern implementations, as their language support already

states that they are not directly supported because of the inherent character-

istics of BPEL [149]. Although it is possible to implement anything using a

Turing-complete language [255], in these cases, it would require too many

BPEL activities to implement these patterns. For the three patterns WCP-17

Interleaved Parallel Routing, WCP-18 Milestone, and WCP-19 Cancel Activitiy, at

most partial support is possible are there is no BPEL activity available in the

BPEL specification that would directly implement these patterns, but one needs

to use a bunch of BPEL activities together to implement it. For the remaining

patterns, there is a corresponding BPEL activity. But sometimes, a few BPEL

activities together can act as a workaround to achieve the same behavior as

well. In these cases, the pattern may have different pattern implementations.

ExampleFor instance, the pattern WCP04 exclusive choice is part of the workflow

control flow pattern catalog group and has a single pattern implementation

making use of an if activity with an else branch. The pattern WCP06 multi choice

has two pattern implementations, namely, one direct implementation using flow

with links and one partial implementation using flow with if activities instead

of links.

ExtensionsFor the feature tree, the language support is added as an extension for

both, the pattern implementation and the pattern itself. This language support

defines the upper bound of the support that an engine can expect to achieve if

it supports the full BPEL specification. The language support for the patterns

is specified in Table 4.5. The language support for pattern implementations,

however, can deviate from one of the patterns for workarounds that only

provide partial support (+/−) for a pattern with direct language support (+).
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Table 4.5.: BPEL Expressiveness: Pattern Catalog, Patterns, and Number of Pattern
Implementations

Control-Flow Pattern Catalog [257] BPEL 24

WCP-01 Sequence + 1
WCP-02 Parallel Split + 1
WCP-03 Synchronization + 1
WCP-04 Exclusive Choice + 1
WCP-05 Simple Merge + 1
WCP-06 Multi-Choice + 2
WCP-07 Structured Synchronizing Merge + 2
WCP-08 Multi-Merge - 0
WCP-09 Structured Discriminator - 0
WCP-10 Arbitrary Cycles - 0
WCP-11 Implicit Termination + 1
WCP-12 MI Without Synchronization + 6
WCP-13 MI With A Priori Design-Time Knowledge + 2
WCP-14 MI With A Priori Run-Time Knowledge + 1
WCP-15 MI Without A Priori Run-Time Knowledge - 0
WCP-16 Deferred Choice + 1
WCP-17 Interleaved Parallel Routing +/- 1
WCP-18 Milestone +/- 1
WCP-19 Cancel Activity +/- 1
WCP-20 Cancel Case + 1

Metrics The metric that is relevant is the actual support of the pattern and pattern

implementation. This means that if the test is successful (testSuccessful), the

previously specified language support is the actual support of that pattern imple-

mentation, which can either be direct (+) or partial (+/−) support. Otherwise,

the pattern implementation is not directly supported (−). The support of a

pattern is the best available support of its pattern implementations. In that

case, the algorithm best-value is applied. Another metric is whether an engine

fulfills the language support of the pattern. This is computed by comparing the

language support with the actual support of a pattern (standardFulfilled). On

top, the amount of patterns that fulfilled the standard can be computed as well

(standardFulfilledCount).

Feature to Test Method for ExpressivenessF2TM The actual BPEL process mod-

els for the pattern implementations are from Lenhard [147] and Lenhard

et al. [149]. Their pattern implementations are incorporated into PEBL by

reusing the process stub, its WSDL interfaces, and test partners from the BPEL

conformance benchmark, effectively applying Stub Extension (P3). Hence, the

actual serialization of such a test is omitted as it does not differ really from

the conformance example that has been shown previously. To compute the

aggregated metrics, the standard test metrics are sufficient. Merely the testSuc-

cessful metric is required, as all aggregated metrics depend only upon this one.
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The major difference, however, is that instead of testing a single BPEL activity

in isolation, this benchmark evaluates also multiple BPEL activities working

together to fulfill a particular pattern.

4.5.2.3. BPEL Static Analysis Benchmark

Parts of this section have been taken from [99].

The third benchmark covers the capability static analysis for the language BPEL.

That capability corresponds to the quality characteristic usability, or, to be more

precise, the sub-characteristic user error protection. This benchmark builds

upon the conformance benchmark from Section 4.5.2.1 conceptually but also

feature- and test-wise.

TagsThe BPEL [181] specification contains 94 static analysis rules. Because

of the large number of rules, they are tagged according to two dimensions:

violation check (How are the targets checked?) and target elements (What

BPEL activities and elements are restricted further?). These tags allow gaining

additional insight as they can be used to group results in a comprehensive and

easy to interpret way. In the following, the tags are outlined that apply to the

covered52 static analysis rules from Table 4.6. An overview of the tags and the

rules is presented in Table B.1. A rule is tagged at least one time per dimension,

and can be tagged multiple times within each tag dimension.

Dimension

Violation

Check

The violation check tags describe the type of the check. The three tags with

the highest number of rules, namely, node requirement, choice, and uniqueness

compensate the lax XSD of BPEL. The rules tagged with node requirement

requires specific elements or attribute values. In other words, BPEL elements

are restricted further because the BPEL schema offers a greater choice which

could result in wrong element or attribute configurations. If a rule demands

the usage of attributes and elements in specific combinations, it is tagged with

choice. In this case, choice can refer to an inclusive or or an exclusive or. A more

strict XSD could have made these rules obsolete in the first place by using, for

example, the native XSD choice mechanism instead. Rules with the uniqueness

tag check the uniqueness of attributes or elements. For instance, the name

attributes of <variable> definitions have to be unique per <scope>. The native

XSD mechanisms for uniqueness could have rendered these rules redundant.

Several rules are tagged with consistent redundancy that deal with nodes which

carry redundant information that can be derived from the context (e.g., from

other attributes, elements, or the location of an activity). The location tag is

assigned to rules that restrict possible parents or ancestors of activities. Such

rules are necessary due to undesired inheritance defects of the BPEL XSD types.

For instance, <rethrow> is a common activity even though it is solely applicable

in the context of <faultHandlers>. The rules with the tag execution instructions

52A complete tagging of all rules can be found in the accompanying technical report [202].
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instruct the BPEL engine how to execute the process (e.g., how to lookup a

variable at runtime). Static analysis can detect errors that occur when the

execution would be performed in the correct order, but invalid execution at

runtime remains unchecked by static analysis, of course. Hence, these rules

can only be checked up to a certain point with static analysis. Rules are tagged

with definition resolution if the rules require that a BPEL activity references

other BPEL, WSDL or XSD elements by a Qualified Name (QName) or other

references. Control cycles are forbidden in BPEL and the rules that describe

their detection are tagged with control cycle detection.

Dimension

Target Ele-

ments

The tags in the target elements dimension indicate which BPEL activities or

elements are restricted further. The majority of the rules refer to activities

related to the message exchanges and their required WSDL and XSD definitions,

whereas only a minority of the rules restricts structured activities.

Big Pic-

ture

The big picture of the benchmark creation is shown in Figure 4.15. It reveals

that the static analysis benchmark builds upon the conformance benchmark

from Section 4.5.2.1 on the left-hand side. On the right-hand side, the creation

of the static analysis benchmark is pictured which consists of two steps: first,

the formalization of the static analysis rules (i.e., C2FM), and, thereafter, the

mutation of existing conformance tests through fault injection to get to the

static analysis tests (i.e., F2TM). Furthermore, two different types of metrics

are proposed to measure the fulfillment of any rule configuration: the classical

result (i.e., the result of the static analysis test), and the pairwise result (i.e., the

result of the static analysis test combined with the result of the corresponding

conformance test). All parts of the big picture are detailed in the following,

starting with the formalization.

Static Analysis 

Benchmark 

Conformance 

Benchmark 

BPEL standard 

test test 

rule configuration 

activities static analysis rules 

classical 

result 
result 

pairwise 

result 

Formalization 

Mutate Existing Test 

Figure 4.15.: BPEL Static Analysis: Big Picture

Capability to Feature Method for Static AnalysisC2FM The static analysis rules

are the feature sets which are organized in rule sets, and each rule configuration
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represents a testable feature. In this case, there is only a single rule set with 94

static analysis rules.

Formaliza-

tion

The first step, according to the big picture, is to formalize the static analysis

rules of the BPEL specification. These formalizations are either taken and

adapted from Kopp et al. [134], or have been newly created [202]. The formal-

ization of the rules can be found in the accompanying technical report [202].

With these formalizations, it is possible to derive permutations that contain all

the valid and invalid combinations of the relevant BPEL elements for this rule.

The formalization is required to ensure that the resulting tests are complete and

their numbers do not explode. In this work, the existing BPEL formalization

of Kopp et al. [134] is used whenever possible. As they formalized the rules

positively (i.e., specifying valid combinations of BPEL features), we have to

negate them for creating invalid combinations which are necessary for the fault

tests. When there is no formalization available, the rule is modeled as part

of this work. To ensure a high quality, peer-reviews within the Distributed

Systems Group (DSG) at the University of Bamberg are conducted. Moreover,

the formalizations are also compared with the those from Kopp et al. [134]

to detect issues. By permuting the formalizations, a list of combinations is

produced which can be subdivided into valid and invalid configurations. The

invalid combinations are the rule configurations that an engine should detect

and reject. Hence, precisely these are the “features” which need to be converted

to tests. The valid ones are already part of the conformance benchmark, and

no additional features or tests are required for them.

ExampleFor instance, the rule SA00001 is part of the standard-conformant static

analysis rules group and has two rule configurations, namely, 1) handling the

Message Exchange Pattern (MEP) notification, and 2) handling the MEP solicit

response.

Rule

Configura-

tions

In this work, only a subset of all rules are covered. To be precise, 71 of the

94 rules as shown in Table 4.6 are formalized, and the remaining 23 are out

of scope. The latter are not covered because they either are engine-specific

and we focus on engine-independent static analysis, or make use of expression

parsing which would require us to test the expression language XPath [269] as

well. Rules #56 and #77 are the exception. They are not covered because the

conformance benchmark lacks features that evaluate varying combinations of

nesting multiple activities as this results in test explosion. And such combin-

ations would be required as positive tests for these two rules. In total, there

are 762 rule configurations. This means that, on average, a rule has nine rule

configurations. However, the actual number varies greatly between the rules

due to the different amount of configurations that need to be checked. Rule

#3 has the most rule configurations with 342, whereas 26 rules solely require

exactly one rule configuration. Another 33 rules comprise more than one but

less or equal than ten rule configuration. Only eleven rules have more than ten
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Table 4.6.: BPEL Static Analysis: Rules and their Rule Configurations

rule 762 rule rule rule rule

SA00001 2 SA00018 2 SA00047 12 SA00065 4 SA00084 1
SA00002 1 SA00019 2 SA00048 20 SA00066 6 SA00085 5
SA00003 342 SA00020 13 SA00050 2 SA00067 1 SA00086 2
SA00005 5 SA00022 3 SA00051 1 SA00068 1 SA00087 8
SA00006 12 SA00023 2 SA00052 1 SA00069 1 SA00088 1
SA00007 10 SA00024 1 SA00053 4 SA00070 15 SA00089 1
SA00008 10 SA00025 5 SA00054 2 SA00071 3 SA00090 2
SA00010 21 SA00032 77 SA00055 1 SA00072 2 SA00091 1
SA00011 1 SA00034 8 SA00057 12 SA00076 1 SA00092 2
SA00012 1 SA00035 1 SA00058 20 SA00078 2 SA00093 10
SA00013 2 SA00036 1 SA00059 1 SA00079 4 SA00095 1
SA00014 28 SA00037 1 SA00061 36 SA00080 2
SA00015 4 SA00044 2 SA00062 1 SA00081 5
SA00016 1 SA00045 2 SA00063 1 SA00082 1
SA00017 1 SA00046 2 SA00064 1 SA00083 2

rule configurations. In Table 4.6, the rule configurations per rule are explicitly

depicted.

Metrics The metrics for the rule configurations are the classicalResult and the pair-

wiseResult. The classicalResult is either + if the test succeeds (i.e., the process

model is rejected at deployment) or − if the test fails (i.e., the process model is

accepted at deployment). It builds directly upon the standard testDeployable

metric. The other metric, pairwiseResult, is different as it builds upon both the

classicalResult and the testDeployable metric of the corresponding conformance

test. The computation logic is outlined in Table 4.7. By incorporating the

conformance test result as well, it is possible to get a more precise picture of

the actual support: only engines that understand process models can effectively

reject erroneous process models. In case both process models are rejected, the

underlying feature is simply unsupported, and the static analysis rule is not

implemented. The erroneous process model is rejected because of the wrong

reason. The pairwise metric show a much clearer image in how well the static

analysis rules are implemented and supported by the engines [99].

Table 4.7.: Classical (left) vs. Pairwise (right) Result Metric Algorithm

static analysis test

deployed rejected
− +

base conformance test static analysis test

deployed rejected
deployed − +

rejected − −

Extensions For the static analysis, the previously described tags are stored in an extension

element for the rules (i.e., feature sets) as a comma separated list.
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Feature to Test Method for Static Analysis F2TMNext, the tests are derived from

the rule configurations that represent invalid combinations of BPEL elements

and attributes. This is done by selecting an appropriate test from the confor-

mance benchmark that includes a valid combination of BPEL elements and

modifies this correct feature test to contain the invalid combination, hence,

creating a fault test. Also, the quality of the tests increases as we identify

minimal required changes.

Fault Tests

Creation

To determine which conformance test to use, the BPEL activities and at-

tributes that are used in the formalization of the rule configuration provide

the starting point. For example, the following partial formalization of the

rule #47 comprises receiving a nonempty message through an <onMessage>

activity [201]:

[@variable, none] × [<fromParts>, none]

To violate the rule, the received message must not be completely assigned

to a variable via the @variable attribute nor any of its parts to variables

via the <fromParts> and its <fromPart> elements. As the conformance test,

the smallest process model is picked from the BPEL conformance benchmark

that provides all necessary BPEL elements. In the example, this is Pick-

CreateInstance-FromParts. The formalization shows the necessary modifications

that have to be made so that the process models of a test-pair differ only

minimally. In this example, the <fromParts> element is removed from the

process model of the Pick-CreateInstance-FromParts conformance test, resulting

in the NoVariable-NoFromPart-OnMessage static analysis test. In this example

which applies Mutated Existing Test (P4), only a single rule is violated by this

erroneous process model. This condition is important as it isolates a single

rule configuration (i.e., static analysis violation). For optimal test results, each

test shall violate a single rule and have a minimal difference to its feature

test, however, as a few rules are not disjunct in their validation, this optimal

state cannot be guaranteed for every test. From the 762 tests, only 6% violate

multiple rules. Put differently, over 94% contain an isolated fault.

MetricsThe standard metrics for a test suffice. In fact, the testDeployable metric is

the only one that is necessary. The other ones can be measured along the way,

but are not relevant to the metrics of the feature tree.

ExtensionsThe tests make use of two extension elements: staticAnalysisChecks and base.

These tests contain erroneous process models, and the errors in these process

models can be detected through static analysis. The validation package of

PEBL makes use of static analysis checks. By setting the extension element

staticAnalysisChecks to false, it is indicated that the process model should not be

validated and that the process models contain errors explicitly. Furthermore, a

test for a static analysis feature is based on a test for a conformance feature (see

Mutated Existing Test (P4)) to ensure that only the injected fault is isolated,

95



4. Process Engine Benchmark Language

and to compute the pair-wise static analysis metric. To have this information

available, the base extension element stores the id of the conformance test.

Example An example of the rule configuration SA00001-Notification of the static

analysis rule SA00001 is given in Listing 4.5. It shows the test structure that

is used for all the tests in this benchmark. It solely contains a single test step

that checks the deployment and asserts that the process model is not deployed.

The test lacks any test partner and any test steps that interact with an actual

instance of the process model because that is not necessary for this benchmark.

Listing 4.5: Example of the Benchmark for the rule configuration SA00001-Notification

of the Static Analysis Rule SA00001 of the BPEL specification using PEBL.

1 <test feature ="SA00001 - Notification " id="SA00001 - Notification__test ">
2 <process >SA00001 - Notification .bpel </ process >
3 <testCases >
4 <testCase name="Good -Case -1" number ="1">
5 <testSteps >
6 <checkDeployment >
7 <testAssertions >
8 <assertNotDeployed />
9 </ testAssertions >

10 </ checkDeployment >
11 </ testSteps >
12 </ testCase >
13 </ testCases >
14 <files >TestInterface .wsdl </files >
15 <testPartners />
16 <extensions >
17 <staticAnalysisChecks >false </ staticAnalysisChecks >
18 </ extensions >
19 </test >

4.5.2.4. BPEL Robustness Benchmark

Parts of this section have been taken from [98].

The last of the four benchmarks covers the capability robustness for the lan-

guage BPEL. Robustness is part of the resilience quality characteristic and its

sub-characteristic fault tolerance.

Capability to Feature Method for RobustnessMethod To evaluate message robust-

ness properties of a BPEL engine, the runtime behavior of instances of robust

processes that interact with faulty partner services is observed. It is determined

whether the process instances can react on the faulty response of the partner

service. This message robustness is denoted as backdoor message robustness as

the faults are injected as response of an external third party service. This is

in contrast to frontdoor message robustness in which the faulty messages are

sent directly as requests to an existing instance or creating a new one. Robust

processes use fault handling and validation constructs available in the process

language which would achieve fault tolerance when executed on a robust en-

gine. Hence, we create a process for each of those constructs to evaluate the

actual message robustness capabilities of each of those constructs of an engine.

Also, the partner services have to be configured to respond with faults that
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are suitable to reveal message robustness issues. It is proposed to create false

responses systematically for each of the layers. Moreover, the false responses

are created by applying one mutation to the correct response to test each fault

in isolation. A test is a combination of using a robust process with a specific

fault handling construct that needs to handle a specific faulty response on a

specific engine. When a fault is handled by at least one robust process, the

engine is considered robust regarding this faulty response. Upon this data,

message robustness properties can be derived per message layer.

BPEL Engine 

observe #fid fault 

Robust BPEL 

processes 

#fid #fid 

Test Partner 

mappings of  

#fid  fault 

Test System 

list of #fid 

derive 

BPEL activities 

catchAll 

validate 

Valid Response   SOAP Mutation Message Layers 

TCP, HTTP, 

SOAP, APPDATA 

Fault with #fid 

apply  

Figure 4.16.: BPEL Robustness: Big Picture

Big Pic-

ture

The big picture of the benchmark creation and its resulting testbed is shown

in Figure 4.16. It comprises three components (black boxes) and their con-

figuration (gray boxes): the test system, the BPEL engine under test, and the

test partner. The test system requires the list of all fault IDs. Onto the BPEL

engine, the robust processes need to be deployed, and the test partner has to

be parameterized with the request-response mappings for pairs of the fault ID

and the corresponding fault. The gray dotted arrows denote how the robust

processes and how the faults and their fault IDs (#fids) are created. The robust

processes are created by using activities from the process language that enable

fault handling and error recovery. In contrast, the creation of the faults requires

multiple steps. First, for each specification of each message layer, mutations

are derived on how to change a valid message to an invalid one. Second,

these mutations are applied to a normative valid response. Third, each fault is

assigned an ID, a fault id, that corresponds to the fault, making up a request-

response pair. The black arrows mark the message flow per test execution

between the components. A test is initiated by the test system by sending a

fault ID to a deployed robust process and observes the response which is used

to determine the message robustness. The test partner, however, responds to

requests of the process instances by returning the fault corresponding to the

sent fault id.
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Robust

Processes

Two robustly designed processes are used, one being an extension of the other.

They have been created using the process stub from the BPEL conformance

benchmark in Section 4.5.2.1 using Stub Extension (P3). Their abbreviated

XML serialization is shown in Listing 4.6, with variables marked via the dollar

prefix and the actual behavior within the comments. Line 6 and 19 represents

the receive-reply pair to observe the behavior of the scope encompassing the

lines 7 to 18 in which the faulty partner service is called synchronously using

the invoke activity and then sets the $result variable to NO_FAULT. To the scope

itself, a catchAll fault handler is attached which sets the $result variable to

FAULT in case it catches any fault. The catchAll activity is specified “to catch any

fault not caught by a more specific fault handler” [181, p. 128], hence, it is the

central point of creating a robust and fault tolerant process as it allows reacting

upon an error. By checking the contents of the $result variable after process

completion, we can observe whether the catchAll activity is executed at runtime

or not, and consequently determine whether the engine was able to react

upon the simulated error or not. The second robust process (RP#2) extends

the first robust process (RP#1) by validating the received response against

its XSD definition with the validate activity in line 15. This is an additional

robustness instrument to ensure that the incoming message is validated against

its XSD definition, independent of the engine which may or may not validate the

incoming message against its XSD definition. The activities of RP#1 are widely

used in real world processes. According to Hertis and Juric [106], “more than

70% of [real world] processes contain fault handlers [and the activities] invoke,

sequence, assign and receive occur in more than 93% of processes” [106, p. 7].

The validate activity of RP#2 is not used in any of the real world processes

stated by Hertis and Juric [106]. Hence, this indicates that that countermeasure

is not widely applied. Although there is the catch activity as well to handle a

single and specified fault, we cannot apply this activity as in our experiment

we want to evaluate the ability to catch undefined and unspecified faults (i.e.,

no predefined SOAP faults). The processes are considered robust as they try

to use fault handling logic to cope with an erroneous response by themselves

without the intervention of an administrator.

Listing 4.6: Robust BPEL Process #1 and #2 in Pseudo XML.

1 <process >
2 <imports ... />
3 <partnerLinks ... />
4 <variables > <!-- $id , $result , $ response --></ variables >
5 <sequence >
6 <receive /> <!-- set $id -->
7 <scope >
8 <faultHandlers >
9 <catchAll >

10 <assign /> <!-- set FAULT to $ result -->
11 </ catchAll >
12 </ faultHandlers >
13 <sequence >
14 <invoke /> <!-- sends $id and waits for ( faulty ) $ response -->
15 [only #2: <validate /> <!-- validate $ response against XSD -->]
16 <assign /> <!-- set NO_FAULT to $ result -->
17 </ sequence >

98



4.5. Evaluation

18 </scope >
19 <reply/> <!-- return $ result -->
20 </ sequence >
21 </ process >

Decompo-

sition

As already roughly outlined, the capability is decomposed into robustness

approaches, message layers, and mutations. The approaches, message layers

and the mutation count is shown in Table 4.8. The two robustness approaches

based on the two robust processes are backdoor robustness and improved

backdoor robustness. For the four different message layers TCP, HTTP, SOAP,

and Application-Specific Data (APPDATA), mutations are specified. Table 4.8

shows only the mutation count and the actual mutations are listed in Table 4.9.

Table 4.8.: BPEL Robustness: Robustness Approaches, Message Layers, and their Muta-
tion Count

Backdoor Robustness 75 Improved Backdoor Robustness 75

APPDATA 11 APPDATA 11
SOAP 21 SOAP 21
HTTP 40 HTTP 40
TCP 3 TCP 3

MutationsTo verify whether a BPEL engine under test has a satisfying degree of mes-

sage robustness, 75 mutations are specified in Table 4.9. The mutations are

structured according to the message layers in which an error may occur, being

either on the lowest level (3 faults), in the HTTP header (40 faults), in the

XML-based SOAP envelope (21 faults) or in the application specific part of the

SOAP body that contains the APPDATA (11 faults).

TCP Muta-

tions

The three mutations on the TCP layer refer to not being able to resolve

the DNS entry and having either an unreachable or unresponsive host. These

mutations are based on the faults defined by Kopp et al. [136]. They are

simulated by changing the endpoint of the external partner service according

to the specific fault, and are therefore the only three mutations that are not on

the message level but the transport level.

HTTP

Mutations

For the HTTP layer, we solely came up with mutations for different status

codes of the HTTP header by sending the correct SOAP payload but only

changing the status code. As the first digit of the HTTP status code determines

its type, we subdivided them accordingly. The selected status codes are taken

from the HTTP 1.1 RFC 2616 [65]. Only the status code 200 is removed as

this marks a correct response, which is not the intent to test as part of this

benchmark. Despite the return code 306 is specified as unused by Fielding

et al. [65], it is still included as it should not be accepted according to this

specification. Although there are many other HTTP header properties (e.g.,

the MIME type [71, 72]), this work solely focuses on the status code. Other

properties are left for future work.
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Table 4.9.: BPEL Robustness: Message Layers, and their Mutations

Layer Mutation Layer Mutation
A

P
P

D
A
T
A

remove XML element

S
O

A
P

no XML root element
remove content text instead of XML root
change int to string two XML root elements
change int to double elements overlap
change int to loc. double unclosed XML attribute
remove XML namespace unclosed XML element
wrong XML namespace unclosed XML comment
unbound XML ns prefix unclosed CDATA
add XML element unescaped lesser than
add XML attribute unescaped greater than
add text between XML elements unescaped ampersand

unescaped apostrophy

H
T

T
P

status code 100 - 101 unescaped quotation
status code 201 - 206 XML name starts with XML
status code 300 - 307 XML name starts with number
status code 400 - 417 XML name starts with dash
status code 500 - 505 XML name contains space

remove XML element

T
C

P DNS unresolvable remove XML namespace
host unreachable wrong XML namespace
response timeout unbound XML ns prefix

SOAP &

APPDATA

Mutations

The mutations for both, the SOAP and the APPDATA layer, are mutations of a

valid SOAP response. The XML mutations, which refer to the well-formedness

criteria of XML, are solely at the SOAP layer while we subdivided the XSD

mutations, which refer to the correctness against their XSD schema, into the

part referring to SOAP XSD schema and the XSD schema of the application

specific code. The XML mutations are extracted out of the XML specifica-

tion [273, section 2.1] and grouped the mutations by bad names (4 mutations),

unescaped symbols (5 mutations), unclosed entities (4 mutations), structural

errors (1 mutations) and root element issues (3 mutations). For the XSD muta-

tions, the operator action (i.e., add, remove, and change) and the operator

target (namespace, namespace prefix, element, content, attribute, and text)

have been permutated, meaningless combinations have been removed and

mutations have been created for the meaningful ones. The issue is, however,

that not every meaningful combination can be applied to both the SOAP and

the APPDATA variant as not every mutation makes sense. Therefore, the SOAP

XSD mutations are fewer than the ones for the APPDATA layer.

Example For instance, the mutation no XML root element is part of the SOAP mes-

sage layer and used in both robustness approaches: backdoor robustness and

improved backdoor robustness.

Limita-

tions

A limitation of this benchmark is that the robustly designed BPEL processes

only make use of the forward error recovery activities through catchAll. The
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benchmark could be extended to handle backward error recovery activities as

well, especially in the case when forward error recovery fails to work.

MetricsThe relevant metrics count how many mutations there are and how many of

them are successful, timed out, or ignored the fault. Based on these metrics, the

fault handling strategy can be determined per message layer and overall. What

is more, attached to the language, the different robustness approaches can be

compared and it can be checked whether the improved backdoor robustness is

better than the normal backdoor robustness.

Feature to Test Method for Robustness F2TMNext, the tests are created for each

mutation. An example is given in Listing 4.7. The test case (line 3–19) is the

same for any test, only the fault ID that is sent to the deployed process instance

changes (line 15). The test partner, however, differs from test to test as it

defines how the fault is injected. For that, a rule-based test partner is used

that checks for the number in the received message and reacts according to

the mutation (line 21–34). The predefined responses are manually created by

applying the mutations to a valid response. For the valid response, a special

test is made acting as a baseline test to determine that the setup is working. In

the example, the response is an empty one as the mutation states that there is

no XML root element (line 29).

Listing 4.7: BPEL Robustness: Test for Mutation no XML root element of the SOAP

Message Layer for the Backdoor Robustness Approach

1 <test feature =" BR_ERR60001 " id=" BR_ERR60001__test ">
2 <process >BR_ERR60001_soap -xml -root_elem -none.bpel </ process >
3 <testCases >
4 <testCase name="Good -Case -1" number ="1">
5 <testSteps >
6 <checkDeployment >
7 <testAssertions ><assertDeployed /></ testAssertions >
8 </ checkDeployment >
9 <sendSoapMessage >

10 <testAssertions >
11 <assertXpath expression ="..." expectedOutput =" -1"/>
12 </ testAssertions >
13 <operation name=" startProcessSync " isOneWay ="false"/>
14 <service name=" testInterface "/>
15 <message > <!-- send 60001 --></ message >
16 </ sendSoapMessage >
17 </ testSteps >
18 </ testCase >
19 </ testCases >
20 <files >TestInterface .wsdl TestPartner .wsdl </files >
21 <testPartners >
22 <ruleBasedWSDLTestPartner >
23 <wsdl >TestPartner .wsdl </wsdl >
24 <rules >
25 <rule operation =" startProcessSync ">
26 <xpathPredicate > <!-- is 60001 ? --></ xpathPredicate >
27 <soapMessageOutput statusCode ="500"
28 mimetype =" application /soap+xml">
29 <!-- empty -->
30 </ soapMessageOutput >
31 </rule >
32 </rules >
33 </ ruleBasedWSDLTestPartner >
34 </ testPartners >
35 </test >
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Threats

to Validity

The threats to validity of creating this benchmark concern the manual cre-

ation of the tests. Especially the implementation of the SOAP and APPDATA

tests required manual modeling of errors. To reduce as many flaws in these

tests as possible, we applied Open Sourcing (P5), Expert Review (P6), and

Automatic Static Analysis (P7). Automatic Static Analysis (P7) is performed by

checking that only the introduced fault is found in the fault-injected message

and no other fault by accident. For instance, the XMLlint53 tool is used to

determine that the injected fault in the SOAP message is correctly detected by

the state-of-the-art XML validation tool.

Metrics The standard metrics of the test are not sufficient for the robustness bench-

mark. Although the testSuccessful result is helpful in determining whether the

process engine allows the process instance to react upon an error, the reason is

unclear if it is not successful. It, however, is important to know whether there

has been a timeout or whether the fault is simply being ignored by the process

instance. Hence, the additional metric testRobustnessResult is introduced which

is either + in the case of a successful test, 𝑇 in case the test system observes a

time out, and 𝑅 if the fault is ignored and the regular response is sent to the

test system.

4.5.3. BPMN-based Benchmarks

The BPMN-based benchmarks cover the capabilities conformance, expressive-

ness, static analysis, and performance. After presenting the general approach

to observing instances of BPMN process models, each benchmark is detailed

separately.

Observa-

tion

Although BPMN supports the exchange of well-defined messages, actual

and/or standard-based support for that in BPMN engines is not available.

Because of this, in contrast to BPEL, the BPMN-based benchmarks use execution

traces to observe and assert behavior instead of messages. This is called

Execution Trace Evaluation (P14) and comprises actions and traces. Three

different kinds of actions and traces exist. Actions can create log traces directly,

indirectly, or none at all. Similarly, traces can be caused by actions directly,

indirectly, or not at all. An overview of the actions and traces is given in

Table 4.10. They are used in the upcoming benchmarks. The first set of traces

and actions is the one in which an action directly causes a trace. In the second

set, the actions cannot be asserted through traces at all. The third set comprises

traces that are computed by the gather traces test step by analyzing the logs

of the engine, but not caused by any action directly. The last and fourth set

contains the actions that cause side effects which are later converted to traces

through the gather traces test step if applicable, and then evaluated. Each action

is executed as part of a Java or Groovy script within a BPMN script task. In the

following, all actions and traces are detailed.

53http://xmlsoft.org/xmllint.html, visited 2017-3-31
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Table 4.10.: Trace Assertions and Actions used in the Benchmark

action with direct trace traceless action gathered trace

SCRIPT_task1 WAIT_TEN_SECONDS ERROR_deployment
SCRIPT_task2 CREATE_LOG_FILE ERROR_runtime
SCRIPT_task3 ERROR_processAborted
SCRIPT_task4 ERROR
SCRIPT_task5

action(s) gathered trace

CREATE_MARKER_FILE MARKER_exists
THROW_ERROR ERROR_thrownErrorEvent

CREATE_TIMESTAMP_LOG_1 EXECUTION_parallel
CREATE_TIMESTAMP_LOG_2

SET_STRING_DATA DATA_correct
LOG_DATA

INCREMENT_INTEGER_VARIABLE INCREMENT_correct
INCREMENT_INTEGER_VARIABLE_AND_LOG

Create

Log &

Write

Tasks

Most tests rely on the action CREATE_LOG_FILE to create a log at the begin-

ning of the process model and make use of one or more of the five SCRIPT_taskX

actions that write their counterpart into that previously created log. In some

situations, these actions and traces are not enough. The other actions and

traces that provide more specific observation functionality are described in the

following.

WaitThe action WAIT_TEN_SECONDS simply waits ten seconds. This is necessary

for three tests with SubProcesses to synchronize that when a SubProcess emits

an event the listener in the parent Process is already active.

ErrorErrors are expressed through one of the following three traces: ERROR_deploy-

ment, ERROR_runtime, and ERROR_processAborted. Each of them is automat-

ically computed during the gather traces test step by analyzing the logs and

querying the engine API. Hence, both Detailed Logs (P17) and Engine API

Evaluation (P15) is applied here. If only the general presence of an error has to

be asserted, the ERROR trace can be used.

MarkerSeven tests have two processes within the BPMN file: a main process and

a secondary one. The main process uses the typical actions and is the target

of the test which should be evaluated. Hence, the traces correspond to this

process alone. Regarding the secondary process, it is only relevant whether

it has been executed or not. To check this, the secondary process can CRE-

ATE_MARKER_FILE which is checked during the gather traces test step and, if

available, would result in the MARKER_exists trace.

ErrorAn error is hard to reproduce with native standard compliant BPMN ele-

ments. It, however, can be thrown using THROW_ERROR and handled with

native BPMN elements within a process. The gather traces step determines
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whether any uncaught or unhandled error event has occurred and adds the

trace ERROR_thrownErrorEvent to the log if it does.

Concur-

rency

Detection

Based on the Execution Trace Evaluation (P14), it is also possible to imple-

ment Concurrency Detection (P16). In that case, each parallel activity creates a

pair of timestamped log traces through either the CREATE_TIMESTAMP_LOG_1

or the CREATE_TIMESTAMP_LOG_2 action. In between the creation of the

timestamp pair, the action simply waits ten seconds to ensure that there can be

observable concurrency. The first trace is written upon entering and the second

upon exiting the parallel activity in a separate file solely for these timestamps.

The two actions must be used in different parallel branches, e.g., one for each

flow of a parallel gateway. If timestamped log trace pairs overlap, concurrency

is detected, and the EXECUTION_parallel trace is created in the dedicated log.

Data With the actions SET_STRING_DATA and LOG_DATA, it is possible to store

a specific value within a string property or log its current value to a separate

file. In the gather traces step, this separate file is evaluated and, in case the

file contained a specific value, the DATA_correct is written to the execution

trace. This works similarly for an integer variable as well through INCRE-

MENT_INTEGER_VARIABLE and INCREMENT_INTEGER_VARIABLE_AND_LOG

which would cause an INCREMENT_correct in the case of success. The only

difference is that the second action increments the variable and logs it. This

is necessary to test some language elements such as script tasks with loop

characteristics.

Engine-

Dependent

Actions

The actions are engine-dependent and have to be transformed to engine-

specific implementations. This is not detailed here, but part of the Process

Engine Benchmark Framework (PEBWORK) prototype described in Section 5.4.

4.5.3.1. BPMN Conformance Benchmark

Parts of this section have been taken from [81, 84].

The first benchmark of BPMN evaluates the capability conformance. Similarly

to the BPEL evaluation, it measures part of the functional suitability qual-

ity characteristic and its two sub-characteristics functional completeness and

functional correctness.

Capability to Feature Method for ConformanceC2FM The capability is hierarch-

ically decomposed by relying on the existing structure of the BPMN specifica-

tion [115]. The constructs of BPMN are the feature sets which are organized in

construct groups, and each construct configuration represents a testable feature.

An overview focusing on the constructs is given in Table 4.11. There are five

construct groups, 33 constructs, and 105 construct configurations.

Construct

Groups

The five construct groups are called gateways [115, Chapter 10.6], events [115,

Chapter 10.5], activities [115, Chapter 10.3], data [115, Chapter 10.4], and

basics [115, Chapter 10.2]. The BPMN element that is part in every process
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model is the SequenceFlow which connects any “nodes” in the control flow

graph of a process. This connector comes in various forms, and can carry a

condition as well. Also, this group contains the constructs Lane and Participant.

In the BPMN specification, there are three different events: start, intermediate,

and end events. An event can reference zero, one, or more event definitions,

such as, cancel, compensation, conditional, error, escalation, link, message, signal,

terminate, and timer event definitions. Not every event-definition combination,

however, is allowed [115, p. 259–260]. To fight test explosion, multiple event

definitions are covered exemplary only. The activities group comprises Activities

(e.g., SendTask, ReceiveTask, LoopTask, or MultiInstanceTask), SubProcesses, and

CallActivities. The last two belong together because a CallActivity must invoke a

particular (AdHoc)SubProcess. Gateways influence the control flow in a BPMN

process and are either exclusive, inclusive, parallel, event-based, or complex gate-

ways. Combinations of them are covered as well. In the data group, the BPMN

constructs can define variables and offer read and write facilities. In this case,

only the two simple constructs available from the specification are added to the

benchmark: DataObject and Property. They are used to declare data storages

within a process instance, which can be read and written, for instance, through

script tasks using engine-specific scripts.

Table 4.11.: BPMN Conformance: Groups, Constructs, and Number of Construct Con-
figurations

gateways 14 events 56 activities 27

ExclusiveGateway 3 Cancel Event 1 CallActivity 2
MixedGatewayCombi. 4 Compensation Event 6 MultiInstanceTask 8
InclusiveGateway 2 Conditional Event 5 LoopTask 6
ParallelGateway 2 Error Event 4 SubProcess 1
ComplexGateway 1 Escalation Event 7 Transaction 1
EventBasedGateway 2 Link Event 1 AdHocSubProcess 2

Message Event 3 TokenCardinality 4
Signal Event 9 SendTask 1
Terminate Event 1 ReceiveTask 2
Timer Event 9
Multiple Events 6
EventDefinitionRef 4

data 2 basics 6

DataObject 1 Lanes 1
Property 1 Participant 1

SequenceFlow 1
SequenceFlow Cond. 3

ExampleFor example, the exclusive gateway construct of BPMN is a construct which

is part of the gateways group and has two configurations, namely, 1) the

exclusive gateway with sequence flows having condition expressions (Exclus-
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iveGateway) and 2) the exclusive gateway with one sequence flow marked as

default (ExclusiveGateway-Default).

Metrics The metrics are the same as the one used by the BPEL conformance bench-

mark in Section 4.5.2.1 for both the feature tree and the tests. Hence, it is not

detailed again.

Limita-

tions

A conformance benchmark for process engines can only contain the ele-

ments which can be executed (i.e., which are covered by the BPMN execution

semantics [115, Chapter 13]). This benchmark comprises a majority of the

available language constructs of BPMN, but not all of them. Consequently,

it is not considered complete, lacking evaluation of advanced data handling

constructs and the sending/receiving of SOAP messages via WSDL-based WSs.

These two aspects were omitted because the engines that are part of PEAL

do not support these in a standard-conformant way. This is problematic be-

cause it means that At Least One Success (P21) cannot be applied to verify the

correctness of a test.

Figure 4.17.: BPMN Conformance: Process Model Stub

Feature to Test Method for ConformanceF2TM To create the tests for the con-

struct configurations (i.e., features), Stub Extension (P3) is applied using an

existing BPMN process model shown in Figure 4.17. It can be seen that the ac-

tions CREATE_LOG_FILE and SCRIPT_task1 have been used. The corresponding

test would need the gather traces test step that uses the SCRIPT_task1 assertion,

complementary to the SCRIPT_task1 action.

Figure 4.18.: BPMN Conformance: Process Model for the ExclusiveGateway Test

Example:

Exclusive

Gateway

The test of the ExclusiveGateway construct configuration comprises the pro-

cess model depicted in Figure 4.18 and the test serialization shown in Listing 4.8.

It is a process with four scriptTasks and an exclusiveGateways. The execution

of two of the tasks is controlled by the exclusiveGateways and only one of the

tasks is executed. To cover the combinations, four different test cases have been

created injecting either a (line 4–22), b (line 23), ab (line 24), or c (line 25)

with different expected traces depending on the injected input.
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Listing 4.8: BPMN Conformance: PEBL Test for ExclusiveGateway

1 <test feature =" Conformance__ExclusiveGateway " id="
Conformance__ExclusiveGateway__test ">

2 <process >ExclusiveGateway .bpmn </ process >
3 <testCases >
4 <testCase number ="1">
5 <testSteps >
6 <checkDeployment >
7 <testAssertions ><assertDeployed /></ testAssertions >
8 </ checkDeployment >
9 <startProcess >

10 <variables >
11 <variable name="test" type=" String " value ="a"/>
12 </ variables >
13 <processName >ExclusiveGateway </ processName >
14 </ startProcess >
15 <gatherTraces >
16 <testAssertions >
17 <assertTrace trace=" SCRIPT_task1 "/>
18 <assertTrace trace=" SCRIPT_task3 "/>
19 </ testAssertions >
20 </ gatherTraces >
21 </ testSteps >
22 </ testCase >
23 <testCase number ="2"> <!-- "b" -> " SCRIPT_task2 , SCRIPT_task3 " --></...

>
24 <testCase number ="3"> <!-- "ab" -> " SCRIPT_task1 , SCRIPT_task3 " --></...

>
25 <testCase number ="4"> <!-- "c" -> " ERROR_runtime " --></... >
26 </ testCases >
27 <testPartners />
28 </test >

4.5.3.2. BPMN Expressiveness Benchmark

Parts of this section have been taken from [84].

The second benchmark for evaluating BPMN engines targets the capability

expressiveness which is part of the quality characteristic functional suitability

and its sub-characteristics functional completeness and functional correctness.

Capability to Feature Method for Expressiveness C2FMThe patterns are the fea-

ture sets which are organized in pattern catalogs, and each pattern implement-

ation represents a testable feature. Similarly to the expressiveness of BPEL, the

original 20 workflow control-flow patterns from van der Aalst et al. [257] are

used, and no extensions or derivations thereof, since these are most widely

known. We built upon the pattern-based analysis for BPMN 1.0 presented by

Wohed et al. [287]. Most of the pattern implementations described in the paper

can directly be applied to BPMN. In the rare cases, where a modification of a

pattern implementation was necessary, the rationale of Wohed et al. [287] was

followed to provide a solution.

PatternsTable 4.12 lists the patterns [257, 287] sorted by the pattern number, along

with the highest degree of pattern support that can be achieved for BPMN. The

degree of support that is possible in BPMN is based on Wohed et al. [287].

It can be seen in Table 4.12 that two patterns (MI without A Priori Run-

Time Knowledge and Milestone) cannot be directly implemented in BPMN
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as no workarounds based on the extended vocabulary of BPMN that could

compensate for this have been found. Hence, these patterns are excluded

from further discussion. For the remaining patterns, there is at least a single

implementation, according to the structures from Wohed et al. [287], which

led to at least partial pattern support.

Example For instance, the pattern WCP04 exclusive choice is part of the workflow

control flow pattern catalog group and has a single pattern implementation.

The pattern WCP06 multi choice has three pattern implementations, namely,

one using the inclusive gateway, one the complex gateway, and one the implicit

definition of the control flow through multiple outgoing sequence flows.

Table 4.12.: BPMN Expressiveness: Pattern Catalog, Patterns, and Number of Pattern
Implementations

Control-Flow Pattern Catalog[257] BPMN 23

WCP-01 Sequence + 1
WCP-02 Parallel Split + 1
WCP-03 Synchronization + 1
WCP-04 Exclusive Choice + 1
WCP-05 Simple Merge + 1
WCP-06 Multi-Choice + 3
WCP-07 Structured Synchronizing Merge +/- 1
WCP-08 Multi Merge + 1
WCP-09 Structured Discriminator +/- 2
WCP-10 Arbitrary Cycles + 1
WCP-11 Implicit Termination + 1
WCP-12 MI Without Synchronization + 1
WCP-13 MI With A Priori Design-Time Knowledge + 1
WCP-14 MI With A Priori Run-Time Knowledge + 1
WCP-15 MI Without A Priori Run-Time Knowledge - 0
WCP-16 Deferred Choice + 1
WCP-17 Interleaved Parallel Routing +/- 1
WCP-18 Milestone - 0
WCP-19 Cancel Activity +/- 1
WCP-20 Cancel Case + 3

Feature to Test Method for ExpressivenessF2TM The tests are created using

Execution Trace Evaluation (P14), analogous to the conformance tests for

BPMN. The standard metrics are sufficient. As the tests are so similar to the

BPMN conformance ones in Section 4.5.3.1, they are not detailed again.
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4.5.3.3. BPMN Static Analysis Benchmark

This benchmark has originally been created by Geiger et al. [85].

The author of this work helped in creating a PEBL serialization for that

benchmark.

The third BPMN benchmark evaluates the capability static analysis. It makes

the quality sub-characteristic user error protection, which is part of the quality

characteristic usability, measurable.

Capability to Feature Method for Static Analysis C2FMBPMN itself does not have

explicitly enumerated static analysis rules as part of the language specification.

However, the rules are implicitly defined within the specification as part of the

prose. Geiger and Wirtz [79] created models that explicitly violate these rules

as well as a tool to detect these violations called BPMNspector [86]. Based

on these erroneous models, a benchmark has been created [85]. The static

analysis rules are the feature sets which are organized in rule sets, and each

rule configuration represents a testable feature. An overview of the rules and

the number of different rule configurations are found in Table 4.13. As shown,

there are 151 rules and 301 rule configurations in total.

ExampleFor instance, the rule EXT002 is part of the BPMN constraints group and con-

tains a single rule configuration with the violation of containing two elements

with the same ID (i.e., duplicate ID).

Feature to Test Method for Static Analysis F2TMThe static analysis tests also

make use of Execution Trace Evaluation (P14) but they only rely on the trace

computation based on the engine logs and the engine API to detect whether

the deployment has failed (ERROR_deployment). An example of such a test is

given in Listing 4.9. In the sole test case, the traces are gathered immediately

to determine whether the deployment has failed. Each test serialization is the

same for each rule configuration, except for the referenced process model and

the test ID.

Listing 4.9: BPMN Static Analysis: Example Test using PEBL

1 <test feature =" EXT127_3_failure_intCatch " id=" EXT127_3_failure_intCatch__test ">
2 <process >EXT127_3_failure_intCatch .bpmn </ process >
3 <testCases >
4 <testCase name="Good -Case -1" number ="1">
5 <testSteps >
6 <gatherTraces >
7 <testAssertions >
8 <assertTrace trace=" ERROR_deployment "/>
9 </ testAssertions >

10 </ gatherTraces >
11 </ testSteps >
12 </ testCase >
13 </ testCases >
14 <testPartners />
15 <extensions >
16 <staticAnalysisChecks >false </ staticAnalysisChecks >
17 </ extensions >
18 </test >

109



4. Process Engine Benchmark Language

Table 4.13.: BPMN Static Analysis: Rules and Rule Configurations

rule 301 rule rule rule rule rule

EXT002 2 EXT029 1 EXT054 1 EXT082 1 EXT106 2 EXT130 1
EXT003 1 EXT030 1 EXT055 1 EXT083 1 EXT107 1 EXT131 1
EXT004 1 EXT031 4 EXT056 4 EXT084 1 EXT108 1 EXT132 1
EXT006 3 EXT032 1 EXT057 2 EXT085 1 EXT109 1 EXT133 1
EXT007 3 EXT033 1 EXT058 2 EXT086 1 EXT110 8 EXT134 1
EXT008 3 EXT035 1 EXT059 6 EXT087 3 EXT111 2 EXT135 3
EXT009 3 EXT036 3 EXT060 1 EXT088 1 EXT112 1 EXT136 1
EXT010 1 EXT037 1 EXT061 1 EXT089 1 EXT113 1 EXT137 1
EXT011 3 EXT038 1 EXT062 3 EXT090 1 EXT114 1 EXT138 3
EXT012 10 EXT039 1 EXT063 5 EXT091 1 EXT115 2 EXT139 1
EXT013 4 EXT040 1 EXT064 2 EXT092 1 EXT116 2 EXT140 1
EXT014 1 EXT041 1 EXT065 2 EXT093 5 EXT117 2 EXT141 1
EXT017 1 EXT042 1 EXT067 1 EXT094 5 EXT118 1 EXT142 1
EXT018 2 EXT043 1 EXT068 1 EXT095 2 EXT119 4 EXT143 1
EXT019 2 EXT044 2 EXT069 2 EXT096 1 EXT120 1 EXT144 1
EXT020 4 EXT045 2 EXT070 2 EXT097 2 EXT121 1 EXT145 1
EXT021 1 EXT046 1 EXT071 1 EXT098 8 EXT122 1 EXT146 5
EXT022 1 EXT047 1 EXT072 1 EXT099 2 EXT123 2 EXT147 8
EXT023 2 EXT048 2 EXT076 3 EXT100 3 EXT124 1 EXT148 6
EXT024 1 EXT049 1 EXT077 1 EXT101 1 EXT125 1 EXT149 5
EXT025 2 EXT050 1 EXT078 1 EXT102 1 EXT126 1 EXT150 4
EXT026 2 EXT051 1 EXT079 1 EXT103 1 EXT127 5 EXT151 4
EXT027 2 EXT052 2 EXT080 1 EXT104 1 EXT128 5 EXT152 2
EXT028 1 EXT053 1 EXT081 1 EXT105 2 EXT129 1 REF 17

Extensions

& Metrics

The extension element is similar to Section 4.5.2.3 as it indicates that the

standard static analysis checks should not be applied to evaluate the correctness

of the process model. If a test would violate more than a single rule, it could be

stated as an extension element as well. Regarding the metrics, and analogous

to the BPEL static analysis benchmark, only the deploymentSuccessful metric is

necessary.

4.5.3.4. BPMN Performance Benchmark

This benchmark has originally been created by Skouradaki et al. [237].

The author of this work helped in creating a PEBL serialization for that

benchmark.

The last benchmark for BPMN covers the capability performance. This

benchmark makes the quality characteristics performance efficiency with its

sub-characteristics time behavior, resource utilization, and capacity defined in

the ISO/IEC 25010 Quality Model [113] measurable. The benchmark and its

results are already expressed in a DSL that comes with BenchFlow [61, 237].

This DSL deviates from PEBL because of its sole focus on performance. In the
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following, the BenchFlow DSL is described followed by a mapping from the

BenchFlow DSL to PEBL.

Bench-

Flow DSL

The BenchFlow DSL54 is structured into trials and experiments [61, 237]. In

a trial, one or more BPMN process models are deployed to the process engine

under test and tested using a given load function (i.e., workload) while measur-

ing metrics (e.g., CPU and RAM usage, throughput in the form of number of

executed workflow instances per second and duration/number of the workflow

instance). Trials which test the same process model using the same workload

on the same environment are aggregated into experiments. Each experiment

comprises three trial runs on three engines [237]. Because there are different

workloads, there are multiple experiments. A more extensive version of their

DSL has been created by Skouradaki et al. [236] as part of a DSS.

Differen-

ces &

Mapping

The differences between PEBL and the BenchFlow DSL are threefold: 1) the

definition of a feature, feature set, and group, 2) the description of additional

domain-specific concepts such as load functions and environments, and 3) the

observability of a test run. In BenchFlow, there are experiments and trials,

whereas PEBL contains groups, feature sets, and features. The trials, however,

do not contain helpful information for the interested users but are merely used

so that the aggregated values measured in the experiment are stable and that

any erratic and random outside influences on the measurements are minimized.

There is, however, no grouping of the experiments available in BenchFlow.

Therefore, the suggested mapping is to see the experiment as the feature and

abstract away from the trials. What is more, BenchFlow has elements in its DSL

for describing complex test environments comprising Docker containers and

their interaction. As a result, information about the actual hardware, software

setup, and configuration is described in the results of BenchFlow in much more

detail through domain-specific elements. Such information cannot be captured

through domain-specific elements directly in PEBL. Nevertheless, it can be

stored in PEBL using the extension element instead. Although instances of the

process models are started similarly by passing in a list of variables in both

PEBL and BenchFlow, the latter does not use Execution Trace Evaluation (P14)

but relies on Engine API Evaluation (P15). PEBL, however, cannot express test

cases with Engine API Evaluation (P15) directly. Nevertheless, it is possible

to use the start process test step and rely on the execute script test step for the

other ones instead.

C2FM &

F2TM

Because experiments cannot be aggregated in a sensible way, the feature sets

and groups are not useful in that case. As the feature tree structure has to be

fulfilled, placeholders for groups and feature sets are used. For instance, the

experiment micro benchmark is part of the default feature set which is part of

the default group so that it fits the expected tree-like structure. Within this

experiment, the metrics are measured as aggregates. This means that instead

54The Cassandra database schema is available at https://github.com/benchflow/docker-

images/blob/dev/cassandra/data/benchflow.cql, visited 2017-3-31
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of providing raw numbers, only the average, minimum, maximum, standard

deviation, and relative standard deviation are stored. The load function is

captured through extensions.

4.5.4. Benchmark Results

After having evaluated whether PEBL is expressive enough to represent bench-

marks, in this section, it is evaluated whether PEBL can represent benchmark

results as well. Benchmark results comprise engines, test results, and aggreg-

ated results. As their structure is similar for any of the previously defined

benchmarks regardless of the capability and process languages, the results are

shown exemplary for the workflow pattern WCP04 exclusive choice on the BPEL

engine Apache ODE 1.3.6.

Engine The representation of Apache ODE 1.3.6 is given in Listing 4.10. Apart from

the name (line 2), version (line 3), supported process language (line 5), and

configuration options (line 4), additional information (line 6–12) is given as

well. It comprises the Software Package Data Exchange (SPDX) license IDs55,

release date, the programming language in which they are built in, and the URL

where to find the software. This additional information reveals internals of the

engine which can help end users when using and developers when extending

the engine. It is encoded through the use of extensions, as it is just additional

but not essential information for the results of a benchmark.

Listing 4.10: PEBL Serialization of Engine Apache ODE 1.3.6

1 <engine id=" ode__1_3_6 ">
2 <name >ode </name >
3 <version >1.3.6 </ version >
4 <configuration />
5 <language >BPEL__2 .0 </ language >
6 <extensions >
7 <license >Apache -2.0 </ license >
8 <licenseURL >http: // spdx.org/ licenses /Apache -2.0. html </ licenseURL >
9 <releaseDate >2013 -10 -12 </ releaseDate >

10 <programmingLanguage >Java </ programmingLanguage >
11 <url >http: // ode. apache .org/</url >
12 </ extensions >
13 </ engine >

Test

Result

In Listing 4.11, the test result for the WCP04 exclusive choice test is shown.

The extension element is not necessary for the test result, as the domain-

specific elements do suffice to represent the test results. The only exception

is for the performance capability, in which the extension element contains the

environment in which the test is executed in. This is important in that case,

as the test results of performance tests heavily depend on the environment.

The test result representation in Listing 4.11 includes the engine-dependent

files such as the deployment descriptor as well as the deployment package and

the logs from both the engine as well as its servlet container Tomcat. We can

see that the two test cases finished without any failure messages and that the

55http://spdx.org/spdx-license-list/license-list-overview, visited 2017-3-31
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measurement of the testSuccessful metric shows that the test is successful in this

specific example.

Listing 4.11: Abbreviated PEBL Serialization of Test Result of the pattern WCP04 on

the BPEL engine Apache ODE 1.3.6 with betsy.

1 <testResult test=" WCP04__pattern__impl__test "
2 engine =" ode__1_3_6 " tool=" betsy__1_0 ">
3 <logFiles >
4 logs\ catalina .log
5 logs\ode.log
6 </ logFiles >
7 <deploymentPackage >pkg </ deploymentPackage >
8 <files >
9 process \ deploy .xml

10 process \ TestInterface .wsdl
11 process \WCP04 - ExclusiveChoice .bpel
12 pkg\WCP04 - ExclusiveChoice .zip
13 </files >
14 <measurements >
15 <measurement metric =" WCP04__pattern__impl__testSuccessful " value ="true"/>
16 </ measurements >
17 <extensions />
18 <testCaseResults >
19 <testCaseResult name="Good -Case" number ="1"></ testCaseResult >
20 <testCaseResult name="Good -Case" number ="2"></ testCaseResult >
21 </ testCaseResults >
22 </ testResult >

Aggrega-

ted Result

The aggregated results are shown in Listing 4.12. The listing shows how

the aggregated results for the support metrics are given for both the pattern

implementation and the pattern itself. Both the pattern and its pattern imple-

mentation are directly supported (+).

Listing 4.12: Abbreviated PEBL Serialization of Aggregated Result of the pattern

WCP04 on the BPEL engine Apache ODE 1.3.6 with betsy.

1 <aggregatedResult engine =" ode__1_3_6 " tool=" betsy__1_0 ">
2 <measurement metric =" WCP04__pattern__support " value="+"/>
3 <measurement metric =" WCP04__pattern_implementation__support " value="+"/>
4 </ aggregatedResult >

SummaryTo sum up, PEBL can express the benchmark results through its domain-

specific elements. The extension elements are helpful in adding more informa-

tion, but they are only used sparsely for additional information that depends on

the capability that is being benchmarked. Hence, it is not overused or abused,

and therefore, the language can be seen as an extensible DSL that is flexible to

cover benchmarks for engine capabilities and quality characteristics.

4.5.5. Good Benchmarks

RelevanceIn this section, a short evaluation is already made on how this language can

already help in creating good benchmarks. The benchmarks described above

cover half of the ISO/IEC 25010 Product Quality Model [118]. This is visualized

in Figure 4.19 with the covered quality characteristics and subcharacteristics

marked in green and are styled bold. This reveals the relevance of the bench-

marks as they can be rooted in the quality model which captures the quality

requirements of software. Furthermore, such quality requirements are used for

evaluating software, and in this work process engines.
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Figure 4.19.: Covered Quality Characteristics and Subcharacteristics from the ISO/IEC
25010 Product Quality Model [118]

Reproduci-

bility, Clar-

ity, and

Portability

A good representation of a benchmark has to ensure that it captures the steps

on how to conduct the benchmark (i.e., reproducibility), must be self-contained

and precise (i.e., clarity), and must independent of the system under test (i.e.,

portability). Looking at PEBL, it can be seen that those three criteria are ful-

filled. First, PEBL comprises domain-specific elements to describe the steps

necessary to perform a benchmark and capture the results. Those steps can be

executed over and over again, making the benchmark reproducible. Second, a

serialization of PEBL comprises all information necessary to conduct a bench-

mark. Because of its domain-specific elements it is concise because most steps

and information can be stated with a corresponding domain-specific element

directly. Hence, a benchmark represented with PEBL is clear and concise. Third,

the benchmarks themselves are described in a way so that they are engine

independent, but language-dependent. Even language-independent benchmark

concepts such as the workflow patterns require process language specific alter-

ations and adaption. Consequently, the process engine independence seems

to be a sufficient level of benchmark portability in this case. And PEBL can

provide that level as well. So, in summary, PEBL enables reproducible, clear,

and portable benchmarks (i.e., good benchmarks).

4.6. Summary

Summary In this section, the Process Engine Benchmark Language (PEBL) is presented

which can express benchmarks and their results. Its expressiveness is evaluated

by crafting benchmarks for different process languages (i.e., BPEL and BPMN)

and quality characteristics (i.e., functional suitability, performance efficiency,

resilience, usability). These benchmarks themselves are relevant as they cap-

ture various relevant quality characteristics of process engines. The evaluation
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showed that the expressiveness suffices to represent eight different benchmarks

and their results in total. Even benchmarks from other approaches, e.g., Bench-

Flow [237], can be expressed as well. In other words, it is shown that the PEBL

DSL can be used to describe approaches that measure metrics for a variety of

quality criteria. Hence, hypothesis H4.2 (“A domain-specific testing language is a

suitable form to make quality criteria measurable.”) is supported.

Future

Work

Future work comprises three items. First, it is planned to overcome the

limitations of the prototype. This includes adding the ability to process the

Groovy-based aggregation scripts and a GUI to edit serializations of PEBL in

a more user-friendly way. Second, a more extensive evaluation with more

process languages (e.g., upcoming versions of BPEL or BPMN) as well as the

(remaining) quality characteristics [113] (e.g., additional pattern catalogs in the

expressiveness evaluation, or a complete conformance benchmark) is targeted.

Although the current quality characteristics can already proof that PEBL is

expressive for process engine benchmarks and their results, it is still somewhat

limited, nevertheless. Third, PEBL shall be extended so that it includes more

domain-specific elements that are available in other benchmarking DSLs in that

domain (e.g., the DSL of BenchFlow [61]).
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You don’t have to be a genius or a

visionary or even a college

graduate to be successful. You just

need a framework and a dream.

Michael Dell

5. Process Engine Benchmark

Framework

Parts of this chapter have been taken from [81, 94, 95].

In this chapter, hypothesis H4.3 (“A benchmarking framework is a suitable

means to reveal objective and well-founded information about process en-

gines.”) is supported.

In this chapter, the Process Engine Benchmark Framework (PEBWORK) is

outlined. It builds upon the Process Engine Benchmark Language (PEBL)

and the Process Engine Abstraction Layer (PEAL) and produces results which

can be visualized in the Process Engine Benchmarking Interactive Dashboard

(PEBDASH). A more efficient version called Efficient Process Engine Benchmark

Framework (ePEBWORK) is detailed in Chapter 7.

5.1. Motivation

Engine

Selection

Process

The engine selection process, as shown in Figure 5.1, is a collaboration of four

different roles: the business analyst, the developer with domain knowledge

of process engines, the benchmark framework, and the interactive dashboard

with its loader. The process targets the selection of an engine as represented

in both the start and the end event in Figure 5.1. First, the business analyst

has to define the feature tree and the metrics he is interested in manually

using PEBL. Second, the developer derives tests how to determine whether

the features are supported, and provides scripts so that the metrics within the

feature tree can be computed based on the metrics of the test results. Third,

the benchmark framework executes the derived tests and produces test results.

Fourth, the loader loads the produced test results along with the benchmark

into the interactive dashboard and computes the metrics within the feature

tree using the scripts written by the developer. Last, the business analyst then

uses the computed metrics he previously had declared and that are visualized

through the dashboard to make a decision which engine to choose. In the

evaluation of PEBL in Section 4.5, approaches on how to decompose capabilities

to features (C2FM) and make features testable (F2TM) are described, including

the necessary metrics. This chapter is solely about the benchmark framework

and its step to execute tests.
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Figure 5.1.: Engine Selection Process

Require-

ments

The benchmark framework has to fulfill both, effectiveness and efficiency

requirements. Its effectiveness is measured by its ability to produce valid results.

Each test must produce its results reproducibly. This requires that everything

has to be known upfront (R5.1). It is paramount for ensuring reproducibility

that one test is executed in isolation to any other test (R5.2). Otherwise, a

different result could be produced just by executing the tests in a different order.

Last but not least, any intermediate artifacts must be provided to trace any

fault in the test result to its origin (e.g., through logs) (R5.3). The efficiency is

measured by the ability to complete a benchmark quickly. This requires first

and foremost that the benchmark framework is fully automated (R5.4). Having

such a fully automated framework also affects the practical effectiveness by

excluding human error during the benchmark execution.

Chapter

Structure

The remainder of the chapter is structured as follows. First, related work is

presented in Section 5.2, followed by the framework design which is outlined

through the data flow of the benchmarking procedure in Section 5.3. The pro-

totype and its architecture that relies on a sequential form of the benchmarking

procedure is described in Section 5.4, and the evaluation of the framework

through experiments and theoretical criteria is detailed in Section 5.5. This

chapter is concluded with a summary in Section 5.6.

5.2. Related Work

Related work comprises process engine benchmarking frameworks, frameworks

that test processes running on process engines, and last, other related bench-

marking or testing frameworks. Each of them is detailed in the following.
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Engine

Bench-

marks &

Frame-

works

There are two process engine benchmarking frameworks available that are

highly related to this work: Delgado et al. [45] and BenchFlow [61, 62]. Del-

gado et al. [45] provide a method to use test cases to reproducibly determine

trivalent support results of process engine characteristics either through the-

oretical or practical means. Their execution, however, is not automated and

no effort is made for test isolation. In contrast, BenchFlow [61, 62] is a much

more complete and holistic competitor to this work as it also comprises a bench-

mark DSL, a uniform abstraction layer, and a fully automated framework to

perform those benchmarks. It, however, only works for BPMN engines and

it can only measure performance. Test isolation is guaranteed through the

usage of Docker and creating fresh instances for each performance experiment.

Although Rosinosky et al. [215] provide a framework for performance and

cost evaluation of BPMS in the cloud, its primary focus is to benchmark cloud

configurations of such BPMS. This work, however, is concerned with the quality

characteristics of the process engines and not on the best cloud configuration for

those process engines. Hence, their approach is not that relevant to this work.

Another approach, that is not directly related is the one by Roller [213] who

focuses on building a single, closed-source, and fast BPEL engine. To measure

that the performance is as expected, he made a performance benchmark for his

engine but he did not create a corresponding framework to execute benchmarks

in general.

Process

Testing

Frame-

works

In contrast to frameworks that focus on benchmarking or testing process

engines, there are several frameworks that allow to test processes instead.

BPELUnit [161, 168] is an xUnit-like unit testing framework for BPEL processes.

And SOABench [17] as well as GENESIS2 [123] allow generating testbeds for

testing SOA applications (e.g., BPEL processes). As part of the evaluation of

SOABench and GENESIS2, BPEL processes on top of different BPEL engines

have been evaluated. There are also BPMN-based testing frameworks available.

An overview of the state of process model testing is given by Böhmer and

Rinderle-Ma [23]. They have shown that most research is about test-case

generation whereas process engine testing is not mentioned at all. Makki

et al. [163] have created a test automation API for automated regression

testing of BPMN process models. Their approach is based on a capture & replay

paradigm with only a minimal overhead by instrumenting a BPMN engine.

Other

Bench-

marking

& Testing

Frame-

works

Because process engines are important middlewares, benchmarking and

testing frameworks of middlewares in general are related as well. ESBs are

evaluated by Bhadoria et al. [15], including performance. However, the manual

high-level evaluation measures performance as high, medium, or low [15,

Table 6]. Testing middleware components (e.g., ESBs or Java Messaging

Systems (JMSs)) under heavy load is an area of interest [140, 224, 245].

For ESBs, there is ESB Performance56, a test suite created by AdroitLogic57,

56http://esbperformance.org, visited 2017-3-31
57http://www.adroitlogic.org/, visited 2017-3-31
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which has been around since 2007. In its seventh execution round, four ESBs

were tested using SOAP/XML payloads via the HTTP protocol testing different

message sizes and concurrent numbers of users. Regarding conformance testing,

much work has been done in the area of Java Platform, Enterprise Edition (JEE).

Oracle provides Test Compatibility Kits (TCKs) which can be used to evaluate

whether a servlet container implements the servlet specification, however,

provides no test isolation mechanisms.

5.3. Benchmarking Procedure

The benchmarking procedure contains and is represented only by the step

execute tests as shown in Figure 5.1. This section focuses on the data flow:

passing data items to functions.

Data Flow

in BPMN

The data flow diagrams are modeled using the available elements and shapes

for data flow modeling of BPMN [115] (see Section 2.2.2.2). Each data object

in the data flow diagrams conforms to an element within PEBL. Moreover, each

task must ensure that both their inputs and outputs conform to the specified

schemas, and validate the integrity of them. Furthermore, IT systems change

their internal state based on their input and produce output as well. No data

stores are used in the diagrams. But, in any implementation, the data objects

could be replaced with data stores to increase reuse.

Build

System

Metaphor

Any task may check automatically whether the proposed output has already

been created for the given inputs and skip the execution of the task instead.

This is similar to build tools like Gradle58 or Apache Ant59.

LevelsThe step of the engine selection process is structured into two abstraction

levels: the outsider view looking at the execute tests step from a high-level

view and the insider view looking at the execute tests step from a detailed view,

namely, from the inside. The relation between the two levels stems from simple

hierarchic decomposition. In this case, a decomposition via sub-processes is

applied which is supported natively in BPMN [115]. Hence, a more detailed

description of this decomposition is neglected, but could easily be built based,

for instance, on the process viewing patterns [228] or a process abstraction

slider [199]. In the next sections, the different levels of the data flow are

modeled and described.

5.3.1. Outsider View

IO SystemFrom the outsider view, the task is a simple IO system (see Figure 5.2). It

uses the tests defined in PEBL to compute the test results for engines specified

through their engine IDs. Each test result contains a measurement of the

58https://www.gradle.org, visited 2017-3-31
59https://ant.apache.org, visited 2017-3-31
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Figure 5.2.: The Data Flow of the Benchmark Framework of the Engine Selection
Process - Outsider View

metrics defined in the tests. Measurements for the metrics defined by the

business analysts (i.e., aggregated metrics) are not available yet, as they have

to be computed based on these atomic measurements. The task execute tests

can transform a single test on a single engine to a test result. By looping

through all the combinations of the engine IDs and the tests, it produces

|𝑒𝑛𝑔𝑖𝑛𝑒 𝐼𝐷𝑠| × |𝑡𝑒𝑠𝑡𝑠| = |𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|.

5.3.2. Insider View

Three

Phases

Switching from the outsider view in Figure 5.2 to the insider view, the task

execute tests has been split up into three phases: setup, execute, and teardown.

These phases are similar to typical testing frameworks, as they first prepare

the test environment, then execute a single test, and finally, destroy the test

environment. The execute phase connects both the setup and the teardown

phase. In our case, the execute phase consists of only a single activity, whereas

the other two phases are more complex. Hence, the process has been split

up according to these two phases to better explain it, with the setup phase in

Figure 5.3 and the teardown phase in Figure 5.4. The tasks are also color-coded

into three categories. The yellow tasks do setup work, the gray task does

actually execute test cases on the engine and the orange tasks do the teardown

work. Apart from the inputs and outputs in these data flow models, there are

also two types of IT systems: the test partners (colored gray) and the engine

(colored blue).

Setup

Phase

In the setup phase, the test bed to execute the given test on the engine

with the given engine ID is provided. The engine-independent test has to

be converted to an engine-dependent version for the given engine ID. This

holds for both the test cases and the process model in the tasks derive engine-

dependent test cases and create deployable unit of process model. An engine-

dependent test case contains information how to interact with a specific engine

to start the process and where to send the messages to. An engine-dependent

and deployable process model refers to the deployment package defined in

PEAL and contains all files in a package that can be directly deployed on a

particular process engine. Most engines use their engine-specific format for such
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Figure 5.3.: Data Flow of the Benchmark Framework of the Engine Selection Process –
Insider View of the Setup Phase

a deployment structure. Hence, they require engine-specific adaptation. An

overview of these can be found as part of the prototype of PEAL in Section 3.4.2.

Next, a fresh and started engine is provided (provide engine task) on which the

previously created engine-dependent and deployable process model is deployed

to (deploy process model task). The engine-dependent test cases describe the

behavior of the test partners. According to this specified behavior, if necessary,

test partners are created and started in the provide test partners task.

Execute

Phase

The execute test cases task then executes the engine-dependent test cases

within the testbed containing the fresh and started test partners as well as the

fresh engine with the process model deployed onto.

Teardown

Phase

After the execution of the test cases, the collection of test case results are

available and the teardown phase begins. First, the logs of both the test partners

and the engine are collected and analyzed (analyze log task) to compute a more

detailed collection of test case results, which can then be aggregated to the

actual test result (aggregate results task). As part of the cleanup work in the

teardown phase, the test partners and the engine have to be dispersed (disperse

test partners and disperse engine tasks).

EngineDuring the process, the engine is set into four states in the order described in

Table 5.1. There is no task to uninstall or remove the engine. The execution of

the task provide engine requires any previously running engine to already be

shut down and uninstalled. Otherwise, the engine instance would not be fresh.

MappingThese states of the engine and the tasks that manipulate them in PEBWORK

are similar to the ones of PEAL. As a result, some tasks of PEBWORK can
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Figure 5.4.: Data Flow of the Benchmark Framework of the Engine Selection Process –
Insider View of the Teardown Phase

Table 5.1.: Different States of the Engine Under Test

state description

fresh and started Engine is installed and it has been fully started. It was not
used before in any other test, hence it is fresh. It is responsive
to all commands. Log files are available documenting the
current execution of the engine.

process model deployed Same as fresh and started state, but a single process has been
deployed to the instance. This allows starting instances of
this deployed process.

instances executed Same as process model deployed state, but one or more in-
stances of the previously deployed process have been ex-
ecuted.

dispersed Engine is not running anymore, and therefore unresponsive
to any commands. The logs may still be available, but not
necessarily. Dispersed can also mean that the engine is already
uninstalled and completely deleted.

be implemented using operations defined by the uniform API of PEAL. A

mapping of those is given in pseudo code in Listing 5.1. The provide engine,

create deployable unit, deploy process, and disperse engine tasks can be directly

mapped to one or more operations of the engine or process model service. The

remaining two ones, being the execute test cases and the analyze logs tasks, use

the instance or engine service to fulfill parts of their responsibilities.

Listing 5.1: Mapping of Benchmark Procedure Tasks to PEAL API Calls.

1 task provide engine :
2 call engineService .stop engineId
3 call engineService . uninstall engineId
4 call engineService . install engineId
5 call engineService .start engineId
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6

7 task create deployable unit:
8 call processModelService . makeDeployable engineId , processModelPackage
9

10 task deploy process :
11 call processModelService . deploy engineId , deploymentPackage
12

13 task execute test cases:
14 // only for BPMN engines
15 call instanceService .start processModelId , bpmnVariables
16

17 task analyze logs:
18 call engineService . getLogs engineId
19

20 task disperse engine :
21 call engineService .stop engineId

Figure 5.5.: The Lifecycle and Interface of the Test Partner

Test Part-

ner

The other IT system in this process is a collection of test partners. The test

partners simulate other components the process may interact with (i.e., commu-

nication partners within the test). They are also used to verify specific features

(e.g., for Concurrency Detection (P16)). A test partner has to implement and

conform to a simple interface as shown in Figure 5.5. As it is depicted, a test

partner can either be STARTED or NOT_STARTED, which is triggered through

the start and stop operations. If the test partner is in its STARTED state, the

logs can be accessed as well, reusing the log package structure from PEAL (see

Section 3.3.1). After its start, a test partner is in a fresh state until it is first

used. To guarantee test isolation, a test partner needs to be set in a fresh state

similar to an engine. In the BPMN data flow process, the state of the used test

partners is modeled explicitly. An overview of the three different states within

this process is summarized in Table 5.2.

Table 5.2.: Different States of the Test Partners

state description

fresh and started The test partners are set up and running. They have not been
used before in any other test, hence they are fresh. Log files
are available documenting the current execution of the test
partners.

used Same as fresh and started state, but test partners have already
been used within one or more test cases.

dispersed Test partners are not running anymore, and therefore unre-
sponsive to any commands. The logs may still be available,
but not necessarily. Dispersed can also mean that the engine
is already uninstalled and completely deleted.
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5.4. Prototype betsy

betsy The prototype of PEBWORK is called BPEL/BPMN Engine Test System (betsy)

and written in Java 8 and Groovy 2.4. The source code is publicly available60

along with the Docker container in which betsy is already set up61.

Overview This section is structured as follows. First, the control-flow of the bench-

marking procedure is detailed in Section 5.4.1. Second, the architecture imple-

menting the previously described procedure and its limitations are outlined in

Section 5.4.2 and Section 5.4.3, respectively.

Figure 5.6.: Sequential Control-Flow Diagram of the Data Flow of the Insider View on
the Benchmarking Framework

5.4.1. Control Flow

Sequential

Control

Flow

This prototype uses the sequential control flow as shown in Figure 5.6 because it

is the most straightforward way to realize a prototype of PEBWORK. For clarity

reasons, we have hidden all the DataObjects and IT Systems. One can easily

recognize the three different phases in the control flow: the setup phase colored

yellow, the execute phase gray, and the teardown phase orange. A variation

of this sequential control flow diagram has already been published in earlier

versions of this work [81, 95, 96]. In these publications, we used the sequential

approach as it allows for a simpler implementation. Nevertheless, there is

potential for parallel execution of the tasks in both, the setup and the teardown

phase. Figure 5.7 shows the parallel version revealing the opportunities for

parallelization separately for the setup and the teardown phase. In both phases

up to three branches can be performed in parallel. The execute test cases task

in between the setup and the teardown phase would act as a synchronization

barrier in case of parallelization.

60https://github.com/uniba-dsg/betsy, visited 2017-3-31
61https://hub.docker.com/r/simonharrer/betsy-docker/, visited 2017-3-31
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Figure 5.7.: Parallel Control-Flow Diagram of the Data Flow of the Insider View on the
Benchmarking Framework

5.4.2. Architecture

Dependen-

cies

The prototype betsy implements the sequential control flow that is depicted in

Figure 5.6. It builds upon other software components as shown in Figure 5.8.

Those are either internal (i.e., originated as part of this work) or external

(i.e., developed and open sourced from someone else), and are detailed in the

following.

External

Dependen-

cies

First, betsy relies on the PEAL prototype from Section 3.4 to interact with the

process engines in a uniform way and the prototype of PEBL from Section 4.4 to

read and write serializations of PEBL. Second, betsy itself uses several Apache

Ant tasks to interact with files on the file system or executing commands on

the console. This prototype relies on Apache Ant 1.9.2 and its corresponding

Groovy bridge that is shipped as part of the Groovy language. Third, the task

to execute test cases is conducted differently for BPEL and BPMN tests. For

the BPEL tests, betsy relies completely on soapUI 4.6.4 for test execution. To

achieve this, the test cases and their steps and assertions defined in PEBL are

mapped to soapUI test cases using the soapUI-based XML format, and these

soapUI test cases are then executed natively in soapUI, producing a JUnit XML

report. In contrast, for BPMN test cases, the steps are executed within betsy,

but the trace assertions are executed through JUnit 4.12 via an Apache Ant

task, resulting in a JUnit XML report as well. Although the execution of BPEL

and BPMN test cases is different, they both produce JUnit XML reports which

can be further processed in the same way.

Internal

Dependen-

cies

Internally, betsy is structured into separate modules that depend upon or

extend one another. The entry point is a CLI which receives the parameters

from the user, and with the help of the PEBL prototype reads and writes the

input and the output of betsy. It also triggers the test execution through the

executor (i.e., the heart of betsy). The executor is a direct implementation of

the sequential control flow from Section 5.4.1. It orchestrates these steps by

calling the appropriate tasks that make use of Apache Ant or the API of PEAL to

interact with the engines under test. Timeouts are necessary to wait for success

or failure conditions when working with the slow file system or interacting
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Figure 5.8.: The Architecture of betsy, the Prototype of PEBWORK

with other software systems through the file system. The executor can be

configured through the config module. Insights into the executor at runtime are

provided through logging, and afterward through reporting facilities. There is

an executor which works independent of any process language, but there are

process language specific extensions for BPEL and BPMN to handle the language

specific issues.

5.4.3. Limitations

The prototype comes with some limitations. First, betsy inherits the limitations

of the prototypes of both, PEAL and PEBL as it heavily relies on them. This

includes limited deployment descriptor generation, no engine installation con-

figuration options, limited ability to undeploy a process model, and only an

instance service for BPMN engines (see Section 3.4.4). Second, the prototype

can only perform benchmarks using the predefined test steps and assertions. Al-

though it is possible to extend PEBL through user-defined scripts, the prototype

does not interpret these. In all cases where scripts are necessary, the prototype

provides a hard coded solution based on the naming of the elements with the

user-defined scripts. Third, betsy cannot perform performance benchmarks.

This is simply not supported and would require a major extension as in that

case the environment has to be more complex because one normally requires

different isolated environments for generating the workload, the engine, and

its database. Fourth, conducting large benchmarks on many engines takes
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some time as betsy is not optimized for efficiency. For instance, betsy executes

everything sequentially, only caches downloads and not any computed artifacts,

and relies on Reinstallation (P9) to ensure test isolation.

5.5. Evaluation

Practical

and The-

oretical

Evalu-

ations

The evaluation comprises two prototypical and one theoretical evaluation.

First, the prototype of PEBWORK is evaluated through an extension of the

aptitude test that has been performed (see Section 3.5) to determine that betsy

is effective in the simplest benchmark possible (see Section 5.5.1). Second,

betsy is evaluated by performing the benchmarks with which PEBL has been

evaluated in Section 4.5. This determines whether betsy can also perform more

complex benchmarks (see Section 5.5.2). Third, it is evaluated whether the

triplet of PEBWORK, PEBL, and PEAL is is capable of enabling good benchmarks

according to the criteria summarized in Section 2.3.2 (see Section 5.5.3).

5.5.1. Prototypical Evaluation: Aptitude Test

MethodThe first evaluation builds upon and extends the evaluation of PEAL in Sec-

tion 3.5 to an evaluation of PEBWORK. The setup and the process models for

both, BPEL and BPMN are re-used and only the evaluation procedure differs.

Instead of calling the PEAL API directly, the evaluation only issues a command

to betsy and determines whether the resulting PEBL serialization contains the

expected results. Hence, it is called the Aptitude Test (P8) as it determines

whether betsy can perform a test on a specific engine. Each available engine

from PEAL is part of this evaluation so that the aptitude of betsy to test all the

supported engines from PEAL is evaluated. The evaluation is also encoded as

JUnit tests62 and uses the PEBL serialization of the conformance tests for the

features BPEL Sequence and the BPMN SequenceFlow. In the serialization of

PEBL, everything is encoded to reproduce the test, fulfilling requirement R5.1.

Results &

Discussion

The results63 show that betsy succeeds for both, BPEL and BPMN engines

supported by PEAL on both, Windows and Linux. This is supported as the

actual logs are provided as well, which allow double checking if necessary,

fulfilling requirement R5.3. In other words, betsy is in general able to perform

benchmarks defined in PEBL and engines implementing PEAL through following

the steps defined by PEBWORK on multiple platforms. Hence, as this is fully

automated, requirement R5.4 is fulfilled. There is, however, the issue of

efficiency in general, because the test duration varies greatly for this Aptitude

Test (P8), ranging from three up to ten minutes per test. This is attributed to

62https://github.com/uniba-dsg/betsy/blob/master/src/test/groovy/systemtests/

BPELSystemTest.java and https://github.com/uniba-dsg/betsy/blob/master/src/

test/groovy/systemtests/BPMNSystemTest.java, visited 2017-3-31.
63See the travis builds at https://travis-ci.org/uniba-dsg/betsy, visited 2017-3-31
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the costs of providing an isolated test environment through Reinstallation (P9),

which is required to fulfill requirement R5.2.

5.5.2. Prototypical Evaluation: Case Studies

Method The second practical evaluation extends the first one by performing the bench-

marks defined in Section 4.5, except the performance benchmark, because

betsy cannot perform performance benchmarking. This evaluation aims to

show that betsy as the implementation of PEBWORK can benchmark along the

three axes: different process engines, different process languages, and different

engine capabilities.

Results The results of this evaluation have already been published. Table 5.3 lists

which capability results are published in what publication for each process

language. All of them are peer-reviewed and either publications in conference

proceedings or journals that are well known in this field of research.

Table 5.3.: Published Benchmark Results per Capability

Engine Capability BPEL BPMN

Conformance [95] [85]
Static Analysis [99] [85]
Expressiveness [96] [85]
Robustness [98]

Status Quo The evaluations in any of these publications are snapshots at different points

in time. Since then, new versions of the engines under test have been released,

errors in the benchmarks found, the benchmarks extended, and the benchmark

tools improved. These evaluations show that PEBWORK is a suitable procedure

to determine high-quality benchmark results. An update to the newest engine

versions, improved benchmarks, or even newer versions of betsy will not

have any significant impact on the already uncovered findings. Any state of

“up-to-date” elements will quickly be out of date when new versions of the

engines under test are released or more extensive benchmarks are published

and created. Consequently, in this work, only the major findings and take away

points from these already published evaluations are stated, instead of redoing

these evaluations with the most up-to-date versions which are simply outdated

some while later. For a more detailed evaluation, please have a look at the

corresponding publications given in Table 5.3.

At Least

One Suc-

cess (P21)

The At Least One Success (P21) pattern is applied to ensure that the results

are correct. This pattern works by determining whether a test has been passed

by at least a single engine. If this is the case, this indicates that the process

is correct, and if not, the process is probably erroneous. 95% of the tests are

passed by at least one engine [95].
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Time to

Results

The time to results, however, is high. A run with 130 tests for five BPEL

engines took approximately ten hours to complete [95]. That is about one

minute per test on a single engine on average. Executing the whole evaluation

with its 1223 BPEL tests on 20 BPEL engines and 447 BPMN tests on 22 BPMN

engines would take approximately 34294 minutes which corresponds to 571.6

hours or 23.8 days. A single BPEL or BPMN engine, however, can be evaluated

in 20.4 hours and 7.5 hours, respectively. This is manageable for evaluating

engines for a selection decision, but not as part of a CI pipeline that is run for

each checked in change. Hence, this acts as the motivation for the Efficient

Process Engine Benchmark Framework (ePEBWORK), which is a more efficient

version of PEBWORK.

5.5.2.1. BPEL Results Summary

SummaryAn abbreviated overview of the results from the four benchmarks is given in

Table 5.4. It visualizes the differences between engines. The engine bpel-g

comes in first three times, with Apache ODE being on par once regarding the

expressiveness. OpenESB detects injected faults better than any other tested

engine. In the following, the highlights of each BPEL benchmark are stated.

The winner per benchmark is marked via the symbol 3.

Table 5.4.: Results for BPEL Benchmarks for the Evaluated Engines [96, 98, 99]

Process Engine Conformance Expressiveness Static Analysis Robustness
features in % patterns in % rules in % faults in %

Apache ODE 1.3.5 66 3 100 30 0
bpel-g 5.3 3 92 3 100 3 75 90
OpenESB 2.2 66 63 0 3 94
Orchestra 4.9 50 69 54 18
Petals ESB 4.0 26 56 4 0

Confor-

mance

Language feature support varies greatly between the benchmarked BPEL

engines, ranging from 26% up to 92%. Hence, there is no engine that supports

the whole standard, but bpel-g supports the vast majority of the features.

Nevertheless, even only a quarter of the features supported by Petals ESB are

seen as a set of features that can be put to use. Furthermore, the features

that are less supported are the flow activity with links and the forEach activity.

Additionally, these two activities can be set to be executed in parallel, but in

practice, the forEach activity is executed sequentially.

Static

Analysis

The support for detecting erroneous process models differs greatly as well,

ranging from no support at all up to 75% of the evaluated 71 static analysis

rules. The rules detecting control cycles are only supported with an average

of 25%. This, however, is problematic as this detection is crucial to prevent

erroneous flow with links configuration upfront.
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Expressive-

ness

The expressiveness benchmark shows that at least half of the patterns are

supported by each benchmarked engine, even with only support for a quarter

of the language features. Moreover, with solely 66% of the language features,

Apache ODE can support all workflow patterns.

Robust-

ness

The benchmark revealed that there are three different approaches on how

to handle faulty incoming messages: throw a fault within the process instance

(for bpel-g and OpenESB), do not route the message to the process instance

(in Apache ODE and Petals ESB), and ignore any faults and simply route the

message as is to the process instance (in Orchestra). The usage of the BPEL

activity validate can help to improve robustness, but it only had an effect for

OpenESB, moving it up six percentage points to the leader in that benchmark,

as shown in Table 5.4. Although OpenESB, admittedly, has the best runtime

fault detection, it lacks any compile-time detection capabilities [98].

5.5.2.2. BPMN Results Summary

Summary In summary, each engine is the winner in one of the three benchmarks as

visualized in Table 5.5. This, again, shows the importance of benchmarking the

quality characteristics of the engines. In the following, the highlights of each

BPMN benchmark are stated.

Table 5.5.: Results for BPMN Benchmarks for the Evaluated Engines [85]

Process Engine Conformance Expressiveness Static Analysis
features in % patterns in % rule configs in %

activiti 5.20.0 46 3 83 50
jBPM 6.4.0 53 72 3 78
camunda BPM 7.5.0 3 57 78 47

Confor-

mance

From the three evaluated BPMN engines, the supported language features

range between 48 and 60 out of 105. Although the degree of support does not

vary that much, it is approximately half of the evaluated features. This shows

that many BPMN elements cannot be used for process execution. Furthermore,

no real parallelism is supported, but only pseudo parallelism [85].

Static

Analysis

The ability to detect erroneous process models through static analysis varies

greatly among the three BPMN engines, ranging from 141 up to 236 out of

301 rule configurations. The engine jBPM 6.4.0 has the highest detection

rate of approximately 78%, and camunda BPM 7.5.0 the lowest with only

approximately 47%. This leaves a lot to be improved [85].

Expressive-

ness

From the 18 patterns supported by BPMN, between 13 and 15 are supported

by the three evaluated engines. The engine activiti 5.20.0 supports 15 patterns

with less than half of the evaluated construct configurations, whereas jBPM 6.4.0

supports solely 13 patterns with eight more construct configurations than
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activiti. Hence, the support is high, and the differences are only minimal

between the engines [85].

5.5.3. Theoretical Evaluation: Good Benchmarks

MethodIn the theoretical evaluation, it is evaluated whether the usage of PEBWORK

helps in creating good benchmarks. If PEBWORK helps in creating good bench-

marks, the usage of the framework has inherent value: it would enable good

benchmarks with lesser effort than before. In Section 2.3.2, a good benchmark

has already been defined [111, 229], and the criteria of a good benchmark have

been condensed to nine elements: affordable, relevant, portable, accessible, clear,

solvable, scalable, repeatable, and verifiable (see Table 2.6). In the following, it

is checked whether the framework itself and through the usage of PEAL and

PEBL ensures that one or more of those criteria are fulfilled inherently through

its usage. An overview is given in Table 5.6.

Table 5.6.: Theoretical Evaluation of PEBWORK with details about PEAL and PEBL
according to the Good Benchmark Criteria

Criteria PEAL PEBL PEBWORK Σ

Affordable engine mapping DSL automation +

Relevant
Portable engine mapping standards any OS +

Accessible aggregation open source +

Clear DSL +

Solvable
Scalable engine mapping +

Repeatable API DSL isolation, automation +

Verifiable aptitude test static analysis traceability +

PEALThe abstraction layer PEAL makes the benchmark more affordable, portable,

scalable, repeatable, and verifiable. Because of its engine mapping, it is easier

to integrate an additional engine, such as a new version of an existing engine

(affordability). The mapping does not require a lot of methods to be mapped,

hence, any product that simply implements this can be added (scalability and

portability). The API of PEAL is the foundation of a repeatable benchmark

because it enables Reinstallation (P9) and provides a uniform single point of

access for the required engine functionality (repeatability). Whether an engine

fits can be determined through the Aptitude Test (P8) (verifiability).

PEBLThe benchmark language PEBL makes the benchmark more affordable, port-

able, accessible, clear, repeatable, and verifiable. The DSL of PEBL reduces the

effort to define a benchmark as it provides the necessary elements to express

a benchmark (affordability). Expressing the benchmarks in that DSL ensures

that the benchmark is described in a way so that it can be executed over and

over again (repeatability). The DSL contains domain-specific elements, and

131



5. Process Engine Benchmark Framework

therefore the representation of the benchmark is concise and clear (clarity).

With PEBL, benchmarks can be defined for the two process language standards

BPMN and BPEL. The benchmarks themselves, however, do not require any

engine-specific information. Hence, benchmarks can be performed for any

engine that supports the appropriate process language standard (portability).

Through the definition of a metrics aggregation hierarchy, the results are much

easier to compare (accessibility). And last, because the prototype of PEBL

makes use of BPELlint and BPMNspector to ensure that the process models are

correct, the benchmarks themselves are checked (verifiability).

PEBWORK The benchmarking framework PEBWORK itself makes a benchmark more

affordable, portable, accessible, repeatable, and verifiable. The most important

aspect of PEBWORK is that it ensures test automation and test isolation (repeat-

ability). If PEBWORK itself is executed within a Docker container, the runtime

environment is fixed as well ensuring even higher reproducibility. Moreover,

the benchmarking framework allows performing benchmarks with standard

hardware and minor development overhead (affordability). Because PEBWORK

is open source, there is no entry-barrier to not use the prototype betsy. Also, a

preconfigured runtime environment of PEBWORK and all the benchmarks are

available as a Docker container (accessibility). The prototype also runs on both,

Windows and Linux (portability). And last, every step that is made within betsy

is reported and all the engine-specific logs are captured to be able to trace and

check any flaw or issue in the result back to its cause (verifiability).

Summary To sum up, PEBWORK is useful because it enables a good benchmark as

demonstrated in Table 5.6. The triplet of PEAL, PEBL, and PEBWORK help

to fulfill seven out of the nine criteria better. The two criteria relevance and

solveability are not covered by them because they are solely dependent on the

actual benchmark and cannot be influenced by such contributions as the three

in this work.

5.6. Summary

Summary In this chapter, the Process Engine Benchmark Framework (PEBWORK) has

been presented that allows conducting benchmarks that are specified in Pro-

cess Engine Benchmark Language (PEBL). The fully automated prototype

BPEL/BPMN Engine Test System (betsy) implements this approach. The two

prototypical evaluations proved its effectiveness and efficiency because the de-

rived requirements for such a framework are fulfilled. That PEBWORK enables

good benchmarks is proven in the theoretical evaluation: it fulfills seven out of

nine criteria of a good benchmark through its inherent design. To sum up, the

results of this evaluation supports hypothesis H4.3 (“A benchmarking framework

is a suitable means to reveal objective and well-founded information about process

engines.”).
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EfficiencyThe approach PEBWORK and the prototype betsy are efficient to some degree

by being fully automated but there is a lot of potential, still. Because of this,

a more efficient version of PEBWORK is detailed in Chapter 7 that makes use

of virtualization technologies: Efficient Process Engine Benchmark Framework

(ePEBWORK).

Future

Work

Additional future work comprises two aspects: evaluation and implement-

ation. Currently, the evaluation has been made with the benchmarks and

engines that have been available as part of PEBL and PEAL. In the future,

PEBWORK will be evaluated more thoroughly with additional benchmarks for

other capabilities and quality characteristics (e.g., performance) which come

with additional requirements and challenges regarding test automation and

test isolation. The implementation, currently, is limited as well due to the limits

of PEBL and PEAL. Hence, the goal is to remove those limitations to improve

betsy itself.
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Data! Data! Data! I can’t make

bricks without clay!

Sir Arthur Conan Doyle

6. Process Engine Benchmarking

Interactive Dashboard

Parts of this chapter have been taken from [18].

In this chapter, hypothesis H4.4 (“An interactive dashboard is a suitable

form to present benchmarking results and support selection decisions.”) is

supported.

This chapter presents the Process Engine Benchmarking Interactive Dash-

board (PEBDASH). It is used to display and visualize the benchmarks and res-

ults defined in the Process Engine Benchmark Language (PEBL) (see Chapter 4)

and produced by the Process Engine Benchmark Framework (PEBWORK) (see

Chapter 5).

6.1. Motivation

Benchmarks are often used by end-users to evaluate and compare competing

systems before deciding on the system to adopt [192]. Likewise, researchers

and developers use benchmarking techniques to evaluate the design and im-

provement of systems over time. In the field of process engines, benchmarks for

testing different capabilities of process engines have been built [61, 81, 95], one

being this work as well. These benchmarks may support users, developers, and

researchers in analyzing and comparing process engines for BPMN and BPEL.

The results published so far, however, only show aggregated data of one or two

engine capabilities to get their point across. The actual raw data is sometimes

published as well but uses different data formats and levels of detail. Hence,

working with this raw data is either not possible at all or hard. This, however,

is crucial since the raw data would allow gaining additional insights, e.g., a

clear picture of different capabilities per engine. As with many benchmarks

(e.g., for databases or Web servers), the benchmarks for process engines only

show raw data with few aggregation and less emphasis on visualization and

interaction with the data. Although raw data and noninteractive result tables

are sufficient and even preferred by expert users, novice end-users may find it

difficult and time-consuming to choose their best-fitting process engine with this

level of detail [294, p. 52]. In contrast to experts, novices may have not enough
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knowledge to analyze, compare, and identify problems using atomic raw data.

Also, raw data may not meet the different cognitive skills (e.g., analytical versus

less analytical) [294, p. 49] of end-users. Yigitbasioglu and Velcu [294] have

shown that an appropriate aggregation and visualization of data helps users

in understanding complex information, identifying problems and focusing on

the most relevant data (e.g., metrics) for better decision making. Furthermore,

at the moment, benchmark data for process engines are not publicly available

or accessible. This makes it difficult for end-users to make informed decisions

about choosing an appropriate process engine without benchmarking these

engines themselves.

Goals

of Dash-

board

To overcome the limitations above, a web-based interactive dashboard is

created that makes process engine benchmarks accessible, visible, and compre-

hensible to end-users. In general, the purpose of dashboards is to facilitate the

understanding of data and metrics by making use of colors, tables, charts, and

interactive techniques (e.g., data filtering or drill-down) in the visualization of

this data. By building a dashboard, the focus mainly is on empowering non-

expert end-users to understand, analyze, and access benchmark results easily.

Nevertheless, experts may still use the dashboard to manage their benchmarks,

to compare them with the results presented in the dashboard, or to update test

implementations. This could establish a community of discussing and sharing

engine benchmarks. Further, when using a dashboard, experts may profit from

the more aggregated and structured presentation of the benchmark results to

communicate them to nonexperts stakeholders effectively [196]. In summary,

the hypothesis H4.4 (“An interactive dashboard is a suitable form to present

benchmarking results and support selection decisions.”) is proposed.

Chapter

Structure

The remainder of this chapter presents the design and implementation of the

Process Engine Benchmarking Interactive Dashboard (PEBDASH) for comparing

process engines by visualizing the benchmarks and their results written in PEBL.

First, it is described what dashboards are and how they are used in Section 6.2,

followed by the listing of requirements the interactive dashboard shall fulfill

in Section 6.3. Next, Section 6.4 describes the approach on implementing the

requirements in the form of an interactive dashboard and a loader which loads

benchmark runs into the database of the dashboard. The actual implementation

of the two artifacts is presented in Section 6.5, followed by an evaluation in

Section 6.6 based on the previously defined requirements. Finally, Section 6.7

sums up this chapter.

6.2. Dashboards

The term dashboard has its origin in the vehicle dashboard which displays

key performance indicators (e.g., speed or fuel gauge) of the vehicle [294].

Few [64] provides a definition of a dashboard.
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Definition 6.1 (Dashboard)

“A dashboard is a visual display of the most important information needed

to achieve one or more objectives; consolidated and arranged on a single

screen so the information can be monitored at a glance.” [64]

Dashboard Based on this definition, in the context of this thesis, a dashboard is under-

stood as a tool to collect, summarize, and present a large set of benchmark

results from multiple sources over time on web pages so that key performance

indicators of benchmarks can easily be perceived and understood at a glance.

In this work, a web-based dashboard for benchmarks consists of web pages

displaying most important information about the results of different bench-

marks (e.g., conformance, expressiveness, and performance as presented in

Section 4.5). Although dashboards are commonly used as part of Business

Intelligence (BI) systems for measuring and monitoring business performance

to support managerial decision making [294], their characteristics and design

principles have been adopted for reporting benchmark results.

Web-

Based

Dash-

board

In the following, the common characteristics and advantages of web-based

dashboards for visualizing benchmark results are highlighted. Benchmark

dashboards typically collect and summarize data from different benchmark

runs to allow the analysis and the comparison of these benchmark runs. Some

dashboards collect benchmark results of the same quality characteristic [118]

over a period, which may be helpful for identifying trends such as the stability

or the improvement of the tested system. A web-based dashboard is a method

for making a large set of benchmark data available in one place on the web,

and thus easy to find, access, and share [14]. When done right, dashboards

display few metrics and aggregated information to reduce the information load,

and to help users quickly get an overview of the benchmark results. Inter-

active dashboards presenting aggregate data mostly allow users to navigate

from highly aggregated data to the more detailed level of data, e.g., to obtain

additional details on a particular benchmark run. This feature is known as

drill-down [196]. Furthermore, interactive dashboards often provide a mech-

anism for filtering data to find and compare specific parts of the benchmark

results quickly. More importantly, filters allow the exploration of data which

is useful for users unfamiliar with the data [57]. One important characteristic

of dashboards is the focus on making the visual presentation of data intuitive

and easy to understand. This is typically achieved by making use of colors,

distinctive signs (e.g., +, −, or +/−), charts, and graphs. Those ease the

identification of key metrics and the comparisons of the results.

Available

Dash-

boards

for Bench-

marks

The characteristics and design principles of dashboards have been adopted

in a variety of web-based dashboards for reporting benchmark results. For

example, TechEmpower Framework Benchmarks (TFB)64 is a dashboard that

presents performance benchmark results of web frameworks to facilitate the

64https://www.techempower.com/benchmarks, visited 2017-3-31
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comparison of these frameworks regarding their performance. TFB has become

a community-driven project in which contributors frequently update test imple-

mentations. Compat-table65 is a dashboard that presents benchmark results that

evaluate the compatibility of browsers, servers, and compilers with ECMAScript

5, 6, and 7. The Node-compat-table66 dashboard only focuses on evaluating

different versions of the Node.js server regarding ECMAScript support. Both

dashboards make extensive use of colors to simplify the differentiation and

the recognition of the result ratings. Also, they employ drill-down features

to enable aggregation of the ECMAScript features. JMeter67 is a performance

testing framework that comes with a dashboard for displaying the benchmark

results using tables and graphs. It provides filters to specify which rows of

tables or series of graphs should be shown or hidden. Another benchmark

framework that provides a dashboard is Rally68. It is used for benchmarking the

OpenStack69 cloud hosting infrastructure. The Rally dashboard simplifies the

collection of test results and extracts relevant metrics to help users improving

their OpenStack infrastructure. Similar to PEBDASH, the Rally dashboard also

provides information about the configuration of each test (e.g., test cases or

configurations). Another dashboard or system that helps in selecting the appro-

priate benchmark for process engines is the Decision Support System (DSS) for

the performance benchmarking of process engines by Skouradaki et al. [236].

Its focus, however, is not on selecting the appropriate engine but on selecting the

appropriate performance benchmark. The ultimate IoT platform comparison70

provides a dashboard for comparing different IoT platforms, obviously. Kolb

and Wirtz [133] presents a dashboard71 to compare different PaaS solutions by

different vendors.

Research

Gap

Despite the existence of a variety of web dashboards for benchmarking

tools, there is no interactive dashboard yet for presenting the benchmarking

results of process engines. Only the presentation of the workflow patterns

dashboard [291] has few characteristics of a dashboard, but it solely displays

result tables with no interactivity at a high level of granularity.

65http://kangax.github.io/compat-table, visited 2017-3-31
66http://node.green, visited 2017-3-31
67http://jmeter.apache.org/usermanual/generating-dashboard.html, visited 2017-3-

31
68https://www.mirantis.com/blog/rally-as-an-openstack-performance-dashboard/,

visited 2017-3-31
69https://www.openstack.org/, visited 2017-3-31
70https://ultimate-comparisons.github.io/ultimate-IoT-platform-comparison/,

visited 2017-3-31
71https://paasfinder.org, visited 2017-3-31
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6.3. Requirements

This section discusses the requirements for the dashboard. The requirements

were gathered by leveraging user stories popularized by the agile software

method Scrum [209, 225].

Stake-

holders

There are three different stakeholders, namely, the user representing anyone

who either wants to use or already uses a process engine, the vendor repres-

enting anyone who develops, sells, or provides support for an engine, and the

admin who maintains the dashboard. The user is looking for a process engine to

use and wants to know which one fulfills his needs best and which one would

lead to the least danger of a vendor lock-in. It, however, could also be the case

that the user already uses a process engine and is thinking about migrating to

another one and wants to know which engine supports the most of the required

features. A special case would be the migration from an older version of a

process engine to a newer one. In contrast, the vendor is looking forward to

knowing how his product compares to its competitors and how his product has

evolved over time feature-wise. Last, the admin wants to minimize his effort to

host and maintain the dashboard.

Require-

ment

Elicitation

The requirements were elicited by analyzing the benchmark results of both

betsy and BenchFlow, by questioning domain experts from different universities

within Europe (e.g., University of Bamberg, University of Stuttgart, Karlstadt

University, and University of Lugano), and by reviewing scientific papers and

existing web dashboards. The captured requirements were decomposed into

user stories [225] and validated by letting the experts try out an interactive

prototype upon which the most important Functional Requirements (FRs) and

Nonfunctional Requirements (NFRs) for the dashboard are gathered:

FR.User.1 – compare all aggregated: As a user,

I want to see aggregated information on all engines in one place

so that I can quickly gain an overview of all engines as an entry point

for further investigations.

FR.User.2 – compare latest feature: As a user,

I want to see differences and similarities in feature support of the

latest version of all engines

so that I can make an informed decision regarding which engine to

choose.

FR.User.3 – compare latest aggregated: As a user,

I want to see differences and similarities in feature support on an

aggregation level of the latest engines

so that I can make an informed decision which engine to choose more

quickly.

FR.User.4 – compare versions feature: As a user,

I want to see differences and similarities in feature support of multiple
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versions and configurations of the same engine

so that I can check if an upgrade is worthwhile.

FR.User.5 – drill down to feature: As a user,

I want to see all features for each (unsuccessful) aggregation level

so that I can check if all features are unsupported or if there are

problems with some of the features in this aggregation.

FR.User.6 – compare any feature: As a user,

I want to see differences and similarities in feature support among

different engines

so that I can estimate the migration costs between engines (see vendor

lock-in).

FR.Vendor.1 – compare latest: As a vendor,

I want to compare the strengths and weaknesses of the latest version

of all engines

so that I can know how my engine compares to its competitors.

FR.Vendor.2 – compare engine progress As a vendor,

I want to compare multiple versions of the same engine

so that I can reveal the feature progress of the engine.

FR.Vendor.3 – drill down to failure: As a vendor,

I want to be able to drill down to the cause of any failed feature on

my engine

so that I can verify and fix the failure.

NFR.1 – hosting: As a admin,

I want to avoid any server-side logic

so that I can keep hosting and maintenance simple and secure.

NFR.2 – easy to use: As a user/vendor,

I want to have an easy to use and visually appealing dashboard

so that I can find the information I need quickly.

The FRs are subdivided into FRs for the user and the vendor. Both stake-

holders have similar requirements which are phrased differently because

of their perspectives (see FR.Vendor.1/FR.User.2, FR.Vendor.2/FR.User.4, and

FR.Vendor.3/FR.User.5). The vendor wants to compare his product with the com-

petition, reveal how his product improves over time, and quickly determine how

to improve his product. The user wants to compare competing products, check

whether the upgrade to the new version is worth the effort, and determine why

a feature is not supported.
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6.4. Approach

The big picture of the approach can be seen in Figure 6.1. Its goal is to fulfill

the requirements listed in Section 6.3 . The approach consists of three software

systems (benchmark tool, loader, and dashboard) and two persistent storages

(run and database) connected through the load pipeline.

Tool Run Run 
Dashboard 

Database Run 
Loader 

PEBL files PEBL files 

Figure 6.1.: Big Picture, including the Loader Pipeline

Tool On the left-hand side of Figure 6.1, there is a benchmark tool with which

one can conduct benchmarks and produce benchmark results in benchmark

runs. Such runs need to use a language and data model to express and serialize

their benchmark and results to disk. In this approach, the runs need to use

PEBL introduced in Chapter 4. As files can only be included in PEBL through

links, they have to be provided as well so that the links can be followed. Each

evaluation made in Section 4.5 represents a single run. Later, when a new

engine or version of an existing is released, a new run has to be conducted for

the new engine reusing the existing benchmark, but producing new results.

Dashboard On the right-hand side of Figure 6.1, there is the dashboard which displays

the benchmarks and the results available in the database to the user. It is built

with HTML5 and client-side only JavaScript fulfilling the ECMAScript 6 (ES6)72

language specification. Hence, the dashboard can solely rely on the JSON

serialization format of PEBL and does not require any server-side component

except a simple web server servicing static files. The dashboard uses aggregated

results described in Section 4.3 to display the relevant metrics to the user

grouped by the engines. Also, it allows drilling down to the actual tests and

logs. Moreover, features can be compared between engines and filtered to see

only the features one is interested in.

Database The dashboard relies heavily on its database. Figure 6.2 shows the folder

structure of the database. All the files are stored in the data folder next to

the serialization of the pebl.json in appropriate subfolders. Because the IDs of

the tests and the test results can become long, and Windows allows only 260

characters for the path name73, they are hashed.

Loader In the middle of Figure 6.1, there is the loader. The loader is responsible for

loading the results of a single run into the database of the dashboard. Through

the arrows in Figure 6.1, the load pipeline is visualized. This load process also

72ES6 is the current standard for JavaScript and supports, among other features, modules
natively.

73https://msdn.microsoft.com/en-us/library/aa365247(VS.85).aspx#maxpath, visited
2017-3-31
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Figure 6.2.: Folder Structure of the Dashboard Database with File Examples

pebl.json

data/

tests/

00A68B645A51235A7E4449957EAC6AA9077A7E1C

files/

interface.wsdl

process/

process.bpel

testResults/

C4FEBC29518DF052554EACFC96986F520B97C2FC

files/

deployment.zip

logs/

engine.log

includes the enhancement and validation of the data. The pseudo code of the

load process is available at Listing 6.1. The process comprises two parts and

five steps in total. In the first part, data from the run is copied into the database.

First, the new metric types, elements in the feature tree, tests, engines and

test results from the PEBL serialization of the run are copied into the database.

Second, any files that are linked from the database but are not within the folder

structure of the database are copied to their expected place. In the second

part, the data within the database is cleaned, improved, and validated. For

each linked file that is a process model, an image is automatically created so

that the user has a visual representation of the process models in addition to

the XML-based serialization format. Also, aggregated results are recalculated

to reflect the new elements. Moreover, any files in the database, which are

no longer linked from the PEBL serialization of the database, are deleted.

Last, the serialization is validated against its schema to prevent corruption

of the database. In summary, the loader acts like an Extract-Transform-Load

(ETL) process known from the field of BI that make use of Data Warehouses

(DWHs) [127]. In contrast to a DWH in which data should be nonvolatile [127],

the loader overwrites the results if a newer benchmark result is mapped to

an existing one. This is useful if a better version of an existing test has been

created.

Listing 6.1: Pseudo Code of the Loader Algorithm

1 def load(run , database ):
2 from run into database :
3 copy/ replace metric types , feature tree , tests , engines , and test

results
4 copy/ replace files of tests and test results
5 in database :
6 add images of process models
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7 recalculate aggregated results
8 remove unlinked files
9 validate serialization

Scope Not every benchmark tool supports PEBL. Some use a different language

and data model to express their benchmark and results, as it is the case for

BenchFlow [61, 237]. In these circumstances, the tool specific language and

data model have to be mapped to PEBL. This must be done separately and is

neither covered in the loader nor in this approach. For BenchFlow, this is done

as part of the evaluation of PEBL in Section 4.5.3.4. Hence, this mapping can

act as a starting point for other benchmarking tools.

6.5. Prototype

This section outlines the implementation of both, the loader in Section 6.5.1

and the dashboard in Section 6.5.2. The loader is implemented in Java 8,

whereas the dashboard relies on HTML5 and ECMAScript 6 (ES6) alone. Both

interact with each other through the database which is encoded in JSON.

Figure 6.3.: The Dependencies of the Loader

6.5.1. Loader

Techno-

logy

The loader loads a run into the database of the dashboard. The loader is

usable through a CLI. It is open source and publicly available74, including

the documentation of the CLI75. This software is implemented in Java 8. Its

dependencies can be seen in Figure 6.3. The loader uses the module Mapping

and Aggregation of PEBL to read and write JSON serializations of PEBL as well

as to compute aggregated results. A PNG file is automatically created for every

BPMN process model via BPMNviz that is based upon the Open Source BPMN

74https://github.com/uniba-dsg/betsy/tree/master/loader, visited 2017-3-31
75https://github.com/uniba-dsg/betsy/blob/master/loader/README.md, visited 2017-

3-31
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Modeler Yaoqiang BPMN Editor76. The loader uses SHA-1 [55] as its hash

algorithm, creating hashes which are 40 characters long for the folder structure

as shown in Figure 6.2.

Limita-

tions

The current prototype does not support the creation of PNG-based visualiz-

ations for BPEL process models. This is only implemented for BPMN process

models. Moreover, as the loader uses the Aggregation module from the PEBL

prototype, it inherits its limitations stated in Section 4.4. Namely, Groovy scripts

are not supported.

6.5.2. Dashboard

Dashboard

Pages

The dashboard is open source77 and publicly available78 as well. The interested

user only needs a modern browser, such as Google Chrome 50 or Mozilla

Firefox 49 or higher, to view the dashboard over the Internet. The dashboard

contains seven pages: The start page provides links to the pages containing

the actual benchmark results depicted in Figure 6.4. Three capability pages

have been created, each of them presenting benchmark results of different

capabilities: for conformance (Figure 6.5), expressiveness (Figure 6.6), and

performance (Figure 6.7). The engine compare page (Figure 6.11) allows users

to compare two different engines by their features and benchmark results. Note

that only engines of the same process language can be compared. The engine

overview page (Figure 6.10) allows the user to quickly get an overview of the

engines and how each engine supports the different capabilities. Information

about the project is included in the about page.

ExtensionThe dashboard has been built for extension. It can automatically adapt to new

benchmarks and results as long as the structure of PEBL is used and extension

points such as the custom names for groups, feature sets, and features as in

Table 4.3 is leveraged, too. To show a new capability with its benchmarking

results, it is necessary to provide the appropriate HTML templates and specify

which of the result tables, filters, and drill-down functions have to be selected.

Although some filters can automatically be provided, special filters that are

dependent on specific metrics have to implemented as part of the extension.

Confor-

mance

Results

Figure 6.5 shows an example of conformance benchmarking results of the

language BPMN. One can see the three levels of the feature tree for the

conformance capability from Section 4.5.3.1, with the construct group activities,

the construct AdHocSubProcess, and its two construct configurations Parallel and

Sequential. The ratings in the columns display the metric trivalent aggregation.

Express-

iveness

Results

The presentation of the expressiveness benchmark results (Figure 6.6) is

similar to that of the conformance benchmarking in the conformance capability

page. This is because the benchmarks are similar (see the benchmark definition

76http://bpmn.sourceforge.net/, visited 2017-3-31
77https://github.com/peace-project/dashboard, visited 2017-3-31
78https://peace-project.github.io/, visited 2017-3-31
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Figure 6.4.: Start page of the dashboard

Feature Set 

level 

Feature  

level 

Figure 6.5.: Example of Capability Results: Conformance

with its metrics in Section 4.5.2.2). There are, however, three differences.

First, a different naming is applied. Instead of using group, feature set, and

feature, the expressiveness-specific terms pattern catalog, pattern, and pattern

implementation are shown. Second, the column for the language support is
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added. The data comes from the extension element language support of the

feature and feature sets. Third, the measurement of the support metric is shown.

The coloring is derived from the measurement of the metric standard fulfilled.

Only if the standard is fulfilled, the rating will be colored green.

Figure 6.6.: Example of Capability Results: Expressiveness

Perfor-

mance

Results

The presentation of performance benchmark results is much simpler as they

do not use the feature tree as already stated in Section 4.5.3.4 as part of the

benchmark description. This is because aggregation of performance metrics

does not make any sense. Hence, only different BenchFlow experiments (i.e.,

testable features; see Section 4.5.3.4) are presented in Figure 6.7. The metrics

of each experiment are categorized into performance and resource utilization

metrics and detailed as minima, maxima, average, standard deviation, and

relative standard deviation values. This categorization is built on top of the

data available in PEBL.

Drill

Drown

Several methods to drill down are provided: a click on the info badge of

the feature set or group shows its description, whereas the info badge on the

feature shows the test, as depicted on the left in Figure 6.8. The click on a mark

of a testable feature shows test results, as shown on the right in Figure 6.8.

Furthermore, hovering over an engine version number shows details about that

version as well.

FiltersFilters are crucial for every dashboard as they allow users to find information

of interest quickly and to focus on specific parts of the result data. Therefore,

each capability page provides a set of filters that allow users to explore and

filter the data displayed in the table. One can filter the feature tree and the

engine list for any capability. To provide a better user experience, one can

search the filter options for a quicker selection. This is necessary because

the conformance benchmark described in Section 4.5.2.1 already has over a
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Figure 6.7.: Performance benchmarking results

Figure 6.8.: Test (left) and Test Results (right)

hundred features. Figure 6.9 shows such filters for the conformance result

page. The user normally wants to know something about the latest engine

and not some older version. Consequently, all data is shown for the latest

engines by default as a starting point. That selection can, of course, be modified

by the user. Also, there are two custom filters: the portability status filter

for the conformance capability (as shown in Figure 6.9) and the standard

fulfillment status filter for the expressiveness capability. The portability status

filter only allows showing the features that are fully portable (i.e., supported

by all selected engines), partially portable (i.e., supported by at least one of

the selected engines), and not portable (i.e., the support differs between the
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selected engines). The standard fulfillment status works similar, but instead

of focusing on the portability, it focuses on whether the pattern and pattern

implementation fulfilled the language support of the standard. One can see

only the pattern that fulfilled the standard, or the ones that deviated from the

standard, or the ones that simply differ between the engines.

CUSTOM FILTERS 

DEFAULT FILTERS 

Figure 6.9.: Filters: Default and Custom Ones

Engine

Overview

The engine overview page is depicted in Figure 6.10. It comprises a table

in which all versions of all engines are listed along with their most important

metrics. For instance, regarding the conformance capability, it can be seen

how many of the features are supported and how many features have been

tested. This can be changed to a percentage-based view via the checkbox Show

percentages.

Figure 6.10.: Engine Overview Page of the PEBDASH Prototype

Engine

Compar-

ison

On the engine comparison page, two engines can be compared side-by-side

as shown in Figure 6.11. In this example screenshot, camunda BPM 7.0.0 is
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compared with camunda BPM 7.1.0. The Only show differences checkbox is

enabled, meaning that only the differences are shown while the commonalities

are hidden. In that case, the version, ID, release date, and two signal events

differ. If those are the only differences, an upgrade would be advisable, as the

newer version supports two signal event types more than the previous one.

Figure 6.11.: Engine Comparison Page of the PEBDASH Prototype

Tech-

nology

The web interface of the dashboard is implemented using HTML5, CSS,

and JavaScript. It is built upon the bootstrap79 framework. The CSS defini-

tions are managed using Sass80. The dashboard is made interactive through

the use of JavaScript, especially relying on the jQuery81 for Document Object

Model (DOM) manipulation, Underscore.js82 for having a richer standard lib-

rary, Moment.js83 for handling dates, and Handlebars84 as a template system.

Moreover, the implementation is modular and open for the integration of new

capabilities thanks to the ability to define modules in ES6.

Archi-

tecture

The architecture of the dashboard is shown in Figure 6.12. The architecture is

based on the Model-View-ViewModel (MVVM) pattern85. Each package within

the PEBDASH corresponds to an ECMAScript 6 module, and each module

resides in a separate file. The model fetches the JSON representation of its

PEBL based database and converts it into its own representation. The filter

allows selecting parts of the model based on user input. The UI consists of

a tree of components with their templates using Handlebars and viewmodels.

The viewmodels use the filters to select the appropriate data from the models

79http://getbootstrap.com/, visited 2017-3-31
80http://sass-lang.com/, visited 2017-3-31
81https://jquery.com/, visited 2017-3-31
82http://underscorejs.org/, visited 2017-3-31
83http://momentjs.com/, visited 2017-3-31
84http://handlebarsjs.com/, visited 2017-3-31
85https://msdn.microsoft.com/en-us/library/hh848246.aspx, visited 2017-3-31
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Figure 6.12.: The Architecture of the Dashboard

into a form which is easily displayable through components. A typical tree of

components starts with the capability table which has a) filters that make use of

checkboxes and radio buttons, b) the different popovers to provide more detail

for groups, feature sets, features, tests and test results, and c) the table itself.

Limita-

tions

The dashboard comes with a few limitations. First, although it is built for

extension, a new capability will not be displayed automatically. This still

requires (minor) manual integration. Second, because the dashboard has no

server-side backend, it loads the whole database from the server once and

processes it on the client. This can lead to performance issues86 the more

benchmarks and their results are in the database. Third, the information is

shown in tables only. It does not provide any charts that could visualize the

results more clearly.

6.6. Evaluation

The prototype is evaluated by checking whether all the requirements that

are specified in Section 6.3 are met. These requirements are targeted at

the dashboard, not the loader. However, because the loader is a necessary

preprocessing step that the dashboard depends upon, it is transitively evaluated

as well. In the following, all requirements are checked against the database

and the dashboard prototype to determine whether they are fulfilled.

86See http://josh.zeigler.us/technology/web-development/how-big-is-too-big-

for-json/ for an overview how large JSON files can impact the browser performance,
visited 2017-3-31.
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Database:

Func-

tional &

Nonfunc-

tional

Require-

ments

All FRs from Section 6.3 can be fulfilled with the data from the database. The

results can be compared a) along the feature tree using either the feature level

or any other aggregation level, b) along the engine dimension using either the

latest engine, multiple versions of the same engine or any other combination of

engines, and c) by drilling down to the test results and the actual engine logs.

NFR.2 is partly fulfilled through the visualization of the process models, as it

makes the dashboard more visually appealing as well.

Dashboard

Func-

tional

Require-

ments

With the engine overview page, FR.User.1 is fulfilled as it shows all aggregated

information about the engines in a highly condensed way, providing an overview

of the quality of these different engines at a single glance. FR.User.2, FR.User.3,

and FR.Vendor.1 are fulfilled through the large tables available on the capability

pages. These tables show similarities and differences between the latest engines

on an aggregated and a more detailed level. Using the filters (see Figure 6.9)

on the left side of the capability pages, different versions of a single engine can

be selected. Also, one can compare two engines side by side as well, providing

a view of all capabilities on a single page, with the ability to show only the

differences. This functionality fulfills FR.User.4 and FR.Vendor.2, giving the user

the possibility to check whether to upgrade or not to upgrade and the vendor

to track the progress of his product. From the information that is directly

displayed on the capability page, one can drill down to the actual cause why

this feature is supported or not supported. It is even possible to inspect the logs

of the underlying test that was used to determine feature support. Both can

be achieved through the test result page (see Figure 6.8 on the right), which

lists the logs and, in case of failures, the causes per test case. Hence, FR.User.5

and FR.Vendor.3 are fulfilled. The engine side-by-side comparison page can also

help in determining migration costs, as it allows revealing only the differences

between two engines, fulfilling FR.User.6.

Dashboard

Nonfunc-

tional

Require-

ments

NFR.1 is fulfilled because there is no server side component necessary to host

and provide the dashboard. All data can be preprocessed through the loader,

but the dashboard only relies on a standard web server that serves static files,

including the JSON serialization of the PEBL database. NFR.2 is also fulfilled

because the information can be found quickly in the tables of the capability

pages, which can be filtered as well. Moreover, the provided information on

these pages is shown using visualizations such as images of the process models,

the use of icons, or through tables for structured information.

Threats

to Validity

The evaluation itself has been conducted based on the collected requirements.

Hence, the evaluation depends on how well the requirements are fulfilled. This

works well for highly specific requirements, but not so well for unspecified

requirements such as ease of use. Hence, this evaluation should only be seen

as a preliminary one that simply shows that the checklist of requirements is

met, but it is no scientifically rigorous evaluation. Also, the number of experts

available for coming up with the requirements is limited. Nevertheless, they
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have been sufficient to define a set of requirements for such a preliminary

evaluation.

Good

Bench-

mark

Criteria

The PEBDASH with its dashboard and loader enables more accessible and

verifiable benchmarks. More accessible, because the results are easier to be

compared with each other within the dashboard than within the PEBL rep-

resentation. And more verifiable, as issues within the results can be easily

checked in the comparison tables of the dashboard. This enables to perform

At Least One Success (P21) with lesser effort. Hence, PEBDASH enables good

benchmarks.

6.7. Summary

ConclusionIn this section, an interactive dashboard that uses PEBL models to visualize

the benchmarks and their results and the loader that loads new data into

the database of the dashboard has been presented. The dashboard has been

designed so that end users, developers, or researchers can compare process

engines. The implementation of the dashboard was driven by requirements

in the form of user stories. It has been shown that the dashboard fulfills

those requirements. Hence, hypothesis H4.4 (“An interactive dashboard is a

suitable form to present benchmarking results and support selection decisions.”) is

supported.

Decision

Making

For situations to decide whether to adopt a specific engine, the dashboard

alone can suffice. If the selection of the engine requires a more sophisticated

decision making process including a large variety of different factors, e.g.,

using AHP, which is detailed in Section 2.1.3, the available data can be further

processed. All data is available using the serialization of PEBL and aggregated

results are computed. Hence, it can enable more complex decision making

methods as well.

Future

Work

Future work is subdivided into technical and organizational improvements.

Regarding technical ones, it is aimed to add charts and graphs to the dashboard

so that the existing data is presented in other ways. Further, it is planned to

generalize the dashboard so that any new capability can automatically shown

to the user without any additional effort. Moreover, it is aimed to incorporate

results of other process engine benchmarks, e.g., the one created by Delgado

et al. [45]. Regarding organizational improvements, the plan is to build up a

community for process engine benchmarking comprising end users, developers,

and engine vendors alike. This community can then drive the improvement of

the dashboard, betsy, and BenchFlow through their feedback.
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Efficiency is doing things right;

effectiveness is doing the right

things.

Peter Drucker

7. Efficient Process Engine

Benchmark Framework

Parts of this chapter have been taken from [100].

In this chapter, hypothesis H4.5 (“By leveraging virtualization it is possible

to improve the efficiency of a benchmarking framework significantly.”) is

supported.

The Efficient Process Engine Benchmark Framework (ePEBWORK) is presen-

ted in this chapter. It is an improved and more efficient version of the Process En-

gine Benchmark Framework (PEBWORK) from Chapter 5. Hence, ePEBWORK

builds upon the Process Engine Benchmark Language (PEBL) from Chapter 4

and the Process Engine Abstraction Layer (PEAL) from Chapter 3 as well.

7.1. Motivation

Test Isol-

ation

and Auto-

mation

through

Reinstalla-

tion (P9)

As shown in Chapter 5, process engine benchmarking can be performed ef-

fectively through the prototype betsy that implements an automated version

of PEBWORK. The benchmarking ensures test isolation through Reinstalla-

tion (P9), meaning that fresh process engines (i.e., freshly installed and started

process engines) are used for each test. Test isolation is crucial to prevent side

effects (e.g., that one test case with an infinite loop cannot lead to test failures

for any subsequent tests [94]). Reinstallation (P9), however, depends on a

clean uninstallation procedure so that the next installation is a fresh installation.

Moreover, Reinstallation (P9) solely works for engines that can be installed

automatically. There are process engines, however, that are hard to install

automatically, especially commercial products. The Oracle Business Process

Engine, for example, is part of the Oracle SOA Suite 11gR1 middleware. The

guide [193] that describes the installation of the Oracle SOA Suite requires the

user to download five files summing up to five Giga Byte (GB) in total [193, p. 5–

6] and to follow the necessary installation steps described on 48 pages. Hence,

benchmarking such process engines is not feasible with Reinstallation (P9)

because of its lack of efficiency. Another downside of Reinstallation (P9) is its

effect on the time to results. Because an engine is installed, started, and ter-

minated for each test, the time to install, time to start, and time to terminate is
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multiplied by the number of executed tests, heavily influencing the overall time

to result. Those timings are not neglectable. Lenhard et al. [150] showed that

the installation time ranges from approximately three seconds up to more than

two minutes for open source BPEL engines. This is also shown in the evaluation

of betsy later in Section 7.5. The issue of the startup time is not that pressing as

the issue of installation, but should not be neglected. Although the open source

engines start in at most one minute as shown in Section 7.5.2, commercial ones

within large middleware suites may have much longer startup times. The Oracle

middleware suite requires more than ten minutes until it is up and running87.

Because the installation, startup, and even shutdown times increase the time

to result, their influence is significant. Five open source BPEL engines were

evaluated regarding standard conformance with approximately 130 test cases,

and this evaluation took 10 hours to complete [95]. The reason why process

engines have so long and complex installation and startup procedures is that

they are inherently complex middleware software products [36]. In summary,

two problems have been revealed: 1) Reinstallation (P9) is not scalable to

achieve test isolation, and 2) Reinstallation (P9) prohibits the benchmarking of

process engines that are hard to install automatically (i.e., this holds for mostly

proprietary engines such as the ones provided by Oracle and IBM) .

Efficiency

through

Virtual

Machines

(P10)

The goal is to increase execution efficiency (i.e., reduce time to results)

while retaining technical effectiveness (i.e., keep the quality of results) of

PEBWORK. Both, test isolation and test automation are crucial for achieving

this goal because the first attributes to the quality of the results and the latter

to the time to the results. Instead of achieving test isolation and automation

through automated Reinstallation (P9), Virtual Machines (P10) are leveraged.

Consequently, instead of engine-dependent and high installation, startup, and

shutdown times, the availability of virtual machine snapshots that contain a

fresh and running process engine allows engine-independent and constantly

low installation, startup, and shutdown times through snapshot restoration

and virtual machine termination. This approach guarantees 1) test isolation

because each test runs within a freshly restored instance of a VM and 2)

test automation because the snapshots and virtual machines can be either

automatically created on-demand through scripts or manually upfront in case

the process engine has hard to automate installation procedures, ensuring fully

automated benchmarking either way. The improved version of PEBWORK is

called Efficient Process Engine Benchmark Framework (ePEBWORK) which

comes with its extended version of betsy called virtualization-enabled betsy

(vbetsy). The improved ePEBWORK is evaluated by comparing the time to

results in between betsy and vbetsy. Any time savings are compared to the

overhead caused by the usage of VMs. Hence, the posed hypothesis H4.5 (“By

87Measured by starting the AdminServer in the prebuilt Oracle VM from http://www.oracle.

com/technetwork/middleware/soasuite/learnmore/vmsoa-172279.html, visited 2017-
3-31.
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leveraging virtualization it is possible to improve the efficiency of a benchmarking

framework significantly.”) is evaluated in this chapter.

Chapter

Structure

The remainder of this chapter is structured as follows. First, Section 7.2

presents related work followed by the approach on how to tackle the stated

issues using virtual machines and snapshots in Section 7.3. In Section 7.4,

the details on the prototype vbetsy, the extension of betsy with virtualization

techniques and DevOps [77] methods, is provided, followed by an evaluation

of the performance improvements in Section 7.5. This chapter closes with a

summary and future work in Section 7.6.

7.2. Related Work

Provi-

sioning

of VMs

and Ap-

pliances

In the area of provisioning applications within VMs, there are two related

approaches available. The most popular approach is based on script-oriented

solutions, e.g., Puppet88, chef89, and sprinkle90. These have in common that

the steps required to install and verify the correctness of the installation of

a specific component are specified in a module. These modules may then be

reused and reconfigured for more complex environmental infrastructure. Lately,

however, a more service-oriented solution has emerged based on the OASIS

standard TOSCA [184]. Instead of implementing these steps in scripts, the

steps are implemented as BPEL processes [21]. This has the advantage that

visualizing the provisioning process and monitoring its execution is natively

available. For TOSCA, there exists an implementation of a modeling tool [139]

and runtime [20]. The tool vbetsy leverages sprinkle for the provisioning scripts.

In the future, those scripts could be converted to TOSCA processes.

Testing

with VMs

Since the emergence of virtualization technology, many approaches have

adopted the use of VMs for enabling or speeding up testing. Especially in

the area of testing the design of a website in different browsers, it is widely

applied91. In this case, the system under test is the web application, and the

VMs are different test cases while this chapter uses VMs the other way round.

VMs are used in the area of testing middleware as well. For evaluating the

performance of ESBs, the corresponding ESBs are installed on the IaaS solution

Amazon EC292 where the test itself is executed as well. Although they use

VMs, they do not control them during test execution but just leverage the

cheap availability of infrastructure in the cloud instead of buying physical

hardware. In the context of Timeseries Databases, TSDBBench93 uses Vagrant

88http://puppetlabs.com/, visited 2017-3-31
89http://www.getchef.com/, visited 2017-3-31
90http://rubygems.org/gems/sprinkle, visited 2017-3-31
91E.g., http://browsershots.org/ or https://www.browseemall.com/, visited 2017-3-31
92http://esbperformance.org/#ESBPerformanceTesting-Round7-

PerformanceTestEnvironmentandResources, visited 2017-3-31
93https://github.com/TSDBBench, visited 2017-3-31
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to setup VMs. They rely on an extended version of Yahoo! Cloud Serving

Benchmark (YCSB) [37]. Hence, that approach does not apply to the setting of

this work. Another approach which controls VMs and uses snapshot restoration

during test is the ruby project Virtual Machine Test Harness (VMTH)94. Its

purpose is the automatic unit testing of provisioning scripts for Kernel-based

VMs (KVMs) running solely on Linux. Although it also uses VMs and snapshot

restoration in a similar way as vbetsy does, its system under test is a provisioning

script which alters the VM itself while vbetsy tests process engines. Due to its

focus on its specific domain, VMTH is not reusable for the problem of this work.

Testing

with Con-

tainers

A more recent virtualization technology is container virtualization. Such

containers make use of OS-based isolation mechanisms, resulting in a lesser

overhead in comparison to VMs but with a sufficient amount of isolation [60,

293]. Because of ecosystems such as that of Docker, multiple authors (e.g.,

Boettiger [22], Chamberlain and Schommer [31]) suggest making reproducible

research using such container technology. Furthermore, Dashevskyi et al. [40]

and Rahman et al. [205] have proposed to use Docker for setting up testbeds

quickly and reproducible. Although the usage of containers sounds promising,

Docker only added experimental support for creating RAM snapshots at the

beginning of 2017. Therefore, containers are not suited as a solution for the

problem at hand yet, either.

7.3. Approach

In this section, the approach to improve the efficiency of PEBWORK is detailed.

First, a short description of PEBWORK is presented, followed by an outline how

ePEBWORK extends and builds upon PEBWORK. Next, because ePEBWORK

relies on virtualization with VMs, the states of such VMs are defined for this

approach as well.

PEBWORKThe prototype betsy of PEBWORK follows the sequential control flow pro-

cedure given in Figure 5.6 and can execute those tasks automatically. In this

context, the focus lies on the five tasks that interact with the engine under

test: provide engine, deploy process, execute test cases, analyze logs, and disperse

engine. In the case of executing the test case, betsy leverages soapUI for BPEL

and the PEAL API for BPMN engines. In the four remaining tasks, it interacts

directly with the engine under test using the PEAL API on the same host. The

actual usage of the API for each of these steps is described in pseudo code in

Listing 5.1.

ePEB-

WORK

In ePEBWORK, PEBWORK is extended and modified with the goal to achieve

a better execution efficiency (i.e, lesser time to benchmark results) while still

retaining the same effectiveness. To fulfill this goal, the general idea is to

leverage the usage of VMs that can be restored from HDD and RAM snapshots

94https://github.com/gregretkowski/vmth, visited 2017-3-31
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Figure 7.1.: Sequential Control-Flow Diagram of the Insider View on the Benchmarking
Framework for vbetsy

in constant time instead of relying on the engine-dependent time to install,

start, and stop. This idea manifests itself in the extended sequential control

flow procedure shown in Figure 7.1 The modified tasks are highlighted in blue

and the unchanged tasks colored in white. Normally, the tasks provide engine,

deploy process, analyze logs, and disperse engine use calls to the local API of

PEAL. In this case, both, provide engine and disperse engine tasks simply provide

a VM with the engine already started that is fresh as well as not influenced by

any previously run test and kill that VM through calls to the hypervisor instead.

The situation is different for the tasks deploy process and analyze logs because

the engine is running within a VM and both tasks need to interact with that

engine. This is solved by providing the API of PEAL as a Web Service (WS)

from within the VM so that one can initiate calls to this API from another host,

reusing the same operations as in PEBWORK. The component is called PEAL

Web Services (PEAL-WS). The last of the five modified steps (i.e., the step

execute test cases) needs to know the new address of the engine as it is no

longer on the same host but within the VM. The previously described tasks

are also shown in Listing 7.1. The pseudo code shows how the five blue tasks

are mapped to either calls to the hypervisor (for the tasks provide engine and

disperse engine) or to the PEAL-WS (for the other three tasks).

Listing 7.1: Mapping of ePEBWORK Procedure Tasks to PEAL API Calls.

1 task provide engine :
2 if VM has snapshot :
3 call VM restore
4 call VM start
5 else:
6 call VM start
7 wait until VM is started :
8 call VM snapshot
9

10 task disperse engine :
11 call VM kill
12
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13 task deploy process :
14 remote call to PEAL -WS
15

16 task execute test cases:
17 remote call to PEAL -WS [BPMN]
18 remote call to engine via soapUI [BPEL]
19

20 task analyze logs:
21 remote call to PEAL -WS

VM Provi-

sioning

The VM, however, needs to be provisioned and used in the previously defined

control flow. The provisioning comprises six steps: 1) creation of a VM, 2)

installation of PEAL, 3) installation of the engine, 4) starting of the engine, 5)

starting of PEAL-WS, and 6) creation of a HDD and RAM snapshot. It should

be noted that these steps are only necessary once. If there is already a VM

with the corresponding snapshot, nothing has to be done. What is more, the

VMs are to be configured so that they automatically start their engine and the

PEAL-WS upon startup and provide a mechanism to indicate that both are ready

to receive requests. With such a mechanism in place, snapshots can be created

on-demand by starting the VM and waiting for all relevant services to signal that

they started. Creating snapshots on-demand is necessary as snapshots cannot

be shared as easily as images of VMs because snapshots are not part of the

portable OVF/OVA by the DMTF [48]. The six steps described can be fully but

also partially automated. For instance, the installation of the engine could be

performed manually without prohibiting fully automated benchmark execution.

Hence, engines which are hard to install automatically can be covered as well.

Figure 7.2.: State Machine of the VM Lifecycle of ePEBWORK

VM Life-

cycle

After the provisioning, the VM is set to the OFF state. In that state, only

the previously created snapshot can be restored, setting the VM in the SAVED

state. In this snapshot, any software that is required for testing may already

be started. Effectively, this sets up the fresh instance of the system under test:

the running engine. The VM, however, is not yet usable, as it is not yet running

itself. From this SAVED state, the VM is started, putting the VM into the ACTIVE

state. Within this ACTIVE state, it is usable in a FRESH sub-state. In the context

of this work, it is usable for exactly a single test case execution. After it has

been used in even a single test case, it is not longer FRESH, but USED. When
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the VM has to be renewed again, the VM must be stopped returning to its

OFF state from where the cycle can start again. To avoid any long running

stop procedures, and because a VM is an isolated and virtual environment, the

easiest way to stop it is to kill the VM.

7.4. Prototype vbetsy

vbetsy In this section, the prototype of ePEBWORK named virtualization-enabled betsy

(vbetsy) is presented. That prototype vbetsy extends betsy by implementing

the previously described approach that relies on VMs with snapshots. It is open

source and publicly available95.

Structure This section is structured as follows. First, the approach to creating the

VMs using methods from the DevOps movement is presented in Section 7.4.1.

Section 7.4.2 presents the implementation of the provisioning and lifecycle of

the VMs. Last, the limitations of vbetsy are outlined in Section 7.4.3.

7.4.1. Engine Provisioning

Provi-

sioning

To create the required VMs for each engine under test, it is necessary to create

a) a VM image, b) install the engine under test as well as the PEAL-WS, and c)

export the image as a portable VM. To achieve this, methods from the DevOps

movement are adopted (i.e.,the creation of the VMs including the engines is

converted to code).

VM Cre-

ation

First, a minimal Linux machine, the base image, is installed within a VM as

the foundation for all subsequent steps. It is granted 4 GB RAM and a single

core processor96. Moreover, the audio capabilities are deactivated and the

network is configured using a NAT adapter. This base image97 is built upon an

Ubuntu Server 12.04.2 LTS. It requires a user with sudo privileges and an SSH

server.

VM Pro-

visioning

Second, the BPEL engine and the PEAL-WS need to be provisioned on the

base image. Figure 7.3 shows the dependency graph of all BPEL engines (gray

background), the PEAL-WS (black background) and other software products

(white background). Each edge is a depends on relation, e.g., Apache ODE 1.3.6

depends on Tomcat 7.0.26. This dependency graph has been converted to

executable provisioning scripts that can install any node alongside its direct as

well as transitive dependencies. These provisioning scripts are implemented

with sprinkle v0.7.6.2. The DSL of sprinkle allows declaring such a dependency

graph straightforward in its executable constructs. Each node in Figure 7.3 is

95 https://github.com/uniba-dsg/betsy/, visited 2017-3-31
96For benchmarking performance, this, of course, would require a different configuration, but

for benchmarking capabilities such as conformance, this suffices.
97Base image is available at https://lspi.wiai.uni-bamberg.de/svn/betsy/ova/basevm.

ova, visited 2017-3-31.
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implemented as a sprinkle package which includes the download, installation,

configuration, and start of the component through a sequence of CLI calls. The

edges between the nodes are directly ported to dependencies between these

sprinkle packages. Based on these packages, so-called sprinkle policies have

been created for each VM. If executed, those policies automatically install both,

the engine and the PEAL-WS. The sprinkle scripts containing all packages and

policies are open source and publicly available98. Next, all VMs are provisioned

by applying each of the six policies on a separate base VM.

Figure 7.3.: Deployment Topology of all BPEL Engines and the PEAL-WS

On-

Demand

Snapshots

Third, the six provisioned VM images have been exported to portable Open

Virtual Appliance (OVA) archives that are publicly available99. During the

execution of vbetsy, these OVA100 archives are downloaded from the given URL,

imported into VirtualBox, and started. However, these host independent and

therefore portable OVA packages cannot contain host dependent snapshots. To

circumvent this problem, the snapshots are created on-demand by vbetsy itself.

This is possible as the BPEL engines and the PEAL-WS are configured to start

automatically during the startup of the VM. Thus, vbetsy downloads the VM,

imports it into VirtualBox, and starts it. When the engine and the PEAL-WS are

up and running, it creates a snapshot which is then reused for any subsequent

tests.

Automa-

tion

To make this process repeatable, it is automated. As the base VM only

has to be created once, this step can be automated by reusing the previously

created base VM. The other two steps are implemented in the form of a

Groovy script101 which can automatically provision a VM for any of the six

BPEL engines and export the image as an OVA archive. For engines that require

manual installation steps, the archive can also be created manually. This allows

integrating a commercial behemoth such as the Oracle Process Manager.

PEAL-WSInstead of the PEAL-WS described in Section 3.4, its predecessor has been

used for vbetsy. Instead of relying on WSDL-based message exchanges, this

98https://github.com/uniba-dsg/betsy-engines, visited 2017-3-31
99https://lspi.wiai.uni-bamberg.de/svn/betsy/ova, visited 2017-3-31

100An OVA package comprises files complying to the OVF [48, line 403].
101https://github.com/uniba-dsg/betsy/tree/master/src/main/groovy/betsy/bpel/

tools/VirtualMachineInstaller.groovy, visited 2017-3-31
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predecessor only supports the deployment of process models and the collection

of the logs over TCP. Moreover, it builds upon Java 7 instead of Java 8. Because

vbetsy only supports BPEL engines which can be tested remotely without PEAL,

those two remote calls suffice.

7.4.2. Execution Model of VMs

VM Ex-

ecution

Model

To harvest the benefits of using VMs in contrast to the bare metal approach of

betsy, it is necessary to look at the lifecycle model of a VM within vbetsy that is

shown in Figure 7.2. Any VM used in vbetsy must only change according to the

model provided in Figure 7.2. To guarantee this, vbetsy ships with an interface

(see Figure 7.4) that corresponds to the state transitions of the described figure.

This interface is implemented by vbetsy on top of VirtualBox to control any

VM of VirtualBox according to the proposed execution model of VMs. The

engine IDs are used to name and identify the VMs. Moreover, all the VMs are

namespaced under the group vbetsy to keep them separated from other VMs

within VirtualBox.

Figure 7.4.: Common Interface for the VM Execution Model

7.4.3. Limitations

Portability The approach works with any correctly created VM image that fulfills the

interface and that is bundled as a portable OVA file. However, the system that

imports and uses this image must be able to fulfill the hardware requirements

for the image. Thus, the portable image has a minimum hardware dependency.

Moreover, the snapshots themselves are not portable and have to be created

per machine. Consequently, upon updating the VM image, any snapshot based

on this VM has to be recreated, causing additional overhead. Alternatively,

a newer snapshot can be created on top of an existing one. This evolution

strategy, however, can only be used on single machines as the snapshots are

system-dependent.

IaaS The approach is a good fit for the cloud and its available IaaS products

because new instances of machines can be easily spawned and discarded.

However, major IaaS vendors (e.g., Amazon with its Amazon EC2) solely

support the creation of disk snapshots but do not offer RAM snapshots102.

102http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.

html, visited 2017-3-31
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Hence, only a part of this approach is directly implementable on such IaaS

systems. Also, this approach does not take security into account, which would

be necessary when leveraging such IaaS offerings.

BPEL onlyThe prototype works only for these six BPEL engines. It has not been ported

to the BPMN engines. This, however, is straightforward as both engines do

implement the uniform PEAL API.

7.5. Evaluation

EvaluationThis section presents the evaluation of the feasibility of the approach and tool

by determining the effects on a) install as well as start time (i.e., the main

objective), and b) test time (i.e., any side effects due to the virtualization

overhead).

Section

Structure

This section is structured as follows. First, the evaluation method is outlined

in Section 7.5.1. The results of the install, start, and stop operations are

provided in Section 7.5.2, followed by the results of the deploy, test, and collect

operations in Section 7.5.3. This section is concluded with the threats to validity

in Section 7.5.4 and a summary in Section 7.5.5.

7.5.1. Method

MethodTo prove that it is possible to reduce both install and start time significantly,

the Aptitude Test (P8) is executed five times for the two variants: vbetsy and

betsy, or in other words, with and without virtualization. This test is executed

on the six BPEL engines detailed in Section 7.4. The machine, on which the

experiment is conducted, has an Intel i7-2600 processor, 16 GB of RAM, and

a Western Digital WD10EALX hard drive. Software-wise, it is equipped with

Windows 7 64 bit, the Java JRE 7u45, soapUI 4.6.2, and VirtualBox 4.2.16

which are required by betsy and vbetsy, respectively. Also, a CI server has been

setup to help orchestrating the execution of the different test runs and gathering

the produced results. The experiment uses the CI server Jenkins103 CI v1.545

along with Git for Windows104 v1.8.5.2 for version control.

7.5.2. Results for Install, Start, and Stop

ResultsThe results of the experiment regarding the engine lifecycle tasks install, start,

and stop are shown in Table 7.1. Each row gives the durations of the three tasks

and their sum for all six engines executed with or without virtualization (virtual

vs. local). These values are given in seconds and are the average of three values

from the five runs because both, the highest and the lowest value are discarded

103http://jenkins-ci.org/, visited 2017-3-31
104http://msysgit.github.io/, visited 2017-3-31
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to reduce inaccuracy of measurement. These values are stable enough for this

evaluation as the relative standard deviation is below 19% for 70 of the 72

values. Although the two other values have a higher relative standard deviation,

they are below one second. Hence, they do not affect the overall results. The

last column contains the difference between both variants in seconds, denoting

the improvements made by the proposed approach. Moreover, the averages,

min as well as max values, and standard deviations per task over all engines

are presented as well.

Table 7.1.: Average Execution Time in Seconds of the Engine Lifecycle Tasks per Engine
without/with Virtualization

betsy vbetsy betsy - vbetsy

Engine in
st

a
ll

st
a
rt

st
o
p

Σ in
st

a
ll

st
a
rt

st
o
p

Σ in
st

a
ll

st
a
rt

st
o
p

Σ

ActiveBPEL 14.12 5.02 0.52 19.7 0.30 1.86 0.58 2.7 13.82 3.16 -0.05 16.9
bpel-g 3.74 9.04 0.47 13.3 0.33 1.72 0.47 2.5 3.42 7.32 0.00 10.7

Ap. ODE 5.67 9.30 0.47 15.4 0.25 1.70 0.23 2.2 5.42 7.61 0.23 13.3
OpenESB 129.11 26.52 7.96 163.6 0.21 1.82 0.46 2.5 128.90 24.70 7.50 161.1
Orchestra 18.06 12.37 0.49 30.9 0.22 1.93 0.23 2.4 17.83 10.44 0.26 28.5

Petals ESB 7.05 19.43 0.48 27.0 0.25 1.82 0.28 2.3 6.81 17.61 0.20 24.6

average 29.63 13.61 1.73 45.0 0.26 1.81 0.37 2.4 29.37 11.80 1.36 42.5
min 3.74 5.02 0.47 13.3 0.21 1.70 0.23 2.2 3.42 3.32 0.24 11.1
max 129.11 26.52 7.96 163.6 0.33 1.93 0.58 2.7 128.90 24.59 7.38 160.9

std. dev. 49.04 7.94 3.05 58.5 0.04 0.09 0.15 0.2

betsy Before using virtualization techniques, betsy relied only on local installation,

startup, and shutdown procedures. The six engines can be put into three groups

according to their total lifecycle time. bpel-g (13.25s), Apache ODE (15.43s),

and ActiveBPEL (19.66) lead the field with at most 20 seconds, followed by

both, Petals ESB (26.96s) and Orchestra (30.91s) with approximately thirty

seconds. OpenESB (163.59s) comes in last as it requires almost three minutes

on the test machine. These numbers reflect the complexity of the runtime

container of the engines, as the ones of the top group, namely Apache ODE,

bpel-g, and ActiveBPEL, run on a lightweight servlet container, whereas the

engine that came in last, the BPEL engine of the OpenESB, is running within

an ESB that is deployed onto a heavy-weight application server. A lightweight

container, however, does not guarantee fast install, start, and stop times as

Orchestra shows, although a BPEL engine within an ESB does not necessarily

lead to long install, start, and stop times, as shown by Petals ESB. What is more,

the major impact factor of the total time varies from engine to engine. For

OpenESB, Orchestra, and ActiveBPEL, the install time is the driving factor. In

contrast, the start time is higher than the install and stop time for the other

three engines. The time to stop an engine can almost be neglected as it is

.5 seconds for all engines, except for OpenESB which requires approximately

eight seconds to shutdown. This is because OpenESB is stopped gracefully via

a shutdown method while the OS processes of the other engines are simply
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killed. In the min, max, and standard deviation values, the wide range of these

engine-dependent durations can be observed. The install time has a range

of approximately 125 seconds, followed by the range of the start task which

accounts to approximately 25 seconds. The stop task has the lowest range of

approximately seven seconds. For the install and the stop task, the standard

deviation is higher than the average, showing that there are large differences

in the base values, although the start task is balanced around 30 seconds.

vbetsyThe picture changes when looking at the numbers measured with vbetsy.

The install time ranges between .21s and .33s, the start time between 1.70s and

1.93s, and the stop time between .23s and .58s. All engines now have almost

the same duration regardless of their previous durations. Instead of having

wide ranges, the durations can be seen as constants. The engine-dependent

durations have been converted to engine-independent values. The highest gain

is achieved for OpenESB which saves 161.10 seconds. The other engines saved

between approximately 10s up to 28s.

7.5.3. Results for Deploy, Test, Collect

betsyNext, the possible side effects of this approach are investigated by looking

at the other engine-related steps of the betsy testing process, namely, at the

deploy, test, and collect step. In Table 7.2, the timings of the test step are

shown using the same columns as in the previous table. Orchestra, OpenESB,

and Apache ODE have the fastest deployment process which takes at most four

seconds. Petals and bpel-g form the group in the middle with 7.05s and 9.52s

whereas ActiveBPEL comes in last with 18.16s. The durations of the test task

do not vary as much as the deploy task, ranging only from .77s to 2.32s. The

collect task is executed fast as it copies files from one folder to another on a

single hard drive.

Table 7.2.: Average execution time in seconds of the engine actions and the test task
per engine before and after using virtualization

betsy vbetsy betsy - vbetsy

Engine d
e
p
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Σ d
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te
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e
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e
p
lo

y
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st

co
ll

e
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Σ

ActiveBPEL 18.16 0.79 0.02 18.97 20.18 0.83 0.19 21.20 -2.03 -0.04 -0.16 -2.23
bpel-g 9.52 0.86 0.02 10.40 9.01 0.93 0.18 10.12 0.50 -0.07 -0.16 0.27

Apache ODE 3.53 1.52 0.05 5.10 4.01 1.92 0.13 6.06 -0.48 -0.39 -0.09 -0.96
OpenESB 4.04 0.84 0.06 4.93 7.97 0.85 0.17 8.99 -3.93 -0.02 -0.11 -4.05
Orchestra 2.53 0.77 0.02 3.33 7.30 0.96 0.20 8.46 -4.76 -0.19 -0.17 -5.13

Petals ESB 7.05 2.32 0.03 9.41 9.66 3.38 0.12 13.16 -2.61 -1.06 -0.08 -3.75

average 7.47 1.18 0.04 8.69 9.69 1.48 0.16 11.33 -2.22 -0.30 -0.13 -2.64
min 2.53 0.77 0.02 3.33 4.01 0.83 0.12 6.06 -4.76 -0.06 -0.09 -2.73
max 18.16 2.32 0.06 18.97 20.18 3.38 0.20 21.20 0.50 -1.06 -0.14 -2.23

std. dev. 5.84 0.63 0.02 5.74 5.51 1.02 0.03 5.36
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vbetsy Investigating the right part of Table 7.2, a clear overhead is visible. All

durations, except for a single value105, have increased. The collect task takes

.13 seconds longer on average and the test task .3 seconds. The largest effect

of the extension of betsy on the duration of these tasks is seen for the deploy

task as deployment takes 2.22 seconds more to complete. For the collect task,

the changes are completely neglectable whereas both the deploy and test task

have increased up to almost five seconds in a single case.

7.5.4. Threats to Validity

There are threats to validity regarding the evaluation.BPEL only First, the evaluation

and the prototype vbetsy only include BPEL engines, leaving BPMN engines at

the side. This, however, is not an issue. Because of PEAL, it is straightforward

to interact with either of them through the same API. The outcome of the

evaluation should not change, and the benefits for the BPEL engines should be

achievable for the BPMN engines, too, because the BPMN engines have similar

install, start, and stop times as their BPEL counterparts.

Different

OS

Second, the evaluation has been conducted on a Windows host and Linux-

based VMs. Because of this, the engines were running on Windows with betsy

and Linux with vbetsy. This could affect the evaluation results and accounts

for the outlier in which case the startup procedure was faster on Windows

than on Linux for bpel-g. The results, however, were so significant that the

differences of speed in file system operations or startup of Java applications

does not matter that much in between Windows and Linux.

Efficiency Third, the execution efficiency has only been evaluated by performing the

Aptitude Test (P8) that is the simplest test. Using more complicated tests would

not have made any difference regarding the engine-specific steps such as provide

engine and disperse engine, only the overhead of the actual test execution could

be a little bit higher if there are more interactions. Nevertheless, the overall

significant benefit should not be influenced by this.

Effective-

ness

With the efficiency of the proposed approach been shown, the question is

whether the effectiveness is retained. The difference between betsy and vbetsy

is whether the calls are made locally through PEAL vs. remotely through

PEAL-WS and directly with the engine vs. through the hypervisor. Because of

code reuse, the same code is executed but initiated at different points in time

(VM provisioning and snapshot creation) and triggered from different points in

space. Hence, although no experiment has been conducted, the argument is

sufficient to state that the effectiveness is retained.

105Investigation showed that bpel-g performs faster on the Ubuntu VM as on the Windows host.
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7.5.5. Discussion

RAM

Usage

As vbetsy, in contrast to betsy, decreases execution time at the expense of

space, this approach requires more RAM and disk space. Although additional

disk space and RAM for using VirtualBox are neglectable, the VMs themselves

introduce a major overhead due to the OS in the VM onto which the engines

are installed. As RAM is more scarce than disk space, RAM may become a

bottleneck, especially when testing multiple engines at the same time.

SSD vs.

HDD

Replacing the HDDs used in the evaluation with SSDs will reduce the dura-

tions for betsy and vbetsy, as both rely heavily on IO throughput. However, it is

unknown whether it increases or decreases the advantages of vbetsy over betsy.

The additional overhead of the OS of the VM is also influencing the latency for

any communication with the engine under test. Thus, the latency for the actual

test step is increased. Because this is inherent to the proposed approach, this

has to be taken as a given.

Good

Bench-

mark

The ePEBWORK with its vbetsy prototype enables more affordable, scalable,

and repeatable benchmarks. More affordable because the costs to run a bench-

mark are reduced time-wise. This makes the benchmark more affordable in

situations in which time to result is important such as CI environments that

build and determine the quality of an engine set up by the engine vendor

to ensure that quality is not degraded while new features are being added.

And more scalable as engines with manual installation steps can be included

as well. Hence, commercial products with complex installation routines can

take part in the benchmark as well. And last, more repeatable because the

level of test isolation is even higher with Virtual Machines (P10) than just

doing Reinstallation (P9) on the local FS. Hence, ePEBWORK enables good

benchmarks.

Table 7.3.: Overall Reduction in Test Case Execution Time

Active BPEL bpel-g Apache ODE OpenESB Orchestra Petals ESB
5.0.2 5.3 1.3.5 2.2 4.9.0 4.0

betsy 38.63s 23.65s 20.53s 168.53s 34.24s 36.36s
vbetsy 23.94s 12.64s 8.23s 11.48s 10.84s 15.50s

∆ in s 14,69s 11,01s 12,30s 157,05s 23,40s 20,86s
∆ in % 38% 47% 60% 93% 68% 57%

SummaryWhen comparing the duration increase of the deploy, test, and collect tasks

with the decrease regarding the install, start, and stop tasks, it is revealed that

the overhead is neglectable. Because vbetsy still saves at least eleven and at

most 157 seconds for executing a single test case compared to betsy. Looking

at the percentages, vbetsy can reduce the test case execution time including the

setup, test execution, and teardown phases dramatically as shown in Table 7.3.

Improvements range between 38% for ActiveBPEL and 93% for OpenESB,

165



7. Efficient Process Engine Benchmark Framework

whereas the other four engines have a reduction of at least 47% and at most

68%. To sum up, the results of the experiment show that it is possible to create

fresh and started instances of such software in a timely fashion independent of

any complex installation or startup procedure using virtualization techniques.

Furthermore, the overall execution time is reduced between 38% and 93%

despite the additional virtualization overhead. Speaking in averages, the time

to result for a single test on a single engine drops from 53.7 seconds down to

13.8 seconds on average, resulting in a saving of 39.9 seconds on each test.

With vbetsy, the evaluation in Section 5.5.2 would take only 4801 minutes

or 80 hours or 3.3 days instead of 23.8 days. This optimization is especially

helpful for continuous integration as the evaluation of a single BPMN engine

can be performed in about an hour and a single BPEL engine within at most

three hours.

7.6. Summary

Conclusion This chapter presented an approach which provides fresh and started instances

of process engines in an effective and efficient manner to support test isolation

and automation. By evaluating the install, startup, and shutdown times of six

BPEL engines with and without the proposed approach, it has been shown that

it is possible to convert the software dependent install, startup, and shutdown

times to constants. Nevertheless, there is an increase in latency due to the

virtualization overhead for executing the actual test. However, this increase is

neglectable as the gain during the setup and teardown phases of the test more

than outweighed the loss in the test execution phase, leading to time savings

ranging from approximately 11s (38%) up to 157s (93%) in total. In summary,

this supports hypothesis H4.5 (“By leveraging virtualization it is possible to

improve the efficiency of a benchmarking framework significantly.”).

Future

Work

Future work comprises four aspects: i) reducing the overhead, ii) creating a

more generic approach, iii) increasing reusability of the provisioning scripts,

and iv) increasing the efficiency through parallelization. Firstly, using VMs

inherently reduces performance due to the additional overhead of two OSs.

In the future, it is planned to reduce this overhead by moving from OS-based

to container-based virtualization allowing to host multiple isolated containers

on top of the host OS. However, Docker only introduced RAM snapshots

as described in Section 2.4.2 at the beginning of 2017. Hence, they are not

included in this work. Secondly, both, the ePEBWORK approach and tool vbetsy

are extensions to PEBWORK and betsy and therefore highly tied to them. To

achieve separation of concerns, it is planned to extract a more generic approach

and tool that solely handles test setup and teardown with VMs. Thirdly, the

provisioning of the six open source BPEL engines is encoded within sprinkle

scripts and not easily reusable. In the future, the reusability will be increased by

converting the sprinkle provisioning scripts to reusable TOSCA [184] artifacts
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and by storing them in public TOSCA type repositories. Fourthly, in addition

to leverage virtualization, one can also leverage parallelization to improve

the efficiency. There is concurrency potential as shown in Figure 5.7. Such

optimizations could work orthogonally to the ones presented in this chapter.
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There are only patterns, patterns

on top of patterns, patterns that

affect other patterns. Patterns

hidden by patterns. Patterns

within patterns.

Chuck Palahniuk

8. Process Engine Benchmarking

Pattern Candidates

Parts of this chapter have been taken from [102].

In this chapter, hypothesis H4.6 (“Patterns are a suitable form to describe the

central elements of process engine benchmarking.”) is supported.

The Process Engine Benchmarking Pattern Candidates (PEBPATT) repres-

ent the collected knowledge of the Process Engine Abstraction Layer (PEAL),

the Process Engine Benchmark Language (PEBL), the Process Engine Bench-

mark Framework (PEBWORK), and the Efficient Process Engine Benchmark

Framework (ePEBWORK) in the form of patterns.

8.1. Motivation

Over the last few years, different process engine benchmarking approaches [16,

62, 95] have been developed. Typically, the authors solved these challenges in

a similar or even the same way. As a result, there are proven solutions available

for the challenges in this domain – a breeding ground for patterns [5, 75].

By effectively converting the solutions to patterns (i.e., identifying patterns),

the kernel of these solutions can be captured in a shareable form so that the

author of the next benchmark can build upon it, using it in his vocabulary

to better communicate with other benchmark authors, or as a guideline for

implementing his own benchmark or benchmarking framework.

Chapter

Structure

The remainder of this chapter is structured as follows. First, an overview

of patterns and their typical form of description is given in Section 8.2. In

Section 8.3, the participants and challenges in process engine benchmarking are

described, for which the pattern candidates in Section 8.4 are solutions to. The

set of identified pattern candidates is discussed and evaluated in Section 8.5.

This chapter concludes with a summary in Section 8.6.

8.2. Patterns

Pattern

History

Almost forty years ago, Alexander [5] captured reoccurring solutions to prob-

lems in different kinds of buildings in the form of patterns. Twenty years later,
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Gamma et al. [75] adopted that form of capturing reoccurring solutions to prob-

lems for the domain of software design via design patterns. With their seminal

book [75], they started a pattern movement that is still going on in the world

of software today. Within, however, the area of process engine benchmarking,

patterns, pattern languages, or pattern catalogs are still missing.

Pattern

Descrip-

tion

Over time, and because of the popularity of identifying all kinds of different

patterns, pattern catalogs, and pattern languages in a plethora of domains,

theories about patterns have emerged. For instance, Kohls [130, 131] digs into

the structure of patterns and compares them to alternative routes on a map.

Others such as Meszaros and Doble [170] have written a guide on how to write

a pattern. They propose that a pattern description must contain a name, a

problem, a context, forces, and a solution. Examples and relations are optional.

In this work, the description that is used for the pattern candidates comprises a

name, a problem, a solution, relations, and an example. That description exceeds

the advice of Meszaros and Doble [170] because it provides examples and

relations to other patterns. However, although the context and the forces are

normally mandatory for the pattern description, they are explicitly excluded

because only pattern candidates, a preliminary form of patterns, are identified.

These candidates have to be converted to full patterns through collaboration

with domain experts in the future.

8.3. Problems in Process Engine Benchmarking

This section reiterates the typical challenges that are faced when designing a

benchmark for process engines or a framework for process engine benchmarks.

These challenges act as drivers for identifying pattern candidates within the

domain of process engine benchmarking.

8.3.1. Big Picture

The big picture of process engine benchmarking as shown in Figure 8.1 com-

prises four main elements: tests, the engines under benchmark, the benchmark-

ing procedure, and the results of the benchmark.

The benchmarking procedure is the central element. It can be seen as an

IO system with both, the tests and the engines as the inputs and the results

as the output. The expected or even desired behavior of the target of the

benchmark (i.e., the engines) is encoded into tests. In other words, the tests

are the specification the engines are benchmarked against. The engines are the

different alternatives that are being made comparable through the benchmark

results.
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Tests Results Benchmarking 

procedure 

Engines 

How to:  

C1: identify the tests?  

C2: create tests correctly? 

How to:  

C3: validate the procedure? 

C4: guarantee test isolation? 

C5: observe the workflow? 

How to:  C6: determine the aptitude? 

 C7: interact with the engines? 

How to:  

C8: validate the results? 

Figure 8.1.: Big Picture of Process Engine Benchmarking

8.3.2. Challenges

Each time one is building and conducting a process engine benchmark, the

same nontrivial problems arise. Such problems are reoccurring challenges and

the perfect starting ground for identifying reoccurring solutions (i.e., pattern).

Figure 8.1 lists the eight most important challenges (C1 to C8).

Tests In benchmarking, the tests should represent realistic usage scenarios so that

the results do have value for real world decisions [7, 47, 238]. Designing such

tests requires considerable effort because they should not contain any issues

which may return wrong and misleading results. This is crucial because even

seemingly minor issues may result in flawed data. Consequently, the two major

issues are how to identify the tests (C1) and create tests correctly (C2).

Procedure Analogous to the tests, it is critical as well that the benchmarking procedure

is not compromised through issues which cause flawed results. The procedure

itself needs to make use of and apply quality assurance methods, i.e., validate

the procedure (C3). Also, it should guarantee test isolation (C4) so that the

results do not depend on the execution order of the tests and that side effects

of a test cannot impact the result of any other test. This includes that the

tests should be independent of the execution mode being it sequential or

parallel as well. Especially for large test sets, parallel execution of the tests is

recommended to obtain the results timely. Last, it is important that the progress

of the benchmark as a whole and that of single tests can be monitored (i.e.,

observe the process (C5)). This is required a) for continuation purposes so that,

for instance, the crash of an engine during a single test should not tamper the

results of other engines and the benchmark can be proceeded nonetheless, and

b) for evaluation purposes so that the results can be computed accordingly.

Engine The challenges targeting the engines are how to determine the aptitude (C6)

of an engine and how to interact with the engines (C7). For an engine to

participate in a benchmark, it has to proof its aptitude. Hence, the entry

level for participating in the benchmark has to be defined at that point. If

an engine is suitable, it has to be interacted with during the benchmark, and
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its execution has to be controlled and monitored, e.g., through exchanging

messages, executing API calls, or evaluating logs. Especially for determining

the test results, it is of paramount importance to check the outcome of any test

assertion and to detect any failures that might have occurred. In other words,

the state of the engine has to be observable.

ResultsLast, it is important to validate the results (C8) as well so that the decision-

relevant information stemming from the raw data produced by the bench-

marking do not suffer from any flaws. Such flaws can happen at the time of

converting or aggregating the raw data to more decision-relevant information,

or they might even reveal issues within the tests, engines, or the benchmarking

procedure itself.

8.4. Process Engine Benchmarking Pattern

Candidates Catalog

This section contains the description of 21 Process Engine Benchmarking Pattern

Candidates. These pattern candidates are solutions to the challenges from the

previous section and grouped according to the four elements of a benchmark

from Section 8.3.1 into test, benchmarking procedure, engine, and results pat-

tern candidates. The test pattern candidates in Section 8.4.1 comprise solutions

to identify and assure the quality of test cases for a benchmark, whereas the

benchmarking procedure pattern candidates are concerned about automatically

conducting the benchmark in Section 8.4.2. Ways to incorporate the different

engines into the benchmark are described with the engine pattern candidates

in Section 8.4.3, and the results pattern candidates comprise solutions for the

result data validation in Section 8.4.4.

Pattern

Candidate

Descrip-

tion

Each pattern candidate is identified through its name. The challenges (see

Section 8.3.2) it provides a solution to are listed as the problems the pattern

candidates target. Moreover, the solution contains the steps to solve the problem

in an abstract form. Concrete examples of the abstract solution are given as

well. Last, when appropriate, the relations between patterns are described, too.

Pattern

Quality

The extracted pattern candidates have been peer reviewed by researchers

from two other universities in Europe (i.e., Karlstadt University and University

of Stuttgart) and as part of the publication of the conference paper [102]. It is

planned for future work to evaluate the pattern candidates more thoroughly by

discussing them with additional domain experts and through the publication at

pattern conferences such as EuroPLoP [103].

8.4.1. Tests Pattern

To identify the tests (C1), one can determine the constructs of a language

and apply Configuration Permutation (P1) or use Reoccurring Constructs (P2)
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to identify the most used constructs and their configuration. To create tests

correctly (C2), one can derive tests using Stub Extension (P3) or Mutated Existing

Test (P4), which both ensure a certain degree of correctness. Applying Open

Sourcing (P5), Expert Review (P6), and Automatic Static Analysis (P7) strengthen

the degree of correctness further. What is more, the latter patterns can be

applied independently of each other.

Pattern Configuration Permutation (P1)

Problem Identify the tests (C1)

Solution Identify a construct. Permutate all configurations of a construct. Each permuta-

tion is a test.

Example This pattern was applied in betsy for BPEL and BPMN standard conformance

tests. For instance, in BPMN, there is the construct exclusive gateway which can

be configured in three ways resulting in three tests: (i) standard with all outgoing

sequence flows having conditions, (ii) exclusive gateway with a sequence flow

without a condition and marked as default, and (iii) one as a mixed gateway with

both branching and merging capabilities.

Pattern Reoccurring Constructs (P2)

Problem Identify the tests (C1)

Solution Gather a large corpus of processes. Identify the reoccurring elements in these

processes. Tests are created based on the most important (i.e., reoccurring) elements.

Example This pattern was applied in betsy for BPEL and BPMN expressiveness tests as

the test suite is based on the workflow control-flow patterns [257, 286] which are

created from analyzing multiple WfMSs. In BenchFlow, a large corpus of processes

is used to construct workloads for performance tests [234, 237].

Pattern Stub Extension (P3)

Problem Create tests correctly (C2)

Solution Use a process stub (i.e., a minimal process which is extended for all tests) so

that the extension solely contains the feature under test. The stub itself provides

extension points, where the feature under test can be put. The rest is minimal

overhead required to observe the feature under test. This way, all tests follow the

same structure, and when looking at the difference between the test and the stub,

the feature under test can be easily identified.

Example This pattern was applied in betsy for both, BPEL and BPMN.

Relations If the stub is fully functional, it can act as an Aptitude Test (P8).
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Pattern Mutated Existing Test (P4)

Problem Create tests correctly (C2)

Solution Instead of starting from scratch, use correct tests and modify them by introducing

a mutation [98]. This is especially useful for creating tests for faulty conditions: An

existing test is mutated by injecting a single isolated fault, to see if a feature works

correctly even in the face of errors [99].

Example The pattern was applied in betsy for creating erroneous processes that have to

rejected upon deployment for both BPEL and BPMN. Also, it was applied to create a

test suite for determining robustness [98].

Relations Similar to Stub Extension (P3) as the process model of another test is the basis

for a new process test.

Pattern Open Sourcing (P5)

Problem Create tests correctly (C2), validate the procedure (C3), and validate the res-

ults (C8)

Solution Open source tests, procedure, and results, and put it under the scrutiny of the

public. Public availability can help to find errors the original authors did not find.

Also, this can help to build a community for the benchmark.

Example Both betsy and BenchFlow are open source. In the case of betsy, this has lead to

contributions by experts and also engine vendors.

Relations May result in Expert Review (P6).

Pattern Expert Review (P6)

Problem Create tests correctly (C2), validate the procedure (C3), and validate the res-

ults (C8)

Solution Ask experts to review the benchmark artifacts. Experts can be domain experts,

engine developers, or benchmark engineers.

Example For betsy, the maintainers of Apache ODE and bpel-g helped to improve the test

cases through their feedback, looking at the results and checking why the behavior

of their engine was different from what they expected.

Pattern Automatic Static Analysis (P7)

Problem Create tests correctly (C2), validate the procedure (C3), and validate the res-

ults (C8)

Solution Create static analysis checks which detect mistakes automatically. As most

process languages are XML-based, an XML well-formedness check as well as schema

validation with the XSD of the process language is straightforward. If possible, apply

additional static analysis based on process language rules and best practices.

Example The pattern was applied in betsy by checking the correctness of processes re-

garding naming conventions, XML well-formedness, XSD validity regarding the

process language schema, and even more sophisticated static analysis rules with

BPELlint [101] and its equivalent for BPMN called BPMNspector [86].
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8.4.2. Benchmarking Procedure Pattern

To validate the procedure (C3), one can apply Open Sourcing (P5), Expert Re-

view (P6), and Aptitude Test (P8). Reinstallation (P9), Virtual Machines (P10),

and Containers (P11) can be applied to guarantee test isolation (C4). To ob-

serve the process (C5), Message Evaluation (P12), Partner-based Message Eval-

uation (P13), Execution Trace Evaluation (P14), Engine API Evaluation (P15),

Concurrency Detection (P16), and Detailed Logs (P17) are applicable.

Pattern Aptitude Test (P8)

Problem Validate the procedure (C3) and determine the aptitude (C6)

Solution Define an aptitude test as a minimal requirement for participation in the bench-

mark. An engine must pass this test. The test should check the minimal amount of

features required.

Example In betsy, there are two aptitude tests, one for BPEL named Sequence, containing

a receive-assign-reply triplet (see Message Evaluation (P12)), and one for BPMN,

named SequenceFlow, containing a start and end event, with corresponding script

tasks to allow observing the events (see Execution Trace Evaluation (P14)), connec-

ted through sequence flows.

Relations Can be used as a stub for Stub Extension (P3).

Pattern Reinstallation (P9)

Problem Guarantee test isolation (C4)

Solution Install and start the engine anew for each test case, providing a fresh engine

instance. Although a reinstallation can be time-consuming, it ensures that one test

case cannot interfere with another one.

Example In betsy, this is the default mode.

Relations Virtual Machines (P10) and Containers (P11) are alternatives.

Pattern Virtual Machines (P10)

Problem Guarantee test isolation (C4)

Solution Create a Virtual Machine (VM) with a snapshot of a running engine upfront. This

may require some time and effort once per engine. With, however, a snapshot in

place, each test can be executed in isolation. The snapshot can easily be restored

before each test and be discarded afterward, resulting in test isolation with a low

temporal overhead. However, for VMs, there is typically a substantial RAM and HDD

overhead.

Example Since 2014, betsy also supports this pattern [100].

Relations Reinstallation (P9) and Containers (P11) are alternatives.
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Pattern Containers (P11)

Problem Guarantee test isolation (C4)

Solution Create an image with the engine already installed and configured. Create a new

container for each test and discard the container afterward, effectively ensuring

test isolation. This is similar to Virtual Machines (P10), but with considerably less

overhead. At this point in time, however, support for RAM snapshots of containers is

not existing, but HDD snapshots are available.

Example This pattern is used in both, betsy [84] and BenchFlow [62].

Relations Reinstallation (P9) and Virtual Machines (P10) are alternatives.

Pattern Message Evaluation (P12)

Problem Observe the process (C5)

Solution Send messages to the process and compare responses with an expected response.

Use small interfaces with only few methods to keep different message types and

possibilities low.

Example Betsy communicates with BPEL instances only through four different SOAP

messages and observes the behavior by checking the responses. Under the hood,

betsy uses soapUI.

Relations Partner-based Message Evaluation (P13) builds upon this pattern. Execution

Trace Evaluation (P14) and Engine API Evaluation (P15) are alternatives.

Pattern Partner-based Message Evaluation (P13)

Problem Observe the process (C5)

Solution The process under test sends messages to an external service which the bench-

marking system controls. The calling pattern of the service can be checked and

compared to the expected interaction.

Example In betsy, this pattern is used to mock any partner service a BPEL process is

required to communicate with. Moreover, concurrency detection was implemented

with a mocked partner service as well.

Relations This pattern is an extension of Message Evaluation (P12). Alternatives are

Execution Trace Evaluation (P14) and Engine API Evaluation (P15). Concurrency

Detection (P16) can be implemented using this pattern.

Pattern Execution Trace Evaluation (P14)

Problem Observe the process (C5)

Solution The process writes log traces to the disk. The benchmarking framework then

reads the log traces and compares them with expected ones. Use a small set of

different standardized log traces. One can even inspect Detailed Logs (P17) and

convert log statements to log traces.

Example This pattern is used in process mining, but also in betsy for observing the

behavior of BPMN processes, as Message Evaluation (P12) does not work because of

the lacking support for sending and receiving messages. In script tasks, log traces

are written to a log. Moreover, engine-specific logs are checked, and additional log

traces are created based on them. This is useful for conditions like the detection of

whether a process did exit correctly.

Relations Concurrency Detection (P16), Message Evaluation (P12), Partner-based Message

Evaluation (P13), Engine API Evaluation (P15), and Detailed Logs (P17)
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Pattern Engine API Evaluation (P15)

Problem Observe the process (C5)

Solution Use the API provided by the engine to query the deployment state of the process

model and the current state as well as the history of specific process instances. As

this is engine-dependent, it profits from applying Engine Layer Abstraction (P18) as

well.

Example In both betsy and BenchFlow, the BPMN engines are queried about their deploy-

ment and final states. In BenchFlow, the correctness of the process instances are

solely determined via the API of the engine.

Relations Alternative to Partner-based Message Evaluation (P13), Message Evaluation (P12),

and Execution Trace Evaluation (P14), but works fine together with Engine Layer

Abstraction (P18).

Pattern Concurrency Detection (P16)

Problem Observe the process (C5)

Solution Identify the parallel branches in the process under test. Upon entering and

exiting each branch, a timestamp has to be stored alongside a branch ID at runtime.

If the enter-exit pairs of parallel branches overlap, concurrency (being either real

concurrency or at least nondeterministic interleaving) has been detected. The

concurrency traces can either be tracked through an an external service or a log.

Example Betsy applies this pattern relying on Partner-based Message Evaluation (P13) for

BPEL and Execution Trace Evaluation (P14) with a separate concurrency detection

log for BPMN.

Relations Can be used either with Partner-based Message Evaluation (P13) or Execution

Trace Evaluation (P14).

Pattern Detailed Logs (P17)

Problem Observe the process (C5)

Solution Configure the engine to use verbose logging. Otherwise, it might not be possible

to observe everything that is important regarding the state of a process.

Example In betsy, detailed logs are enabled for several engines by replacing the log

configuration file with a more verbose one.

Relations Execution Trace Evaluation (P14) & Concurrency Detection (P16).

8.4.3. Engine Pattern

To determine the aptitude (C6), one can apply the Aptitude Test (P8). Engine

Layer Abstraction (P18), Failable Timed Action (P19), Timeout Calibration (P20),

and Detailed Logs (P17) can be used to interact with the engines (C7).
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Pattern Engine Layer Abstraction (P18)

Problem Interact with the engines (C7)

Solution Create an abstract layer which a) converts engine-independent artifacts to engine-

dependent ones and vice versa, and b) provides uniform methods to interact with

each engine. This handles converting engine-specific logs to engine-independent log

traces, installation, deployment, starting, and other engine-specific assertions such

as how to behave after an abortion of a process.

Example The Uniform BPEL Management Layer (UBML) [97] has been extracted from

betsy. UBML is an engine-independent layer to (un)install, start, and stop the engine

as well as to deploy processes and collect logs.

Relations Can rely upon the three different pattern candidates Failable Timed Action (P19),

Timeout Calibration (P20), & Detailed Logs (P17). Eases Reinstallation (P9).

Pattern Failable Timed Action (P19)

Problem Interact with the engines (C7)

Solution The test system executes a specified action. Then it waits for a specific period

during which success and failure conditions are checked every X milliseconds. The

action fails if time is exceeded or if failure condition is met. It succeeds if success

condition is met within the specific period.

Example As most engines do not support a synchronous API, betsy needs to rely on

Failable Timed Action (P19). The act of deploying a process often involves copying

the artifact to a specific location on the File System, after which the engine deploys

it automatically, and then evaluating success through log inspection (see Detailed

Logs (P17)).

Relations May require Detailed Logs (P17), should be used with Timeout Calibration (P20).

Pattern Timeout Calibration (P20)

Problem Interact with the engines (C7) and validate the results (C8)

Solution Before an actual machine is used for benchmarking, calibrate the timeouts that

are required in the tests itself, in a Failable Timed Action (P19), or for Reinstalla-

tion (P9). The calibration of timeouts in the tests is necessary, in case a test produces

nondeterministic results depending on different timeout settings.

Example Betsy implements a mechanism using the Aptitude Test (P8) to calibrate typical

timeout values with a security range.

Relations Ensures that the timeouts in Reinstallation (P9) and Failable Timed Action (P19)

are suitable.

8.4.4. Results Pattern

To validate the results (C8), one can apply Open Sourcing (P5), Expert Re-

view (P6), Aptitude Test (P8), Timeout Calibration (P20), and At Least One

Success (P21).
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Pattern At Least One Success (P21)

Problem Validate the results (C8) and create tests correctly (C2)

Solution Compare the benchmarking results of one test between engines. If the test does

not succeed on at least one engine, it is necessary to investigate the test itself, since

the test or the testing procedure might be broken.

Example In betsy, this pattern was applied multiple times to detect issues in the tests, the

procedure and the interaction with engines.

8.5. Discussion

The discussion about the pattern candidates is subdivided into three parts.

First, the relationship between the pattern candidates and the challenges is put

under scrutiny, answering the question which pattern candidate is a solution

to a single challenge and which pattern candidate can be used as a solution

to multiple challenges. The more (less) challenges a pattern candidate can be

applied to, the more general (specific) it is. Second, the relationship between

the pattern candidates themselves is evaluated, answering the question which

pattern candidates are the basic building blocks of the pattern candidates

language, and which are composite pattern candidates. The more a pattern

candidate is used or required by other patterns, the more important it is for this

pattern candidate catalog. Third and last, the different challenges and their

groups are put under scrutiny regarding how well each pattern candidate fits

into these groups or whether the pattern candidates are suitable for the whole

domain, and not for a subdomain only.

General

vs. Spe-

cific

There are four independent graphs in Figure 8.2. Three of them contain

only a single challenge with multiple pattern candidates, whereas the other

one contains multiple challenges with multiple pattern candidates. The more

challenges a pattern candidate is the solution to, the darker the gray filling.

Three pattern candidates, namely, Automatic Static Analysis (P7), Expert Re-

view (P6), and Open Sourcing (P5), are solutions to the same three challenges,

namely, create tests correctly (C2), validate the procedure (C3), and validate

the results (C8). This makes sense as the three challenges are about valida-

tion or ensuring that no validation is required, which is independent of the

target of the validation. In this pattern candidates catalog, these three pattern

candidates are the most generic ones and are not that related to the domain

of process engine benchmarking. Nevertheless, they have been kept in the

pattern candidates catalog as they were paramount to this work in practice.

Furthermore, there are another three pattern candidates, namely, At Least One

Success (P21), Aptitude Test (P8), and Timeout Calibration (P20) which are

solutions to two challenges each. Each of them has a primary challenge it

relates to, and a secondary one where it can help. For instance, the Aptitude

Test (P8) primarily helps to determine the aptitude (C6), but it can be used to

validate the procedure (C3) as well. The procedure is valid to some degree if the
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Figure 8.2.: Relationship Between Pattern Candidate and Challenge

Aptitude Test (P8) can be conducted via the full test procedure successfully. All

remaining pattern candidates are solutions to a single challenge and considered

to be specific to the process engine benchmarking domain. To sum up, from

the 21 pattern candidates, 18 can be considered specific to the process engine

benchmarking domain, although three of them are more generic but applicable

nevertheless.

Basic vs.

Composite

The 21 pattern candidates are related. Their relationships can be classified

into the following four groups: alternatives, requirements, facilitators, and im-

plementations106. In Figure 8.3, these relationships are depicted. Each pattern

candidate is represented by an ellipse and each relationship by a directed edge.

The only exception is that of the alternatives, as they are modeled through

a rectangle in which every pattern candidate is an alternative for each other.

106An implements with relationship is a sign of having different levels of abstraction. Only
Concurrency Detection (P16) is a candidate for a higher level pattern. Hence, the different
layers of abstraction is neglected in the discussion, and the focus is solely put on the
composition characteristics.
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Figure 8.3.: Relationships Between Pattern Candidates

This has been done to reduce the amount of overlapping edges, and make the

representation of the relationships between the pattern candidates easier to

comprehend. Also, the more pattern candidates one pattern candidate is relied

upon, the darker is the gray the node is filled with. Two pattern candidates,

namely, Automatic Static Analysis (P7) and At Least One Success (P21), are

singled out as they do not have a relationship with any other pattern candidates.

The other 19 pattern candidates, however, form a language of pattern candi-

dates. Three groups of pattern candidates represent one particular problem

for which these pattern candidates are alternative solutions to. Normally, there

is only a single pattern candidate for a specific problem. The most important

pattern candidates are Aptitude Test (P8), Detailed Logs (P17), Timeout Calib-

ration (P20), Failable Timed Action (P19), and Engine Layer Abstraction (P18),

as they are directly and transitively related to seven, six, four, three, and two

other pattern candidates, respectively, not taking into account alternative rela-

tionships. Together, they enable six other pattern candidates, summing up to

eleven pattern candidates which are more than the half of the pattern candidate

catalog. Taking the alternative relationships into account, the largest connected

pattern candidates graph comprises 15 pattern candidates.

Challenges

and Sub-

domains

The challenges are structured into subdomains of the process engine bench-

marking domain. When looking at both, Figure 8.2 and Figure 8.3, it becomes

clear that only a few pattern candidates can be attached to a single subdomain.

The three challenges identify the tests (C1), guarantee test isolation (C4), and

observe the process (C5) first seem to group disjunct patterns, but when tak-
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ing the relationships between the patterns into account, they are becoming

related as well. Hence, the pattern candidates cannot be split into separate sets

dependent on the challenge subdomains.

8.6. Summary

This chapter reiterated the four process benchmarking aspects (i.e., tests, bench-

marking procedure, process engines, and benchmarking results) with their

seven major challenges. The typical solutions used throughout this work have

been condensed into 21 Process Engine Benchmarking Pattern Candidates.

They cover the kernel of this work in an easy to reuse and shareable format.

Together, they form a pattern language. Hence, this supports hypothesis H4.6

(“Patterns are a suitable form to describe the central elements of process engine

benchmarking.”).

Future

Work

In the future, it is planned to refine, revise and extend these 21 pattern can-

didates with domain experts. The goal is a pattern language which establishes

itself as a common vocabulary in the domain of process engine benchmarking.

Furthermore, it is planned to evaluate whether these pattern candidates of

the process engine benchmarking domain can be generalized to the whole

benchmarking domain, and therefore increasing their impact.
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The best way to predict the future

is to create it.

Peter Drucker

9. Conclusion and Outlook

StructureThis work targets the issue of providing information about the quality of process

engines so that those can be compared within selection decisions because

the available information is not sufficient for such tasks. To solve this, an

automated benchmarking framework is proposed that can reveal such objective

and ascertained information. In this third and last part, a summary of the

contributions is presented first in Section 9.1, followed by a reiteration of the

competing approaches to position the contributions among its competitors

in Section 9.2. Last, the most critical limitations are stated along with open

problems in this field of research in Section 9.3.

9.1. Summary of Contributions

Ten IT

Artifacts

Ten IT artifacts have been designed and evaluated using the design science

methodology by Hevner et al. [108] in the effort to support hypothesis H4

(“With automated benchmarking, it is possible to retrieve objective and comparable

information on the quality characteristics of widely different process engines

reproducibly and efficiently.”). Those artifacts and the way they have been

evaluated are summarized in the following.

PEALProcess Engine Abstraction Layer (PEAL) and PEAL Prototype: PEAL

is a uniform API to interact with varying process engines consistently. The

API has been evaluated by walking through the scenario of enabling and

disabling the execution of a process model which is required for process engine

benchmarking. The results showed that the methods are sufficient to cover

those scenarios. Also, PEAL has been evaluated through a prototype that

implements the mappings to three BPMN and seven BPEL process engines in

various versions and configurations. All of those process engines fulfilled the

previously mentioned scenario during testing.

PEBLProcess Engine Benchmark Language (PEBL) PEBL is a DSL for expressing

benchmarks and their results. It includes a representation of those benchmarks

in XML and JSON. The language has been evaluated by checking how well

eight benchmarks for two different process languages (i.e., BPEL and BPMN)

and four different quality characteristics (i.e., functional suitability, usability,

performance efficiency, and resilience) can be expressed. Results showed that

the expressiveness fits and the generic script-based extension points are seldom

required.
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PEBWORK Process Engine Benchmark Framework (PEBWORK) and the correspond-

ing prototype BPEL/BPMN Engine Test System (betsy) PEBWORK is a frame-

work for conducting benchmarks and producing high-quality results. It includes

a benchmark procedure comprising the required activities for a benchmark

execution. PEBWORK builds upon PEAL and PEBL. It is evaluated by checking

how the framework with its benchmark DSL and uniform engine API helps for

designing and executing good benchmarks. Results show that multiple of the

criteria for good benchmarks are automatically guaranteed upon using that

framework for benchmarking. On top, the framework is implemented in betsy,

which in turn is evaluated by conducting seven different kinds of benchmarks.

It has been shown that it is feasible to automate PEBWORK and that the results

are of the expected quality.

PEBDASH Process Engine Benchmarking Interactive Dashboard (PEBDASH) The

PEBDASH is an interactive dashboard that presents the benchmark results so

that the user can find the relevant information quickly. It is driven by eleven

requirements in the form of user stories that are collected iteratively by domain

experts in a small study. In the evaluation, it is shown that those requirements

are met in the implementation of the dashboard.

PEBWORK Efficient Process Engine Benchmark Framework (ePEBWORK) and the

prototype virtualization-enabled betsy (vbetsy) ePEBWORK is a more effi-

cient version of PEBWORK. It builds upon the concept of restoring snapshots of

VMs to provide fresh instances of process engines in constant time independent

on the normal installation and startup durations. The evaluation is performed

by comparing the time to result of betsy with that of vbetsy. Results showed

that vbetsy is up to 94% faster than betsy for a single test execution.

PEBPATT Process Engine Benchmarking Pattern Candidates (PEBPATT) PEBPATT

comprise 21 pattern candidates that are grouped according to four challenges

in the domain of process engine benchmarking. The pattern candidates have

been evaluated by peer-review of experts from three different universities and

by analyzing their relationship with each other and with their challenges. The

analysis showed that the pattern candidates form a consistent preliminary

pattern language.

Bench-

marks

Benchmarks Out of the eight benchmarks with which PEBL has been evalu-

ated, seven are performed with betsy, and six are contributions of their own

as part of this work. Those six are benchmarks for evaluating the functional

suitability, resilience, and usability of BPEL engines and the functional suitabil-

ity of BPMN engines. They are evaluated by peer-review, execution, and result

analysis. It has been shown that the benchmarks provide useful insights into

the quality characteristics of the evaluated process engines. A summary of their

results is found in Section 5.5.2.

Summary In summary, it has been shown that it is possible to retrieve and present

information about the quality characteristics of widely different process en-

gines reproducibly through PEAL, PEBL, PEBWORK, and PEBDASH effectively.
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Table 9.1.: Summary of Theoretical Evaluation according to the Good Benchmark
Criteria

Criteria PEAL PEBL PEBWORK ePEBWORK PEBDASH Σ

Affordable + + + + +

Relevant
Portable + + + +

Accessible + + + +

Clear + +

Solvable
Scalable + + +

Repeatable + + + + +

Verifiable + + + + +

Through ePEBWORK, that can even be done efficiently. As shown in Table 9.1,

those contributions enable the better fulfillment of seven out of the nine criteria

for a good benchmark. That knowledge about process engine benchmarking

is captured for the process engine benchmarking community in the form of

PEBPATT. Hence, hypothesis H4 is supported, which concludes this work.

9.2. Competing Approaches

Competi-

tion

In the previous chapters, related and competing work corresponding to the

concepts within those chapters have already been discussed. In this section,

the comprehensive and holistic approaches that compete with this work are

described. The three most relevant holistic competing approaches to this work

are, in decreasing order of competitiveness, BenchFlow [61, 62, 195, 232, 234,

236, 237], the approach by Delgado et al. [45], and BPELUnit [161, 168]

as the representative of the set of highly similar WS testing approaches. In

the following, these three competing approaches are detailed followed by

a summary of related approaches which have already been detailed in the

previous chapters.

BenchFlowThe aim of the project BenchFlow107 is similar to this work as BenchFlow aims

to benchmark the performance of process engines implementing BPMN [61,

195, 232, 234–236]. Its primary goal is to reveal performance bottlenecks.

Hence, in the project BenchFlow only the performance of process engines sup-

porting BPMN are evaluated using a benchmark method [62], a standardized

workload [233, 235] that represents typical real world scenarios, and a bench-

marking framework [61, 62]. Its benchmark method describes the interaction

with vendors about publishing the results, which is not covered by this work.

Nevertheless, this work could benefit from such a benchmark method when

107See http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php and
http://design.inf.usi.ch/research/projects/benchflow, visited 2017-3-31
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aiming to extend PEBDASH with quality characteristics of proprietary process

engines as well, as it may help to get vendor approval more easily. Skouradaki

et al. [235] propose to design workloads by detecting reoccurring structures

within real-life BPMN process models. Designing a workload is specific to

performance benchmarking and not necessary for the other quality character-

istics, and therefore this work does not cover that except that workloads can be

specified using extension attributes in PEBL. As part of the framework evalu-

ation [237], workloads are also designed using the workflow patterns [257].

The focus, however, has been, of course, on how well the engines execute those

workflow patterns and not on how many of those patterns are supported. But

to design such a workload, the results of this work would help. For instance,

knowing which language constructs are supported by all BPMN engines de-

termines the set of language constructs with which a portable workload can

be constructed. The aspect that shares the most with this work is the Bench-

Flow benchmarking framework. It also uses abstraction layers to communicate

uniformly with the engines, serializes the benchmarks in its own DSL from

which the actual test bed is generated (i.e., a model-driven approach), and is

able to calculate Key Performance Indicators (KPIs) (i.e., aggregated metrics)

from the gathered test results with their atomic measurements. The abstraction

layer is categorized into core APIs that correspond to the process model and

process instance services of PEAL and non-core ones comprising tasks such as

creating users, claiming tasks, or issuing events which are not available in PEAL.

Moreover, they use a uniform log representation of the engine-specific logs to

extract performance data, similar to the engine-specific log trace extractions

in PEBWORK. As shown in Section 4.5.3.4, the benchmark DSL in this work

can represent the benchmarks and results defined in the BenchFlow DSL. A

BenchFlow-agnostic DSL [236] of performance benchmarking of BPMS in gen-

eral is available, too, and can be seen as a superset of the BenchFlow DSL. The

framework itself builds upon the distributed performance testing framework

Faban and makes use of Docker to ensure a frozen infrastructure. Hence, it

provides a setup that ensures reproducibility, and therefore enables performing

good benchmarks [111, 229]. Instead of building upon containers, ePEBWORK

builds upon VMs to quickly restore previously created snapshots for quick test

bed creation. Although PEBL can express performance benchmarks, PEBWORK

can only execute them in theory. To sump up, this work evaluates both BPEL

and BPMN-based process engines by a variety of different quality characteristics

in contrast to BenchFlow that focuses only on performance benchmarking of

BPMN engines. Hence, while this work is more generic than BenchFlow, they

complement each other. This work can build upon the performance benchmark

execution prototype of BenchFlow as well as the workload creation methods.

Delgado

et al.

Delgado et al. [45] propose a list of 94 relevant key characteristics (79

technical and 15 nontechnical extracted from a variety of reports and RfI)

to evaluate process engines and a method to systematically evaluate BPMS
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through test cases for their key characteristics. Their method and list of key char-

acteristics is evaluated in a case study covering 19 open source and proprietary

BPMS supporting BPMN, BPEL, or XPDL. This sounds similar to this approach

at first, but looking more closely, there is a variety of huge differences which

are detailed subsequently. First, Delgado et al. [45] focus on BPMS and take

both inherent and assigned quality attributes (e.g., workflow pattern support

but also price) into account. This is in contrast to this work which focuses solely

on inherent quality attributes of the heart of BPMS, namely, the process engine.

Moreover, in this work, also nonfunctional characteristics (e.g., performance

and usability) are evaluated whereas Delgado et al. do not cover those. Second,

in their approach, the key characteristics (i.e., evaluation criteria) have to be

weighed with trivalent priorities (mandatory, medium priority, low priority)

and the support for those characteristics is measured with a trivalent scale

(total, partial, or no support) which can be further specified according to a level

of compliance (native, particular, and integration) specifying any additional

effort required to achieve the specified support. It is, however, unclear how

these three scores influence the final score of each BPMS as no formula is

given. In this work, the information relevant for such a decision is provided,

and the decision maker can resort to any method he deems fit (e.g., AHP).

In other words, Delgado et al. [45] focus on business effectiveness and this

work focuses on technical effectiveness instead (see Section 1.3). Moreover,

it is not proven that their method of guiding the selection decision is superior

in comparison to other thoroughly evaluated MCDM methods such as AHP.

Furthermore, the support is given in a trivalent fashion, losing a lot of detail for

the sake of that abstraction. This work supports metrics with arbitrary result

formats and aggregation hierarchies. Third, although they use theoretical and

practical test cases, no representation format or automated execution (i.e., tool

support or execution guidance) for the practical test case is provided. It is,

therefore, assumed that these test cases are represented in an unstructured

way and conducted manually with the possibility of human error. In addition

to the absence of tool support for the practical test case execution, the whole

method lacks tool support whereas this work is fully automated through mul-

tiple tools working hand in hand. This shows that Delgado et al. focus on the

selection decision instead on the reproducibility of the test results. Fourth,

their methodology is specified on a high level in an abstract way without any

guidance how to actually evaluate the characteristics. It lacks a framework to

ensure test automation, test isolation, and automated measures to detect flaws

in the evaluation. In comparison, this work provides test case representation,

arbitrary metrics, and automated benchmarking. In summary, both Delgado

et al. [45] and this work have a different focus but would complement each

other perfectly as they are highly related and interoperable.

BPELUnitAnother competitive approach is BPELUnit [161, 168] which is a xUnit-like

framework to automatically execute tests against BPEL processes. It comprises
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adapters that can handle automated deployment and undeployment or follow-

ing protocols (e.g., through SOAP header fields), an XSD-based test model to

describe the test cases, and a prototype that can automatically execute XML-

based test cases. The deployment adapters are, functionality-wise, a small

subset of PEAL because these adapters do not generate deployment descriptors

or handle more than the actual deployment and undeployment steps. In con-

trast, PEBL does not provide protocol adapters, but fields within the SOAP

header could nevertheless be set on the SOAP message level or through scripts.

The test model has some overlap with PEBL: they represent test cases with

their steps and assertions as well as test partners similarly. BPELUnit even

provides support for asynchronous request/response pairs. But the test model

of BPELUnit does not store engine-specific logs nor does it allow to specify

metric aggregations, making clear that its focus is a single test for a process.

Although PEBL offers the additional possibility to serialize itself in JSON as well,

it lacks tool support for editing any serialization in contrast to BPELUnit with

its Eclipse-based UI. In comparison, this work covers both BPEL and BPMN, the

API for the engines is not only about deployment of process models but also

about the lifecycle of the engine and the management of instances, and last,

does not guarantee full test isolation in between the tests as no fresh engine is

provided, hindering the support for good benchmarks [111]. This approach is

representative of a variety of other testing approaches that build upon the WSDL

standard interfaces, such as SOABench [17], GENESIS2 [123], TASSA [198],

and soapUI. This work builds upon soapUI for performing the actual test step

instead of reinventing the wheel for BPEL, although BPELUnit could have been

chosen as well. For BPMN, there are no similar tools available. BPELUnit builds

upon and is motivated by their stated BPEL testing architecture consisting of

four layers that build upon another: test specification, organization, execution,

and results layer. The differences and similarities can be seen according to

these four layers, too. Both allow a data-centered (through predefined language

constructs) and a logic-centered approach (through scripts) to design the test

specification. And both fully automate the test execution, but while BPELUnit

provides tool support for creating the tests, this work provides methods (C2FM

and F2TM) for that task instead. Regarding the test organization, although

both allow to structure the tests hierarchically, only BPELUnit allows to specify

fixtures for a set of tests. Fixtures are stated implicitly in this work, ensuring

test isolation for instance through providing fresh engine instances for each

test. And last, both use real-life test execution.

Related There are other related approaches which are similar in some way but reside

in other domains. A small selection of those approaches is outlined in the follow-

ing. In the domain of comparing process modeling tools, Geiger and Wirtz [79]

as well as the BPMN Model Interchange Working Group (BPMN MIWG)108

108https://github.com/bpmn-miwg, visited 2017-3-31
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have conducted studies. The BPMN MIWG even provides a dashboard109 of

their results and a white paper110 on their approach. Instead of evaluating

process engines, the process languages can be evaluated as well separately by

Lu and Sadiq [158] and how well they fit for the varying purposes by Thöne

et al. [251]. Instead of checking the conformance of a process engine to the

standard, the conformance of the process model to some specification or with

other process models is researched extensively [25, 76, 80, 258, 262].

9.3. Limitations and Open Problems

The limitations and open problems of this work can be subdivided into five

different aspects. They start from the most straightforward open problems

corresponding to technical effectiveness and execution efficiency over to li-

mitations and open problems of sharing the produced knowledge and results

to, finally, ideas how to use the presented approach in a wider scope such as

microservices and the application of MCDM approaches for selecting BPMSs.

Technical

Effective-

ness

Although the process engine approach has been evaluated with three of the

quality characteristics of the quality product model in the ISO/IEC standard

25010 [113], namely, functional suitability, usability, and resilience, there is still

room for improvement. Only the DSL for expressing benchmarks has been eval-

uated for performance efficiency. In the future, the approach will be evaluated

with more benchmarks that will cover the remaining quality characteristics.

Work from Lenhard [148] will be taken into account for covering portability,

and BenchFlow for covering performance efficiency fully. Furthermore, cloud-

based process engines (e.g., Signavio Workflow111) will be incorporated in the

process engine evaluation in the future as well. Because of the BPaaS model, the

process engine evaluation approach needs to take the peculiarities of evaluating

cloud services (e.g., Kolb and Wirtz [133], Schlauderer and Overhage [227])

additionally into account.

Execution

Efficiency

In this work, the efficiency of the process engine evaluation has been im-

proved by leveraging snapshots of VMs on a single machine sequentially. This

opens up three possibilities for improvement that can be applied orthogonally.

First, the overhead when working with VMs is not neglectable. An alternative is

to use the less resource intensive container [22, 31, 60, 293]. Since the release

of Docker Engine112 1.13 in 2017, it is possible to create RAM snapshots113

for container instances leveraging the experimental feature which is known

as “checkpoint and restore.” Second, the process engine evaluation could be

109http://bpmn-miwg.github.io/bpmn-miwg-tools/, visited 2017-3-31
110http://www.bptrends.com/bpt/wp-content/uploads/06-03-2014-ART-MakingBPM-a-

TrueLinguaFranca-Zbigniew-Misiak-etal.pdf, visited 2017-3-31
111https://www.signavio.com/products/workflow/, visited 2017-3-31
112https://www.docker.com/products/docker-engine, visited 2017-3-31
113https://github.com/docker/docker/blob/master/CHANGELOG.md, visited 2017-3-31
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migrated from a sequential to a parallel evaluation which is expected to provide

additional performance improvements. By building upon containers, multiple

containers could be running on the same machine as long as the resources

suffice. Third, the test execution can be distributed onto a cluster of machines

to reduce the time to results even further. This goes hand in hand with the

support for containers as containers can be easily distributed across a cluster of

machines, e.g., through Docker Swarm114.

Sharing

is Caring

The 21 Process Engine Benchmarking Pattern Candidates (PEBPATT) are

a start towards capturing best practices and solutions to challenges within

the domain of process engine benchmarking. In the future, those pattern

candidates need to be converted to full patterns (i.e., add context and forces)

within a larger (i.e., add more patterns) pattern language by following the

“rule of three” [6] (i.e., check which patterns are used by BenchFlow or other

process engine benchmarking approaches as well). An extended version of

those patterns is currently under review at the EuroPLoP115 conference [103].

Besides sharing the knowledge about the challenges and solutions in process

engine benchmarking, the benchmarks and their results shall be shared as well.

The platform that is based on the presented dashboard is currently limited

to benchmarks and results produced as part of this work. In the future, this

platform shall be the place to go looking for benchmark results about process

engines and to put existing (e.g., by Delgado et al. [45], Bianculli et al. [16],

and Wohed et al. [289]) and new benchmarks and their results. The next step

would be to provide a benchmarking platform which will automatically conduct

any benchmarks and publish the results in the dashboard for any integrated

process engine online. A summary of the lessons learned for practitioners

based on the experience on process engine benchmarking is currently under

review [63, 151] as well.

Micro

Engines

Centralized BPMSs are a bad fit for implementing distributed and modular

architectures based on microservices [252]. The need for executing business

processes, however, still perseveres and the solution to implement the business

processes by hand through an object oriented programming language within

the microservices is far from elegant. A solution can be to use stripped down

process engines (i.e., the heart of BPMSs [278]) as shown by Nikol et al. [176]

which has been supervised by the author of this dissertation. Such engines

enable the execution of business processes within such microservices because

they require fewer resources, start quicker, and are simpler to install. Therefore,

the benefits of a distributed and modular IT architecture can be kept while

executing processes natively. The artifacts of this work can be used to drive

the development (e.g., through Continuous Integration) of such stripped-down

process engines in the future by providing an infrastructure to ensure the quality

of those products.

114https://www.docker.com/products/docker-swarm, visited 2017-3-31
115http://europlop.net/, visited 2017-3-31
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9.3. Limitations and Open Problems

Business

Effective-

ness

In this work, the focus has been on evaluating process engines, which are

the heart of BPMSs. MCDM approaches such as AHP can be used for selecting

process engines, but, typically, they are used for selecting BPMSs. In the

future, this approach will be extended to cover BPMSs, including the modeling

component as well by integrating with research by Geiger and Wirtz [79].

Moreover, the integration of the produced benchmark results with such MCDM

approaches will be covered as well, providing an automated matching with the

revealed quality attributes of the process engines and BPMSs to speed up the

decision processes. This should let the decision makers focus on defining and

prioritizing their requirements, leaving the other aspects such as matching and

revealing the quality attributes to a machine instead.
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Part IV.

Appendix
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A. Engines under Test

In this work, both BPEL and BPMN process engines have been evaluated (i.e.,

put under test). An overview is given in the following for both BPEL and BPMN

in Table A.1.

Table A.1.: Details of Benchmarked BPEL and BPMN Engines

Language Name Version License Developed in Released at Configuration

BPEL Apache ODE 1.3.5 Apache-2.0 Java 2011-02-06
BPEL Apache ODE 1.3.5 Apache-2.0 Java 2011-02-06 in-memory
BPEL Apache ODE 1.3.6 Apache-2.0 Java 2013-10-12
BPEL Apache ODE 1.3.6 Apache-2.0 Java 2013-10-12 in-memory
BPEL OpenESB 2.2 CDDL-1.0 Java 2009-12-01
BPEL OpenESB 2.3 CDDL-1.0 Java 2011-02-01
BPEL OpenESB 2.3.1 CDDL-1.0 Java 2013-10-01
BPEL OpenESB 3.0.1 CDDL-1.0 Java 2015-02-13
BPEL OpenESB 3.0.5 CDDL-1.0 Java 2015-06-24
BPEL Orchestra 4.9 LGPL-2.1+ Java 2012-01-23
BPEL ActiveBPEL 5.0.2 GPL-2.0+ Java 2008-05-09
BPEL petalsesb 4.0 LGPL 2.1+ Java 2012-02-02
BPEL petalsesb 4.1 LGPL 2.1+ Java 2012-07-06
BPEL bpel-g 5.3 GPL-2.0+ Java 2012-04-27
BPEL bpel-g 5.3 GPL-2.0+ Java 2012-04-27 in-memory
BPEL WSO2 2.1.2 Apache-2.0 Java 2011-10-30
BPEL WSO2 3.0.0 Apache-2.0 Java 2012-10-17
BPEL WSO2 3.1.0 Apache-2.0 Java 2013-12-06
BPEL WSO2 3.2.0 Apache-2.0 Java 2014-02-03
BPEL WSO2 3.5.1 Apache-2.0 Java 2016-02-29

Language Name Version License Developed in Released at Configuration

BPMN camunda BPM 7.0.0 Apache-2.0 Java 2013-08-31
BPMN camunda BPM 7.1.0 Apache-2.0 Java 2014-03-31
BPMN camunda BPM 7.2.0 Apache-2.0 Java 2014-11-28
BPMN camunda BPM 7.3.0 Apache-2.0 Java 2015-05-29
BPMN camunda BPM 7.4.0 Apache-2.0 Java 2015-11-30
BPMN camunda BPM 7.5.0 Apache-2.0 Java 2016-05-31
BPMN Activiti 5.15.1 Apache-2.0 Java 2014-04-01
BPMN Activiti 5.16.3 Apache-2.0 Java 2014-09-17
BPMN Activiti 5.17.0 Apache-2.0 Java 2014-12-18
BPMN Activiti 5.18.0 Apache-2.0 Java 2015-07-31
BPMN Activiti 5.19.0 Apache-2.0 Java 2015-11-05
BPMN Activiti 5.20.0 Apache-2.0 Java 2016-04-18
BPMN Activiti 5.21.0 Apache-2.0 Java 2016-06-13
BPMN Activiti 5.22.0 Apache-2.0 Java 2016-11-04
BPMN jBPM 6.0.1 Apache-2.0 Java 2014-05-14
BPMN jBPM 6.1.0 Apache-2.0 Java 2014-08-19
BPMN jBPM 6.2.0 Apache-2.0 Java 2015-03-09
BPMN jBPM 6.3.0 Apache-2.0 Java 2015-09-28
BPMN jBPM 6.4.0 Apache-2.0 Java 2016-04-19
BPMN jBPM 6.5.0 Apache-2.0 Java 2016-10-25
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B. Tags for the BPEL Static

Analysis Rules

Table B.1.: Covered SA Rules Grouped by Tag, taken from [202, p. 5]

tag rules Σ

violation check
node requirements 1, 3, 13, 15, 17, 24, 35, 36, 45, 47, 50, 53–54, 57, 62, 76, 78, 80, 91 19
choice 16, 17, 19, 20, 25, 32, 34, 47, 51, 52, 55, 59, 63, 80, 81, 83, 85, 90 18
uniqueness 2, 14, 18, 22, 23, 44, 64, 66–69, 76, 86, 92, 93 15
consistent redundancy 5, 11, 12, 34–37, 46, 48, 57, 58, 79, 86, 87 14
location 6–8, 61, 65, 70, 71, 79 8
definition resolution 10, 65, 86, 95 4
execution instructions 84, 88, 89, 95 4
control cycle detection 72, 82 2

target activities
WSDL definitions 1, 2, 5, 10–14, 19, 20, 22, 45–48, 50, 53, 54, 58, 84, 87, 88 22
message activities 5, 10, 46–48, 50–55, 58, 59, 61, 63, 78, 84, 85, 87, 89, 90 21
process and scope 3, 18, 23, 44, 61, 78–80, 82, 83, 88, 91–93 14
message assignment activities 47, 48, 50–55, 58, 59, 63, 85, 87, 90 14
FCT handler activities 3, 6–8, 10, 70, 71, 78–81, 93 12
flow activities 64–72, 82 10
partner link activities 5, 10, 16–18, 35–37, 84 9
variable activities 10, 23–25, 34, 48, 58, 86, 90 9
XSD definitions 10,–14, 45 6
assignment activities 10, 32, 34–37 6
correlation activities 10, 44–46, 88 5
event handler activities 83, 86, 88, 89, 95 5
loop activities 62, 70, 76, 83 4
start activities 15, 57, 62 3
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C. Artifacts

Following links last accessed 8th August 2017.

∙ Source code of PEAL prototype

https://github.com/uniba-dsg/betsy/tree/master/peal

∙ Source code of both, betsy and vbetsy

https://github.com/uniba-dsg/betsy/tree/master/

∙ Source code of PEBL prototype

https://github.com/uniba-dsg/betsy/tree/master/pebl

∙ Source Code of the loader

https://github.com/uniba-dsg/betsy/tree/master/loader

∙ PEBL Schemas

https://github.com/uniba-dsg/betsy/tree/master/pebl/src/main/resources/pebl

∙ Docker image of betsy

https://hub.docker.com/r/simonharrer/betsy-docker/

∙ VM images for vbetsy

https://lspi.wiai.uni-bamberg.de/svn/betsy/ova

∙ Source code of the sprinkle-based provisioning scripts for VMs of vbetsy

https://github.com/uniba-dsg/betsy-engines

∙ Process engines installer for betsy

https://lspi.wiai.uni-bamberg.de/svn/betsy/

∙ Source code of dashboard

https://github.com/peace-project/dashboard

∙ Public dashboard

https://peace-project.github.io/

∙ Benchmarks and Results in public dashboard database

https://peace-project.github.io/data/pebl.json
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Business processes have become ubiquitous in industry today. They form the 

main ingredient of business process management. The two most prominent 

standardized languages to model business processes are Web Services Business 

Process Execution Language 2.0 (BPEL) and Business Process Model and No-

tation 2.0 (BPMN). Business process engines allow for automatic execution of 

business processes. There is a plethora of business process engines available, 

and thus, one has the agony of choice: which process engine fits the demands  
the best? The lack of objective, reproducible, and ascertained information about 

the quality of such process engines makes rational choices very difficult.
This can lead to baseless and premature decisions that may result in higher long 

term costs. This work provides an effective and efficient benchmarking soluti-
on to reveal the necessary information to allow making rational decisions. The 

foundation comprises an abstraction layer for process engines that provides a 

uniform API to interact with any engine similarly and a benchmark language for 

process engines to represent benchmarks in a concise, self-contained, and inter-

pretable domain-specific language. A benchmark framework for process engines 
performs benchmarks represented in this language on engines implementing 

the abstraction layer. The produced benchmark results are visualized and made 

available for decision makers via a public interactive dashboard. On top of that, 

the efficient benchmark framework uses virtual machines to improve test isolati-
on and reduce “time to result” by snapshot restoration accepting a management 

overhead. Based on the gained experience, eight challenges faced in process en-

gine benchmarking are identified, resulting in 21 process engine benchmarking.
Results show that this approach is both effective and efficient. Effective because 
it covers four BPEL-based and another four BPMN-based benchmarks which 

cover half of the quality characteristics defined by the ISO/IEC 25010 product 
quality model. Efficient because it fully automates the benchmarking of process 
engines and can leverage virtualization for an even higher execution efficiency. 
With this approach, the barrier for creating good benchmarks is significantly lo-

wered. This allows decision makers to consistently evaluate process engines and, 

thus, makes rational decisions for the corresponding selection possible.
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