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Abstract

Generic camera modeling using raxels and associated

methods was recently introduced in Computer Vision. The

main advantage is the applicability for any camera model,

which contrasts to the many specific methods designed for

a single camera model. This paper introduces a bundle ad-

justment based on angular error for the generic structure

from motion problem. Experiments include automatic, ro-

bust and optimal estimation of scene structure and camera

motion from a long image sequence acquired by a hand-

held non-central (calibrated) catadioptric camera.

1. Introduction

The automatic estimation of scene structure and camera

motion from an image sequence (“Structure from Motion”,

or SfM) acquired by a hand-held camera is a fundamental

topic in Computer Vision. Both specific (camera model de-

pendent) and generic SfM methods were proposed.

Specific SfM A large amount of works has been done dur-

ing the last decades for many camera models including per-

spective, stereo rig, and omnidirectional (fish-eye and cata-

dioptric) cameras. Many successful systems now exist for

image sequences acquired by the perspective and stereo rig

models [15, 2, 13]. In contrast to these, mainly two views

SfM works have been conducted for both central [3, 9] and

non-central [1, 11] omnidirectional cameras, except [10]. A

central camera is such that all back-projected rays intersect

a single point in space [5], called the camera center.

Generic SfM Generic SfM methods could be preferred

to the many methods designed for a single camera model.

An arbitrary imaging system may be modeled by a general

model composed of a set of virtual sensing elements called

raxels [6]: raxels are central cameras with a small part of

the complete view field whose centers are spread in the loci

of view points of the system. Given a raxel discretization

of a calibrated system, the system motion can be recovered

using generalizations of pose calculation [12] or essential

matrix [14]. More recently [16], this matrix is estimated lin-

early using 17 correspondences and the resulting geometry

mixing different cameras (pinhole, stereo, central fish-eye)

is refined using two possible bundle adjustments. The first

one minimizes a 3D error. Such 3D errors [16, 11] are de-

fined between a ray and a point in 3D, and are not ideal since

3D magnitude orders may vary considerably between close

and far away points from cameras (the minimization result

is biased in disfavor of the closest 3D points). 3D errors

were introduced since the projection function of some cam-

era models (e.g. non-central catadioptric) are not explicit,

and difficult to minimize using bundle adjustment. The sec-

ond one minimizes the image errors (measured in pixels) of

perspective cameras as raxels. It requires a segmentation of

all camera rays in clusters, such that all rays in a cluster are

approximated by the rays of a perspective camera to be es-

timated. According to [16], finding the raxel number and

the set of rays approximated by each raxel is yet the subject

of future research for non-trivial cases.

Contributions We introduce a bundle adjustment based

on an angular error designed for generic SfM, which has

many advantages over previous methods. First, statistical

foundation and error propagations are possible; this con-

trasts to the 3D errors [16, 11] producing biased results in

many cases. Second, the angular error does not require a

segmentation of the set of all camera rays, which contrasts

to the perspective image error minimized in [16]. Third,

angular error calculations are really faster than the specific

image calculations of the non-central catadioptric case.

We also experiment the angular bundle adjustment in a

non-trivial context: the automatic, robust and optimal esti-

mation of a long image sequence acquired by a non-central

catadioptric camera. Other experiments including uncer-

tainty, accuracy and piecewise planar modeling are given.

2. Angular Error

Notations Let xi,j be many matched image points de-

tected in the i-th image and corresponding to the j-th 3D

scene point to be estimated. Since the camera is calibrated,

the corresponding ray of xi,j is known. This ray is the ori-

ented line in 3D which goes across point si,j with direction
~di,j . Direction ~di,j is fixed in the i-th camera coordinate

system, and point si,j has one d.o.f. along the line in 3D.



We also introduce the orientation Ri (a rotation) and the

origin ti (a 3D vector) of the i-th camera coordinate system

defined in the world coordinate system, and Xj the world

coordinates of the j-th 3D point.

Ray Surface Choice Point si,j should be fixed as a start-

ing point of the ray, since our angular error and the SfM

result will depend on it. Although it is natural to locate si,j

at the camera center for a central camera, the choice is not

so obvious in all cases. A choice in a general context is

proposed by [6]: si,j is taken in the caustic surface which

is the envelope of all possible camera rays. The caustic has

two interesting properties [6]: ~di,j is tangent to the caustic

at point si,j , and the caustic is the locus of points where

incoming rays most converge. An other si,j choice for cata-

dioptric camera may be the reflexion point of the ray on the

mirror, or the symmetry axis if any. Such choices are intu-

itive (no mathematical justification given), and we assume

that the ray surface is given by calibration. Once a ray sur-

face (the set of si,j) is chosen, the (i, j)-th ray is re-defined

by the half line starting from point si,j with direction ~di,j .

Angular Error In the ideal case, the (i, j)-th ray

(si,j , ~di,j) goes across Xj using previous notations. This is

not the case in practice, since the detected xi,j are corrupted

by image noise. We measure the gap between the (i, j)-th
ray and point Xj by the angular error ei,j , defined by the

angle between the direction ~di,j and the direction ~Di,j of

the half line starting from 3D point si,j toward 3D point

Xj . Now, our formalization for the structure from motion

problem is the following: the problem solution is a set of

parameters Ri, ti, Xj such that the sum of squared ei,j is

minimal. A such angular error has three advantages.

First, it does not involve the camera model knowledge

during SfM computations: the model is only required once

for each ray (si,j , ~di,j) estimations, before all SfM calcula-

tions. Consequently, the angular error allows generic SfM.

This contrasts to the usual image errors measured in pix-

els, which require the camera model for all SfM calcula-

tions. This is a clear advantage for the angular error when

the image error is slow to calculate and derivate, as the non-

central catadioptric case where image error has no closed

form. Second, it provides a maximum likelihood estima-

tion, as described at the end of Section 3. This contrasts to

the 3D errors introduced to simplify the estimation for non-

central models [11, 16]. Third, the segmentation problem

mentioned in [16] does not occur here.

3. Generic Structure from Motion

Geometry Estimation from Image Sequence The ge-

ometry of a sequence is estimated using a hierarchical ap-

proach, which is well known for perspective cameras [8]:

once the geometries of the two camera sub-sequences

1 · · · n
2 , n

2 +1 and n
2 , n

2 +1, · · ·n are estimated, the latter is

mapped in the coordinate system of the former thanks to the

two common cameras n
2 , n

2 + 1, and the resulting sequence

1 · · ·n is refined by a bundle adjustment. The angular bun-

dle adjustment designed for generic SfM is described below.

The hierarchical approach requires the geometries of all

consecutive image triples of the sequence. Many methods

are possible to estimate the triple geometries given the rays

(si,j , ~di,j) defined in the camera coordinate systems, before

the refinement by angular bundle adjustment. If the camera

is central, old methods could be used: first, all pair geome-

tries are estimated by the essential matrix [4], second all

triple geometries are estimated by the pose calculation [7]

of the third camera once matches in 3 views have been re-

constructed by the two others. The principle is similar for

any cameras (including non-central models) using more re-

cent methods: the two and three views geometries are given

by the generalizations of the essential matrix [14] and the

3-points pose method [12].

Effective Angular Bundle Adjustment The angular

bundle adjustment improves the estimations of the j-th 3D

point Xj , the orientation Ri and origin ti of the i-th cam-

era coordinate system in the world coordinates by the mini-

mization of a score: the sum of squared angles ei,j between

directions ~di,j and ~Di,j . Both directions are expressed in

the i-th camera coordinate system. si,j and ~di,j are fixed

from 2D point xi,j , the camera calibration and the ray sur-

face choice. ~Di,j is the direction of the half line starting

from point si,j toward point Xj . By identifying point Xj

and its homogeneous world coordinate with the fourth one

set to 1, we have ~Di,j =
R⊤

i (I3 −ti )Xj−si,j

||R⊤

i (I3 −ti )Xj−si,j ||
.

At first glance, the global angular error to minimize

might be
∑

i,j e2
i,j with ei,j = arcos(~di,j . ~Di,j). How-

ever, this ei,j is not a C1 continuous function at the exact

solution when ei,j = 0 (proof in the appendix). Since

a legal use of the Levenberg-Marquardt method (used by

the bundle adjustment [8]) requires a C2 continuous func-

tion e2
i,j in a neighborhood of the exact solution, we pre-

fer to revise the expression of ei,j . A second try might be

ei,j = f(~di,j . ~Di,j) with f a decreasing C2 continuous func-

tion such that f(1) = 0, if we accept that ei,j is not an an-

gle. Now, ei,j is C2 continuous and has a local extrema at

the exact solution ~di,j . ~Di,j = 1: the Jacobian of ei,j is zero

here. The convergence rate of Levenberg-Marquardt might

be reduced in this context. The final ei,j proposition has not

these problems, and is defined as follows.

Let Ri,j be a rotation such that Ri,j
~di,j = ~k with

~k = ( 0 0 1 )
⊤

, and π(( x y z )
⊤

) = ( x
z

y
z

)
⊤

,

( x̃i,j ỹi,j z̃i,j ) = Ri,j
~Di,j . Now, we propose to

minimize
∑

i,j ||ei,j ||2 with ei,j = π(Ri,j
~Di,j). We have

||ei,j ||2 =
x̃2

i,j+ỹ2

i,j

z̃2

i,j

= tan2(~k, Ri,j
~Di,j) = tan2(~di,j , ~Di,j).



This is an acceptable approximation of the squared angle

between ~di,j and ~Di,j since this angle is small for the

inlier point near the solution. The final angular expression
∑

i,j ||π(Ri,j(R
⊤
i ( I3 −ti )Xj − si,jX

t
j))||2 is mini-

mized, with X t
j any value of the 4-th Xj homogeneous

coordinate. We note that ei,j is a 2D vector, which is

independent of the Ri,j choice. Experiments confirm that

the tangent approximation has the best convergence.

Link with Perspective-based Raxels Note that the angle

approximation by 2D ei,j is the projection of Xj by a cal-

ibrated perspective camera with center si,j and orientation

Ri,j , all expressed in the i-th frame. In our case, the ray

segmentation in clusters [16] is trivial: one ray=one cluster.

Maximum Likelihood Estimation and Uncertainty A

maximum likelihood estimation for Xj , ti, Ri is obtained

by minimizing
∑

i,j ||ei,j ||2, if we assume that the 2D-

angular errors ei,j obeys independent and identical zero-

mean Gaussian distributions. This Gaussian model is not

tenable if ei,j = f(~di,j . ~Di,j) ≥ 0 is chosen at first glance.

This perturbation of ei,j propagates to a Gaussian perturba-

tion of the estimated parameters, such that the covariance

matrix may be estimated [17, 8].

4. Experiments

A non-central catadioptric camera [10] is used. The mir-

ror profile is a known four degree polynomial, with height

and big radius of 3.3 and 3.7 cm. The pinhole camera cen-

ter is located at 48 cm below the mirror apex on the mirror

symmetry axis. The caustic profile size is about the half of

that of the mirror. The view field is about 100 degrees.

Synthetic Experiments We compare the accuracies of re-

constructions estimated by angular bundle adjustment for

many ray surface choices. The ground truth reconstruc-

tion is composed of 1000 points well spread on a 2.6m ×
3.4m × 2.45m box surface (indoor scene like), and 12

cameras in a (unclosed) ellipse trajectory with a 0.5/0.9m

radii at the box center. First, image projections are cor-

rupted by gaussian noise of σ = 1 pixel. Second, all re-

sulting rays (oriented line in 3D) are estimated by mirror

reflexion. Third, we choose a ray surface and the angu-

lar bundle adjustment is applied starting from ground truth.

Finally, errors between the resulting (ti, Xj) and ground

truth (tgi , X
g
j ) are given. The squared location error is

E2
t = 1

12

∑

i ||S(ti) − t
g
i ||2 with S the similarity transfor-

mation minimizing Et, and the squared reconstruction error

is E2
x = 1

1000

∑

j ||S(Xj) − X
g
j ||2.

Table 1 shows similar errors for many ray surface

choices and the current box “big box”, including the choice

{0} (central approximation). For this 3D scale and noise

level, we note that the ray surface choice is not so important

and that the central model is a good approximation of the

non-central camera (angles do not change much if the 3D

ray surface {0} (central) mirror axis caustic

Et/Ex (big) 0.109/1.905 0.106/1.719 0.108/1.719 0.107/1.713

Et/Ex (small) 0.040/0.901 0.010/0.203 0.013/0.185 0.012/0.183

Table 1. Et, Ex errors (cm) for many ray surface choices.

point depths are much bigger than the size of area where

the ray surface is selected). The same experiments are re-

done with the same scene reduced by 10 in the 3 dimensions

“small box”. Only small differences are noted for our ray

surface choices, except for the central errors which are the

worst.

Automatic SfM for Real Sequences A SfM strategy sug-

gested by the synthetic experiments is used: (1) approxi-

mate the camera with the central model ({0} choice) and ap-

ply hierarchical SfM (2) upgrade the central reconstruction

to the non-central one with a ray surface choice (e.g. mir-

ror). The generic, angular error-based bundle adjustment is

used in both steps. A match xi,j is considered as outlier

if ||ei,j || > 0.04 radians. Such two-step and non-central

SfM were previously used in non-generic contexts [11, 10].

More details are given in [10] about the calibration estima-

tion, the automatic omnidirectional image border detection,

and the specific matching method combining Harris points

and ZNCC correlation. SfM based on [14, 12] is not tried.

Real Sequence The House sequence is composed of 112

images. The user moves along a trajectory on the ground

with the omnidirectional system mounted on a monopod,

alternating a step forward and a shot.

A top view of the resulting reconstruction and a piece-

wise planar 3D model obtained from the reconstructed

points are shown in Figure 1. 18263 points are automati-

cally reconstructed with 93235 inlier reprojections, and the

final RMS angular error is 0.0057 radians. The planes of

the model are estimated from 3D points and manual delim-

itation of their contours in 4 selected images (one for each

room), ignoring occluded, uniform or too complex objects.

Uncertainties Uncertainties might be given using a triv-

ial gauge constraint [17]: R0 = I3, t0 = 0. A 7-th scalar

relation like (t111)x = 1 would not be necessary to fix the

3D scale factor, since it is theoretically possible to estimate

this scale with the non-central model. However, further

experiments shown that this estimation is difficult in prac-

tice for both specific and generic bundle adjustments. For

this reason, we only give the realistic central results with

(t111)x = 1. The main axis lengths of the 90% uncer-

tainty ellipsoids are in [0, 0.018] for the camera centers. The

rank 0 (smallest), rank 1
4 , rank 1

2 (median), rank 3
4 and rank

1 (largest) uncertainty results for points are 0.014, 0.021,

0.029, 0.064, 52, respectively.

Pose Accuracy An other sequence is taken in an indoor

controlled environment: the motion of our system is mea-



sured on a rail, in a room of dimensions 7m×5m×3m. The

trajectory is a 1 meter long straight line by translation, with

6 equidistant and aligned poses. The location error (defined

in the synthetic experiments) is Et = 1.5 mm.

5. Conclusion

A generic SfM method based on an angular error is in-

troduced, which reduces the drawbacks of previous generic

methods. Experiments are done in a non trivial context (a

non-central catadioptric and calibrated camera) and include:

a ray surface choice discussion, uncertainty and accuracy

results, and the automatic/robust/optimal geometry estima-

tion for a long image sequence. Generic (angular) calibra-

tion and applications are subjects of future works.

Appendix

We show in this appendix that the composed function

ei,j = arcos(~di,j . ~Di,j), ~Di,j =
R⊤

i (I3 −ti )Xj−si,j

||R⊤

i (I3 −ti )Xj−si,j ||
is not C1 continuous when ei,j = 0. With-

out loss of generality, we change the space coordi-

nate system such that ~di,j = ( 0 0 1 )⊤, and write
~Di,j = 1√

x2(α)+y2(α)+z2(α)
( x(α) y(α) z(α) )

⊤
with

x(α), y(α), z(α) three real C1 continuous functions with

parameter α such that (x(0) y(0) z(0) ) = ( 0 0 1 ).

Now, we show that the limit of
∂ei,j

∂α
is not well defined

when α converges to 0.

x(α), y(α), z(α) are shortened by x, y, z. The Chain

Rule provides
∂ei,j

∂α
= arcos′(~di,j . ~Di,j)

∂
∂α

(~di,j . ~Di,j) with

arcos′(u) = −1√
1−u2

and the assumption |~di,j . ~Di,j | < 1:
∂ei,j

∂α
= −1

x2+y2+z2 (
√

x2 + y2 ∂z
∂α

− z√
x2+y2

(x ∂x
∂α

+ y ∂y
∂α

)).

Since (x(α) y(α) z(α) ) ≈ ( ∂x
∂α

(0)α ∂y
∂α

(0)α 1 ),

we have
∂ei,j

∂α
≈ α

|α|

√

( ∂x
∂α

)2(0) + ( ∂y
∂α

)2(0). Two
∂ei,j

∂α

limits are obtained: one for each possible α sign.
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Figure 1. A panoramic image from the House sequence

(acquired by a non-central catadioptric camera), a top view

of the recovered reconstruction with 112 camera locations

(little squares) and 18263 3D points (black points), piece-

wise planar 3D model from 3D points.




