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Abstract: The ecosystem is considerably affected due to the extensive use of chemical pesticides
and fertilizers. As an alternative strategy, this study aimed to assess the biocontrol potential of
the bioagents arbuscular mycorrhizal fungi and plant growth-promoting Trichoderma harzianum
MZ025966 against tomato root-knot nematodes (Meloidogyne javanica). T. harzianum showed a great
potentiality to produce indole acetic acid (IAA) (12.11 ± 2.12 µg/mL) and exhibited a noticeable
activity of ammonification. Furthermore, T. harzianum revealed protease and lipase enzymatic
activity of 28.36 ± 2.82 U/mL and 12.30 ± 0.31 U/mL, respectively, which may illustrate the control
mechanism of nematode eggs and juveniles. As in mycorrhizal and/or T. harzianum inoculated
tomato plants, the penetration rates of nematodes, as well as the number of juveniles, females, egg
mass, and galls were significantly reduced. The lowest number of juveniles was observed in the
case of either single mycorrhizal inoculation (45%) or in combination with T. harzianum (55%). The
enzymatic activity of glutathione peroxidase and catalase was enhanced in tomato plants inoculated
with the bioagents to overcome the negative impact of nematode parasitism. Our results proved that
the application of biocontrol agents not only reduced the nematode population and penetration rate
but also improved the plant growth, increased the nutritional elemental content and stimulated the
plant’s systematic resistance.

Keywords: biocontrol agent; plant systematic resistance; arbuscular mycorrhizal fungi; Trichoderma
harzianum; Meloidogyne javanica

1. Introduction

Nematodes, or roundworms, the most abundant animals in the world, constitute the
phylum Nematoda. Nematodes occur as parasites in plants, animals, or as free-living forms
in different habitats (marine environment, freshwater, and soils). Root-knot nematodes
(genus Meloidogyne) (RKN) are endoparasites of roots and have been assessed to cause
around USD 173 billion of annual damages to crops planted worldwide [1]. Nematode
larvae infect the plant root system and develop root-knot galls that exhaust the plant’s nu-
trients and photosynthate. Plant yields are reduced by nematode infection, while infection
may be lethal in young plants [2]. Furthermore, nematodes are likely to be undervalued,
because farmers are often oblivious of their presence because the plant symptoms caused
by nematode infection are oftentimes non-specific, so it is difficult to attribute losses in crop
to nematode infection [3]. Meanwhile, further losses might be correlated to the quality of
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food and morphological imperfections associated with nematode infection symptoms [4].
Nowadays, there is an increasing requirement for agricultural products from the growing
population [5], and this can be met by optimizing the productivity potential and by con-
trolling the crop losses caused by the plant-parasitic nematode [6]. Chemical nematicides
are used to control nematode infection in agriculture, but they have adverse and toxic
effects on human health, bioflora, animals, and are constituted of contaminants for the
environment [7]. Hence, the need to use an effective and ecofriendly strategy for nematode
management is increased and intensified with the reduction of the use of pesticides due to
EU regulations (EC No1107/2009).

Nematode biological control occurs by reducing nematode infection and/or regulation
of its populations through the activity of organisms that are antagonistic to them [8]. These
organisms can interact with nematodes directly through antibiosis and competition for
space or nutrients or interact indirectly with plant pathogenic nematodes by inducing
resistance in the host plant [8,9]. Plant-growth-promoting fungi (PGPF) can act as efficient
and ecofriendly nematode biocontrol, as well as biofertilizers for plant growth and yield im-
provement. It was reported that Trichoderma and mycorrhizal fungi are the most significant
PGPF that were studied and used as bioagents against root-knot nematode as resistance
inducers [8].

Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts of, primarily, vascu-
lar plants. AMF are mainly used as biofertilizers, which can form symbiotic interactions
with 90% of crop plants [10]. The biocontrol impact of mycorrhizal fungi has been observed
against a wide range of phytopathogenic microorganisms [11,12]. Nematode infection
decreased in mycorrhizal plants, and it is not clear if the reason for this reduction was
due to systematic plant resistance or a direct effect [8], but the direct mechanisms used by
AMF against nematode population or infection are not yet distinguished as they act only
through the host plant (an indirect mechanism). Mycorrhizal fungi improve plant resistance
through many activities such as the increase in plant nutrient uptake, the alteration in root
morphology and structure, and the alteration of the rhizosphere interaction that makes
the host plants more competitive for space and nutrients than other plants [13]. More-
over, mycorrhizal fungi induce systematic resistance (ISR) in plants against infection by
pathogens and/or pests [14,15]. Mycorrhizal fungi stimulate the production of antioxidant
enzymes, accumulation of non-enzymatic compounds inside cells of host plants, reduction
in malondialdehyde production, the activation of enzyme-encoded genes involved in the
biosynthesis of lignin, and in the shikimate pathway which produces forebears of different
aromatic secondary metabolites against nematodes [16–19].

Trichoderma species were recognized as widely applicable microorganisms in agri-
cultural technology as a biological control agent for many plant pathogens that inhabit
plant-soil ecosystems. Furthermore, Trichoderma showed many unique properties including
the ability to colonize plant roots [20], being easily culturable and propagated, improving
plant growth and disease resistance [21], and improving nutrient utilization efficacy [22]
and, consequently, improving its efficiency and applicability in agriculture and sustainable
cropping systems. Interestingly, Trichoderma spp. were investigated by many authors for
their potentiality in controlling plant pathogenic nematodes [23]; however, there is little
information concerning the mechanisms of Trichoderma–nematode plant interactions.

So, the main aim of the current study was to estimate the potential application of
microbial bioagents (arbuscular mycorrhizal fungi and T. harzianum) as biocontrol agents
and biofertilizers to manage tomato root-knot nematodes (Meloidogyne javanica). Here, we
studied the possible mechanisms that occur between the two bioagents and the host plant
and subsequent root-knot nematode infection.

2. Materials and Methods
2.1. Nematode Inoculum

The Meloidogyne javanica nematode population was isolated from tomato plants
(Lycopersicon esculentum L.) grown in an open field and maintained on susceptible host
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tomato plants in the greenhouse. For nematode inoculum preparation, the tomato root
system was separated from the whole plant and washed with water to remove soil adhe-
sion. Egg masses of M. javanica were recovered from galls of the infected tomato roots and
stirred for 4 min in 0.5% NaOCl [24]. Nematode egg suspensions were sieved through
a 500 mesh sieve (25 µm) and collected in sterilized water. The second stage juveniles
(J2) were obtained from the incubated eggs (after 3–5 days) using a modified Baermann
funnel method [25]. M. javanica inoculum was used for the pot experiment consisting of
3000 ± 5 J2 dispensed in 50 mL of water.

2.2. Arbuscular Mycorrhizal Inoculum

The propagules of AMF were recovered from tomato rhizosphere soils by the wet
sieve method [26]. The identification of AM fungal spores, recovered from rhizospheric soil,
was performed by picking up the AMF spores from the filter paper with the help of syringe
or fine point camel brush and mounting them on a glass slide with a drop of polyvinyl
lactophenol (PVL) and a cover slip, then they were examined using a light microscope
at 40×. Subsequently, the recovered spores were identified with the help of a taxonomic
manual [27]. The most abundant mycorrhizal species were Acaulospora bireticulata F.M.
Rothwell & Trappe, Entrophospora infrequens (Hall) Ames & Schneid, Funneliformis geosporum
(Nicolson & Gerd.) Walker & Schüßler, Funneliformis mosseae (Nicolson & Gerd.) Walker &
Schüßler, and Gigaspora margarita Becker & Hall.

The inoculum of mycorrhizal fungi used in the greenhouse experiments (most common
mycorrhizal species from tomato plants rhizosphere) was bulked up in pot sterilized soil
and grown with maize (Zea mays L.) as the trap culture. After complete life cycles of AMF
(about 2 months), the maize roots were separated from the whole plants. Root segments
were mixed with the soil of the experimental pots. The mycorrhizal fungal inoculum (100 g)
contained mycorrhizal hyphae, colonized root segments, and 10 ± 2 spores/g soil was used
as a bio-inoculating agent for tomato plants. In the non-mycorrhizal pots, an equivalent
amount (100 g soil) of sterilized soil was added. The soil was sterilized to kill any spores of
microorganisms and nematodes.

2.3. Trichoderma harzianum Inoculum

T. harzianum AUMC14897 was obtained from the center of Prof. A. H. Moubasher
for mycological sciences (AUMMC), Assiut University. The species identification was
confirmed by sequence analysis of the regions of ITS1 & ITS4 of rDNA and the sequence
was deposited in the GenBank under accession No. MZ025966.

Assay for Plant Growth-Promoting and Enzymatic Activities of T. harzianum

The bioagent T. harzianum was screened for plant growth-promoting trials. Indole
acetic acid (IAA) production by the fungus was determined using a modified method by
Glickmann and Dessaux [28]. Ammonium production was assayed through the cultivation
of the fungus on peptone water medium for 4 days at 28 ± 2 ◦C. After the incubation
period, 0.5 mL of Nessler’s reagent was added and the obtained color (from faint yellow to
deep yellow or brownish) indicated ammonia production. Proteases and lipases activity
was assayed in vitro in a liquid medium [29]. The fungus was grown on potato dextrose
agar (PDA) at 28 ◦C for 7 days until sporulation. T. harzianum spores were collected
in sterile distilled water to form a homogenous spore suspension, and then a 10 mL
spore suspension was used as starter inoculum for liquid PD medium. After 7 days, the
suspension cultures, maintained in an incubator with agitation (150 rpm), were used to
inoculate the tomato seedlings as bioagents [30]. The spore suspension concentration was
adjusted to 2 × 106 spores/mL.

2.4. Raising of Test Plants

Tomato seeds (Solanum lycopersicum L.), cultivar Dareen F1 were used in the green-
house pot experiment. The seeds were soaked in 70% ethanol as surface sterilization for
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2 min, and then the seeds were rinsed several times with sterile H2O and planted in plastic
cell plug trays (4 × 4 cm) packed with vermiculite. The trays were kept under greenhouse
conditions for 3 weeks and irrigated regularly.

2.5. Experimental Setup

The pot experiment was laid out to evaluate the effects of AMF and T. harzianum on
tomato growth and root-knot nematode infection in the greenhouse at the Department of
Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt, using a completely
randomized design (CRD). Tomato seedlings were planted in pots containing a 5 kg mixture
of loam and sandy soil (1:1, w/w). The properties of the tested soil were determined
according to Jackson [31]. Five tomato seedlings were planted in each pot and they were
thinned to three per pot after 6 days of planting. Pots were irrigated regularly, and plants
were grown under natural conditions of light, temperature (averaged 32/20 ◦C day/night),
and 85% relative humidity.

The experiment consisted of eight treatments, (1) control of healthy plants (plants
without treatments); (2) plants inoculated with mycorrhizal fungi (MY); (3) plants inoc-
ulated with T. harzianum (TH); (4) plants inoculated with both mycorrhizal fungi and T.
harzianum (MY + TH); (5) plants treated with J2 nematodes (NE); (6) MY + NE; (7) TH + NE
and (8) MY + TH + NE. The mycorrhizal and T. harzianum inocula were added to each pot
and completely mixed with the soil surface during planting. The nematode inoculum was
added around the root zone one week after planting. Each treatment was performed in five
replicates. Plants were harvested 50 days after planting, comparable to the late vegetative
stage of tomato growth.

2.5.1. Plant Analysis
Morphological Analysis of Tomato Plants

The effects of mycorrhizal fungi and T. harzianum on overall tomato growth, root length
(cm), shoot length (cm), plant dry weight (g/plant), and leaf area (cm2) were estimated in
50-day-old treated and untreated tomato plants with root-knot nematodes. Tomato shoots
and roots were separated, and the length was measured. The dry weight of the tomato
plants was determined after drying the plant for 2 days at 70 ◦C. Tomato leaf area (cm2)
was measured from leaf images taken with a standard scanner using the ImageJ program
(https://imagej.nih.gov/ij/, accessed on 15 November 2021). The leaves were taken from
the same leaf pair on the treated plants.

Determination of Tomato Shoot Nutrients’ Content

Shoots of tomato plants were ground and then acid-digested (2:1 HNO3:HClO4) for
P, K, and Ca concentrations using ICP (inductively coupled plasma) atomic emission
spectrometry. As well, for N shoot content, samples were digested with H2SO4 following
the Kjeldahl method.

Physiological Analysis of Tomato Plants

A. Photosynthetic pigments
The chlorophyll a, chlorophyll b, and carotenoid contents of the tomato plants were

estimated by spectrophotometric method, elicited in 95% ethyl alcohol, and calculated as
mg/g fresh weight [32].

B. Reactive oxygen species (ROS)
The hydrogen peroxide content (H2O2) in the leaves of treated and untreated tomato

plants was spectrophotometrically estimated as described by Sellers [33] with minor modi-
fication. The molar absorptivity of 935 L mol/cm was used in the calculation of H2O2 as
µmole/g FW.

C. Lipid peroxidation content
Lipid peroxidation (malondialdehyde (MDA)) was detected in tomato leaves using

the thiobarbituric acid reaction by monitoring malondialdehyde formation as explained by

https://imagej.nih.gov/ij/
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Hodges et al. [34]. The level of lipid peroxidation was expressed as nmol/g FW of MDA
formed using an extinction coefficient of 155 mM/cm.

D. Antioxidant enzymes
Fresh tomato leaves (0.5 g) were ground to a fine powder in liquid N2, and then

homogenized in 5 mL of 100 mM potassium phosphate buffer (pH 7.8) containing 0.1 mM
ethylenediamine tetra-acetic acid, disodium salt (Na2-EDTA), and 0.1 g polyvinylpyrroli-
done (PVP). The homogenate was centrifuged at 18,000 rpm for 10 min at 4 ◦C and the
supernatants were collected and used for the assays of catalase (CAT; EC 1.11.1.6) according
to the modified method of Aebi [35] and guaiacol peroxidase (GPX; EC 1.11.1.7) according
to the method of Tatiana et al. [36]. The specific activity was expressed as units/mg protein.
Protein concentrations in the enzyme extract were determined by the method of Lowry
et al. [37].

E. Total phenolic content
Total phenolic content was calculated based on the Sampietro et al. [38] method using

the Folin–Ciocalteu reagent on the leaves’ methanolic extract, and the data was expressed
as mg/gm FW using gallic acid as a standard curve.

F. Lignin content
Lignin content in a tomato root was determined according to a modified method of

Dence [39].
G. Assay of hydrolytic enzymes in plant roots
One gram of a tomato plant’s roots from each treatment was ground in 10 mL phos-

phate buffer, and then the root extracts containing crude enzymes were centrifuged at
10,000 rpm for 3 min. Protease and lipase enzyme-specific activities were assayed on the
tomato root extract supernatant as described in our published paper [29].

2.5.2. Nematode Infection Parameters

The root-knot nematodes’ penetration rates were determined in treated tomato plant’s
roots at 0, 5, 10, 15, and 20 days after M. javanica inoculation. Fifty days after nematode
inoculation, the plants were uprooted and the soil adhering to their roots was removed
(100 g/pot) by agitation in water. The population density of J2 in the soil, the number of
galls, females, and egg masses were determined in root samples stained with acid fuchsin
lactophenol. Counting was done with the aid of a dissecting microscope and a hand
tally counter.

Nematode penetration (NP) (%) = (No. of nematode juveniles in each treatment/No.
of nematode juveniles added) × 100

The reproduction factor (RF) = Pf/Pi,
where Pf is the No. of nematode juveniles at 50 days and Pi is the No. of nematode juveniles
used in soil infestation.

Nematode reduction (%) = (C1 − C2/C1) × 100,
where C1 = No. of nematode juveniles in control and C2 = No. of nematode juveniles in
treatments

2.5.3. Evaluation of Mycorrhizal Root Colonization

The mycorrhizal colonization of the tomato plant’s roots was determined 50 days after
inoculation with Acaulospora bireticulata, Entrophospora infrequens, Funneliformis geosporum,
Funneliformis mosseae, and Gigaspora margarita. Twenty root segments (2 cm) were cleared
with KOH (10% w/v) at 60 ◦C for 10 min and then stained using Trypan blue (0.5% w/v).
The mycorrhizal tomato root colonization was evaluated by Phillips and Hayman [40]. The
mycorrhizal spore count (spore density) was determined in 10 g dry soil by soil sieving
and counting under a stereomicroscope at 40×.

2.6. Statistical Analysis

The data were analyzed by one-way ANOVA using the software program SPSS (SPSS
Inc., Chicago, IL, USA) Version 19.0. All treatments were carried out in 5 replicates (n = 5).
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Means were compared by Duncan’s multiple range tests and statistical significance was
conducted (p < 0.05).

3. Results
3.1. Assay for Plant Growth-Promoting and Hydrolytic Enzyme Activities of the Bioagent T.
harzianum In Vitro

The biocontrol agent T. harzianum exhibited high potentiality for indole acetic acid pro-
duction, recording 12.11 ± 2.12 µg/mL, as well as obvious ammonification activity, where
orange precipitate formed after adding Nessler’s reagent to the fungal supernatant (Table 1).
The data shown in Table 1 revealed that T. harzianum exhibited a potential activity for hy-
drolytic enzyme production. The results exhibited that in the liquid medium, the protease
and lipase activity produced by T. harzianum were 28.36 ± 2.82 and 12.30 ± 0.31 U/mL,
respectively. Whereas the protease and lipase specific activities retained by T. harzianum
were estimated to be 20.40 ± 5.35 and 9.50 ± 1.45 U/mg protein, respectively (Table 1).

Table 1. Plant growth-promoting and hydrolytic enzyme activity of T. harzianum.

Assay Value

Plant growth-promoting activities
Indole acetic acid (µg/mL) 12.11 ± 2.12
Ammonia production +++

Hydrolytic enzyme activities
Lipase activity (U/mL) 12.30 ± 0.31
Lipase specific activity (U/mg protein) 9.50 ± 1.45
Protease activity (U/mL) 28.36 ± 2.82
Protease specific activity (U/mg protein) 20.40 ± 5.35

+++ = strong positive reaction.

3.2. Effect of the Bioagents (Mycorrhizal fungi and T. harzianum) on Tomato Plant Growth In Vivo

The physicochemical properties of the soil used in the pot experiment were analyzed
and the data is presented in Table 2. The cation and anion of soil soluble salts are also pre-
sented in Table 2. The organic matter of the tested soil was 0.73%, the available phosphorus
value was 7.3 (mg/kg), and the total nitrogen content was 12.3 (mg/kg).

Table 2. Physicochemical parameters of soil used in pot experiment.

Parameter Value

EC1:5 (dS/m) 3.79
pH1:2:5 7.60
OM% 0.73
Available P (mg/kg) 7.3
Total N (mg/kg) 12.3
Cations and anions (mg/100 g)

Ca++ 1.25
Mg++ 2.75
Na+ 1.12
K+ 0.16
Cl− 1.87
HCO3 1.3

The growth parameters (length, dry weight, and leaf area) of tomato plants infected
with M. javanica were determined at the end of the experiment (Table 3). The results showed
that mycorrhizal fungi, singly or in combination with T. harzianum, significantly improved
the dry weight, and the root and shoot length of the treated plants. They increased the shoot
length by 42% from the control and increased the dry weight by 131% from the control.
Meanwhile, the infection with M. javanica decreased the shoot length of the plants by 11.9%
from the control. The reduction of the dry weight of the infected plants was visible but not
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significant. A gradual and significant (p < 0.05) increase in leaf area of the plants inoculated
with the mycorrhizal fungi and/or T. harzianum was observed (Figure 1 & Table 3). We
identified that inoculation with MY + TH exercised a synergistic effect on plant biological
traits. Following dual inoculation, the plants registered higher values of root length, shoot
length, dry weight, and leaf area. The nematode-infected plants recorded the lowest value
of leaf area (59.9 cm2), while the mycorrhizal and/or T. harzianum inoculations minimized
the negative effects of NE parasitism on the leaf area.

Table 3. Effect of mycorrhizal and/or T. harzianum inoculations on 50-day-old tomato plants’ growth
infected with M. javanica.

Treatment Root Length
(cm)

Shoot Length
(cm) Dry Weight (g) Leaf Area (cm2)

Control 13.67 ± 1.52 a 50.87 ± 1.94 b 2.77 ± 0.24 a 63.07 ± 0.97 b

MY 24.17 ± 1.90 c 60.70 ± 2.42 c 4.07 ± 1.16 b,c 91.47 ± 0.60 d

TH 16.50 ± 1.32 a 52.87 ± 2.01 b 3.16 ± 0.38 a,b 84.19 ± 0.58 c

MY + TH 25.20 ± 1.70 c 72.67 ± 3.13 e 6.40 ± 0.31 d 94.17 ± 0.32 e

NE 13.77 ± 1.36 a 44.80 ± 1.67 a 2.31 ± 0.16 a 59.93 ± 0.36 a

MY + NE 19.67 ± 1.52 b 61.63 ± 3.27 c 4.47 ± 0.76 c 92.83 ± 0.32 e

TH + NE 16.60 ± 1.63 a 51.23 ± 1.88 b 3.33 ± 0.50 a,b 82.54 ± 0.25 c

MY + TH + NE 21.40 ± 1.76 b 66.50 ± 2.50 d 5.17 ± 0.76 c 90.77 ± 0.73 d

Values followed by the same letter(s) in the same column are not significantly different at p < 0.05 using Duncan’s
multiple range test.
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Figure 1. Morphology of tomato plants’ leaves inoculated with the biocontrol agents and infected with
the root-knot nematode. (A) Healthy tomato plant; (B) Nematode-infected tomato plant; (C) Infected
plant inoculated with mycorrhizal fungi; (D) Infected plant inoculated with mycorrhizal fungi and
T. harzianum.

3.3. Tomato Plants’ Shoot Nutrients Composition

Tomato plants’ shoot N, P, K, and Ca content as a function of nematode infection and
bioagent inoculation is shown in Table 4. Overall, the mycorrhizal fungi and/or T. harzianum
significantly increased shoot nutrient content (N, P, K, Ca), even with M. javanica infection.
While the nematode infection alone significantly (p < 0.05) reduced the nutrient content to
the lowest value among the treatments. Furthermore, the P content in healthy and infected
plants’ shoot was higher with dual inoculation, recording a 33.83%, 41.68% increase from
the control, respectively. K content recorded the highest value in the case of T. harzianum
and/or mycorrhizal inoculation; whereas nematode infection did not affect K shoot content.
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Table 4. Shoot N, P, K, Ca content (mg/g DW) of tomato plants infected with M. javanica and
inoculated with mycorrhizae and/or T. harzianum.

Treatment N P K Ca

Control 13.50 ± 0.30 b 9.43 ± 0.13 b 5.57 ± 0.40 a 3.38 ± 0.14 b

MY 14.45 ± 0.17 c,d,e 10.68 ± 0.18 d 7.17 ± 0.25 b 3.85 ± 0.27 c,d

TH 14.10 ± 0.20 c 10.07 ± 0.19 c 10.12 ± 0.26 d 3.46 ± 0.05 b

MY + TH 14.57 ± 0.25 d,e 12.62 ± 0.16 f 10.25 ± 0.28 d 4.47 ± 0.15 e

NE 12.97 ± 0.26 a 6.64 ± 0.41 a 5.53 ± 0.68 a 2.90 ± 0.15 a

MY + NE 14.75 ± 0.13 e 13.18 ± 0.26 g 7.27 ± 0.25 b 3.70 ± 0.10 b

TH + NE 14.30 ± 0.17 c,d 12.13 ± 0.21 e 9.13 ± 0.40 c 4.13 ± 0.32 d,e

MY + TH + NE 15.37 ± 0.32 f 13.36 ± 0.15 g 10.77 ± 0.21 d 4.43 ± 0.23 e

Values followed by the same letter(s) in the same column are not significantly different at p < 0.05 using Duncan’s
multiple range test.

3.4. Physiological Analysis of Tomato Plants
3.4.1. Photosynthetic Pigments

Nematode infection significantly decreased the content of total chlorophyll and
carotenoids; we recorded the lowest value (5.80 mg/g FW) in the infected non-inoculated
plants (Table 5). While their content improved significantly with the application of the
bioagents. Compared to relevant non-inoculated tomato plants and those with T. harzianum
inoculation, mycorrhizal inoculation significantly improved plant pigments content, and
the dual inoculated plants had higher photosynthetic pigments contents (7.20 mg/g FW).
Leaf photosynthetic pigments’ content was increased in nematode infected tomato plants
that were also inoculated with the bioagents as compared with infected plants alone, thus
indicating simultaneous improvement in the photosynthetic process.

Table 5. Effect of mycorrhizal and/or T. harzianum inoculations on photosynthetic pigments (mg/g
fresh weight) in tomato plants infected with M. javanica.

Treatment Chlorophyll a Chlorophyll b Carotenoids

Control 8.40 ± 0.13 a 6.01 ± 0.15 a 3.98 ± 0.15 b

MY 8.80 ± 0.09 c 7.49 ± 0.68 b 4.82 ± 0.17 e

TH 8.55 ± 0.07 a,b 6.37 ± 0.11 a 4.41 ± 0.13 c

MY + TH 9.15 ± 0.53 d 7.52 ± 0.35 b 4.94 ± 0.14 f

NE 7.92 ± 0.32 a,b 5.94 ± 0.34 a 3.55 ± 0.16 a

MY + NE 8.77 ± 0.14 c 6.14 ± 0.24 a 4.46 ± 0.12 c,d

TH + NE 8.80 ± 0.32 c 6.02 ± 0.05 a 4.05 ± 0.16 b

MY + TH + NE 9.31 ± 0.16 d 6.31 ± 0.10 a 4.66 ± 0.14 d,e

Values followed by the same letter(s) in the same column are not significantly different at p < 0.05 using Duncan’s
multiple range test.

3.4.2. Reactive Oxygen Species (ROS)

Plants infected with M. javanica (NE) stimulated the oxidative burst in the infected
tomato plants recording an increase of H2O2 content, which is an oxidative stress index
(Figure 2A). The highest value of H2O2 occurred in the infected and non-inoculated plants
that was 2-fold from the control. The reduction in H2O2 content was significant in the
infected tomato plants inoculated with the two bioagents, recording the highest reduction
in the infected dual inoculated plants (−49%).
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Figure 2. (A) Hydrogen peroxide (H2O2) and (B) lipid peroxidation (malondialdehyde (MDA)) con-
tents as oxidative stress indicators of healthy and infected tomato plants inoculated with mycorrhizal
fungi (MY), T. harzianum (TH), and AMF + TH. Vertical bars indicate ± SE (n = 5); columns followed
by different letters are significantly different at p < 0.05.

3.4.3. Lipid Peroxidation Content

The malondialdehyde (MDA) content in tomato plants indicates the lipid peroxida-
tion process. Figure 2B shows that the MDA content of the tomato plants infected with
M. javanica was noticeably increased compared with the inoculated plants with bioagents,
which lowered the MDA content in plants. The lowest MDA content was detected in non-
mycorrhizal-treated plants (54.5 nmol/g FW) and the highest content was in the infected
non-inoculated plants (101.54 nmol/g FW).

3.4.4. Antioxidant Enzymes

The antioxidant enzyme activity in tomato leaves is presented in Figure 3. Data
showed catalase (CAT) and glutathione peroxidase (GPX) enzyme activity in the infected
tomato plants and the plants inoculated with mycorrhizae and/or T. harzianum. There was
a reduction in CAT activity in the nematode-infected non-inoculated plants compared with
the infected and inoculated plants. Meanwhile, CAT activity significantly increased by
dual inoculation; we recorded the highest value in the infected and dual inoculated plants
(131.57% increase from the control). The glutathione peroxidase (GPX) enzyme content
in the tomato plants infected with NE significantly increased because of the bioagents’
inoculation. The infected and non-inoculated plants had no significant effect on GPX
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content as compared with the healthy non-inoculated plants. The highest value of GPX was
recorded in the infected and dual inoculated plants (133.59 % increase from the control).
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Figure 3. Antioxidant enzyme content: (A) Catalase (CAT) and (B) glutathione peroxidase (GPX) of
healthy and infected tomato plants inoculated with mycorrhizal fungi (MY), T. harzianum (TH), and
AMF + TH. Vertical bars indicate ± SE (n = 5); columns followed by different letters are significantly
different at p < 0.05.

3.4.5. Total Phenolic and Lignin Contents

The bioagents (mycorrhizae and T. harzianum) stimulated the production of total pheno-
lics in tomato plant cells compared with the infected non-inoculated plants (Figure 4A). The
highest phenolic content was recorded in the infected dual inoculated plants (1.02 mg/g FW),
followed by the mycorrhizal–infected plants (0.92 mg/g FW). Lignin content as a secondary
metabolite is presented in Figure 4B. Lignin biosynthesis significantly increased in infected
and non-inoculated tomato plants, where we recorded the highest value (130% from the
control). Furthermore, lignin content was reduced significantly in dual inoculated plants.
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3.4.6. Hydrolytic Enzyme Activity in Tomato Plants’ Roots

The obtained data illustrated that the lowest hydrolytic enzyme activity was recorded
in healthy tomato plants compared with the infected plants. Meanwhile, the bioagents,
applied individually or in combination, exhibited a significant increase (p < 0.05) in the
hydrolytic enzyme activity of tomato root extracts in the infected plants compared with
the healthy plants (Figure 5). Similarly, root extracts of the infected and inoculated tomato
plants revealed the highest protease and lipase enzyme activity with both bioagents, arbus-
cular mycorrhizal fungi and T. harzianum.
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AMF + TH. Vertical bars indicate ± SE (n = 5); columns followed by different letters are significantly
different at p < 0.05.

3.5. Nematode Infection

Five days after nematode inoculation, the penetration rates (ratio of the number
of penetrated nematodes to the number of added nematodes) were determined in all
treatments (Figure 6). The penetration rate of nematodes in all treatments improved over
time, with the highest improvement (6.2–9.03%) towards the end of the 20 days. The
penetration rate in the infected and non-inoculated control was 9% 20 days after nematode
inoculation, while it reached 6% in the case of the dual bioagents’ treatment. Table 6
illustrates the potential of the two bioagents to reduce the populations of nematodes.
By applying mycorrhizal fungi and/or T. harzianum, the number of larvae, females, egg
masses, and galls was significantly reduced. The highest juveniles’ number was detected
in the infected and non-inoculated tomato plants, while the lowest number of J2s was
recorded in the case of MY and MY + TH, corresponding to 45% and 55% reduction from
the control, respectively (Figure 7). The number of females and egg masses produced by
M. javanica was high in the infected and non-inoculated tomato plants (infected control)
(Table 6). It was found that the number of females and egg masses in the inoculated
and infected plants was significantly lower than that of the infected control, and the dual
inoculation achieved the greatest reduction in numbers. Compared with the infected
control, mycorrhizal fungi and T. harzianum caused a 68% reduction in the number of
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females and a 43% reduction in egg masses (Figure 7). In pots infected with NE, more galls
on the tomato plants’ roots were found on non-inoculated plants (Table 6), of which the
highest number of galls (105/root) was recorded. Application of mycorrhizal fungi alone or
combined with T. harzianum reduced the formation of galls by 40.63% and 52.38% from the
infected control, respectively. The reproduction factor (RF) was calculated for all treatments
and was significantly different. As the highest reproduction factor (RF = 3.24) was recorded
in the infected control. The dual inoculation showed the lowest RF (1.46) followed by the
single inoculation.

Agronomy 2022, 12, x FOR PEER REVIEW  14  of  21 
 

 

was  found  that  the number of  females and egg masses  in  the  inoculated and  infected 

plants was significantly lower than that of the infected control, and the dual inoculation 

achieved the greatest reduction in numbers. Compared with the infected control, mycor‐

rhizal fungi and T. harzianum caused a 68% reduction in the number of females and a 43% 

reduction in egg masses (Figure 7). In pots infected with NE, more galls on the tomato 

plants’ roots were found on non‐inoculated plants (Table 6), of which the highest number 

of galls (105/root) was recorded. Application of mycorrhizal fungi alone or combined with 

T. harzianum reduced the formation of galls by 40.63% and 52.38% from the infected con‐

trol, respectively. The reproduction factor (RF) was calculated for all treatments and was 

significantly different. As the highest reproduction factor (RF = 3.24) was recorded in the 

infected control. The dual inoculation showed the lowest RF (1.46) followed by the single 

inoculation. 

 

Figure 6. Root‐knot nematode penetration rates (%) in tomato plants’ infected roots as affected by 

inoculation with mycorrhizal fungi (MY), T. harzianum (TH), and AMF + TH. Vertical bars indicate 

± SE (n = 5). 

 

Figure 7. Percentage of juvenile, female, egg masse, and gall reduction in tomato infected roots as 

affected by inoculation with mycorrhizal fungi (MY), T. harzianum (TH), and AMF + TH. Vertical 

bars indicate ± SE (n = 5). 

Figure 6. Root-knot nematode penetration rates (%) in tomato plants’ infected roots as affected by in-
oculation with mycorrhizal fungi (MY), T. harzianum (TH), and AMF + TH. Vertical bars indicate ± SE
(n = 5).
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Table 6. Effect of the biocontrol agents alone or in combination on the population of nematodes.

Treatment J2/100 g Soil Females/Root Egg Masses/Root Galls/Root RF

NE 242.67 ± 9.69 c 35.67 ± 6.03 c 142.80 ± 11.37 b 105.00 ± 8.00 c 3.24 ± 0.39 c

MY + NE 133.00 ± 13.46 a 23.00 ± 4.00 b 91.67 ± 7.02 a 62.33 ± 4.51 a 1.78 ± 0.20 a

TH + NE 193.33 ± 14.59 b 29.33 ± 4.04 b,c 128.33 ± 7.25 b 79.33 ± 8.50 b 2.58 ± 0.33 b

MY + TH + NE 109.00 ± 10.58 a 11.33 ± 3.21 a 81.67 ± 9.07 a 50.00 ± 6.56 a 1.46 ± 0.14 a

Values followed by the same letter(s) in the same column are not significantly different at p < 0.05 using Duncan’s
multiple range test. RF is the nematode reproduction factor.

3.6. Mycorrhizal Colonization

The mycorrhizal colonization of the tomato plants’ roots was determined with the
application of T. harzianum in the presence or absence of M. javanica (Table 7). There was a
significant difference in root colonization between healthy and infected tomato plants, with
mycorrhizal colonization being higher in the infected tomato plants. The tomato plants’
roots inoculated with the mycorrhizal fungi were occupied by intra-, inter-, and extra-
radical hyphae, arum-type of arbuscules, and vesicles (Figure 8). Meanwhile, the intra- and
inter-radical hyphae grew from cell to cell within the intercellular space, penetrating the
cell walls and forming arbuscules (Figure 8). The hyphal colonization of tomato plants
inoculated with a mixture from Acaulospora bireticulata, Entrophospora infrequens, Funneli-
formis geosporum, Funneliformis mosseae, and Gigaspora margarita ranged from 70–95%, and
the highest value was recorded in the tomato plants inoculated with the mycorrhizal fungi.
Arbuscular root colonization of the tomato plants was positively affected by nematode infec-
tion, of which the highest colonization was reported in the infected mycorrhizal-inoculated
plants. The vesicle colonization was significantly influenced by nematode infection, ranging
from 45–70%, of which the lowest value occurred in infected–mycorrhizal tomato plants
(30.76% decrease from healthy mycorrhizal plants). The numbers of glomerospores in the
tomato plants were significantly increased by the nematode infection (Table 7). The highest
mycorrhizal spore density was recorded in the rhizosphere soil of dual inoculated plants.

Table 7. Percentage (%) of root colonization (hyphal, arbuscular, vesicle colonization) of 50-day-old
tomato plants inoculated with mycorrhizae and/or T. harzianum and infected with M. javanica.

Treatment Hyphal
Colonization

Arbuscular
Colonization

Vesicle
Colonization

Mycorrhizal
Spore Density

MY 73.3 a,B 50.0 a,A 65.0 b,B 55.7 a

MY + NE 91.7 b,C 70.0 b,B 50.0 a,A 64.2 a,b

MY + TH 70.0 a,B 48.3 a,A 70.0 b,B 66.6 a,b

MY + TH + NE 95.0 b,C 78.3 b,B 45.0 a,A 73.3 c

Means within each column followed by the same lowercase letter (for each parameter) and means within each
row followed by the same uppercase (for each treatment in colonization parameter) are not significantly different
at p < 0.05 using Duncan’s multiple range test.
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tions under nematode infection: (A) vesicles (Ve) and intra-radical hyphae (IR); (B,C) arum-type of
arbuscules (Arb); (D) extra-radical hyphae (EX).

4. Discussion

Plants inoculated with beneficial, indigenous microbes have been recommended for
increasing the sustainability of plant yield and protecting plants against stress [41]. Further-
more, the interaction between these beneficial microorganisms and the plant rhizosphere
enhances plant growth, nutrient acquisition, yield, and soil energy conversion. Mycorrhizal
fungi and T. harzianum are well-known as natural, biosafe biocontrol agents of nematode
infections. Root-knot nematodes sorely affect tomato plants’ growth and yield all over
the world [42,43]. Our study reported that mycorrhizal fungi and T. harzianum can limit
the growth and reproduction of the nematodes and reduce their parasitism in tomato
plants’ roots.

In the current study, the biocontrol agent T. harzianum showed high potentiality
to produce plant growth-promoting compounds, as well as a potential for encouraging
hydrolytic enzyme production. Nieto-Jacobo et al. [44] stated that Trichoderma species are
soil-borne fungi that are commonly employed for various plant health benefits, due to
their potentiality for improved plant growth, abiotic stress tolerance, and disease resistance.
The capability of various Trichoderma species to produce the plant phytohormone auxins
(indole-3-acetic acid) that is determined by the presence of the main precursor L-tryptophan,
which is produced as plant exudates [12,45]. Indole acetic acid (IAA) production by
Trichoderma explained their efficiency in promoting plant root growth that could change
root architecture, leading to increased root mass and subsequently increased the root area
for beneficial microbial colonization and enhanced nutrient uptake [46]. Furthermore,
ammonia production by soil microbes showed important properties in stimulating nitrogen
assimilation and plant development [12,47]. Interestingly, Zhang et al. [7] reported that
the hydrolytic enzyme activity of Trichoderma species may explain the direct mechanism
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of Trichoderma–nematode interaction through the first step of Trichoderma parasitism on
nematodes by hydrolyzing the nematode eggs and the second-stage juveniles. So, for
disturbing nematode eggs and juveniles and consequently controlling the plant pathogenic
nematodes, a combination of lytic enzymes including proteases, chitinases, and lipases are
required [48].

In the present study, dual inoculation with mycorrhizal fungi and T. harzianum im-
proved the nutrient acquisition and growth of tomato plants. The use of dual inoculation
favored improvement in the shoot length and dry weight more than the single inoculation.
In the same context as our finding, dual inoculation with Glomus mosseae and plant growth-
promoting rhizobacteria enhanced tomato plant growth more than single inoculation [49].
In our study, the interaction between tomato plants and nematode pathogens led to a
morphological and physiochemical change in the tomato host. M. javanica infection signifi-
cantly diminished the tomato plants’ growth and shoot nutrient composition, while the
bioagents’ application reduced the harmful effect of the nematode infection. The biocontrol
efficiency of mycorrhizal fungi against nematodes has been recorded previously in tomato
plants [50]. Rhizophagus intraradices and Funneliformis mosseae decreased nematode tomato
root penetration by Nacobbus aberrans [51]. Mycorrhizal fungi can improve the vitality of
the host plants by enhancing nutrient uptake, mainly phosphorus, nitrogen, and potassium,
and increase water-use efficiency. Improved branching and growth of mycorrhizal roots
may increase the plants’ tolerance towards NE infection and balances the inhibited root
branching caused by nematodes [52]. Meanwhile, mycorrhizal bioprotective effects were
reported to be systemically induced as they act through the host plant [8]. Consequently,
in the current study, the enhancement effects on plant growth following inoculation with
T. harzianum, were also explained by improvement of the plant’s nutritional status. In
addition, mycorrhizal fungi and T. harzianum effectively take possession of the rhizosphere
and inhibit nematode populations within the phytobiome, hence, increasing every aspect
of tomato growth.

Our results proved that photosynthetic pigments increased in the infected tomato
plants that were also inoculated with the bioagents, thus indicating simultaneous im-
provement in the photosynthetic process. Mycorrhizal fungi being natural root symbionts,
support essential inorganic nutrients uptake to host plants, thereby causing mycorrhizal
plants to have higher chlorophyll content and higher photosynthetic activity. While in the
infected and non-inoculated plants, photosynthetic pigments were significantly reduced,
as previously reported [53]. The impairment of the chlorophyll and carotenoids mainly
happened due to the suppression of enzymatic activities implicated in the violaxanthin
cycle, which disturbed the photosynthetic apparatus stabilization [54].

The reactive oxygen species (ROS) contents are stimulated during environmental
stresses, which could cause damage to plant tissues, deterioration of lipid and protein,
DNA mutation, the disordering of cell organelle, and decay of the photosynthetic appa-
ratus [55]. Plant oxidation, non-enzymatic and enzymatic, has been reported as plant
oxidative response systems that interfered with the aerobic process to minimize the oxida-
tive cleavage due to more ROS production. Catalase (CAT) and guaiacol peroxidase (GPX)
were reported as protective oxidative enzymes in plants. In our study, NE stimulated the
oxidative burst in the infected and non-inoculated plants, recording the highest value in
H2O2 and MDA content. Similar to other pathogen stress, nematode infection produces
excessive free radicles such as H2O2, which accumulates during hypertrophy and cell
death [8]. Mycorrhizal plant resistance against nematodes occurs through improvement
in the systematic defensive capacity of roots due to the activation of the genes that en-
coded chitinases, pathogenesis-related proteins, enzymes implicated in the detoxification
of ROS, enzymes implicated in lignin biosynthesis, and in the pathway of the shikimate,
which, in turn, develop precursors of different aromatic secondary metabolites against
the infection of nematodes [16,19]. Our results demonstrated that CAT and GPX enzyme
activity was enhanced in infected dual inoculated tomato plants to eliminate the toxicity of
H2O2. Similar to our results, the systematic resistance developed by mycorrhizal fungi to
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reduce nematode infection occurred through the activity of phenolics and plant defense
enzymes with the reduction in MDA and H2O2 contents in tomato plants inoculated with
Rhizophagus irregularis and enhanced plant growth [17].

In the present study, lignin content of the infected tomato plants was significantly in-
creased. Infection and reproduction by NE are influenced by changes in lignin composition
or content. Nematodes create their constant feeding places inside the vascular cylinder,
which is the main location of the roots’ secondary wall formation and lignification [56]. The
change in lignin content is an important factor that explains the structural differences in
root cell walls: if its content increased, it implies that root cell walls lignify, thicken, and
create barriers to defend against the invasion of the pathogen. The inoculated plants with
the bioagents compared with infected tomato plants showed a significant reduction in the
lignin content due to decreased nematode infection and gall numbers.

Furthermore, the current study revealed that the hydrolytic enzyme activity in tomato
plant roots was significantly enhanced in the infected plants inoculated with the bioagents.
Zhang et al. [7] stated that the potential effect of bioagents may be due to the direct
parasitism mechanisms that have lethal impacts on the nematode eggs and J2 activities.
Consequently, an increase of extracellular hydrolytic enzyme activity was reported, which
allowed a direct effect on nematode eggshells and penetration of the eggs, leading to a
decrease in the number of nematode eggs capable of hatching and, thus, the number of
infective juveniles (J2) [7]. Therefore, the bioagents (MY and TH) could be applied as a
biocontrol agent for the management of nematode infections in economic crop plants.

In the present study, the simultaneous tomato root inoculation by MY and TH signifi-
cantly reduced the nematode penetration rates and populations, indicative of indirect and
direct biocontrol activity against NE as previously reported [43]. The effect of mycorrhizal
and dual inoculations was significantly pronounced on juveniles, the abundant and impor-
tant life stage in nematode inoculum. These results may be related to difficult nematode
migration towards the roots because the bioagents occupied the rhizosphere and therefore
caused difficulty in finding feeding space, so a reduction in nematode stage developments
and gall formation occurred. Compared with other nematode populations, juveniles were
the most active and greatest food seekers, which resulted in a higher root penetration
rate [57]. The direct mechanism of nematode population reduction by T. harzianum inocula-
tion occurred by fungal hyphae penetrating the egg mass matrix of nematodes and reducing
nematode hatching [58], or by the production of secondary fungal toxic metabolites, which
prevented nematode penetration and infection [59].

Arbuscular root colonization of tomato plants was positively affected by nematode
infection, as the highest colonization was reported in infected mycorrhizal plants. Further-
more, the mycorrhizal spore density increased under nematode infection. Space competi-
tion between glomerospores and endoparasitic nematodes could be related to increasing
mycorrhizal colonization due to competing for space and photosynthates. This may occur
in plants under stress. Competition for space indicates higher mycorrhizal colonization
and might lead to a higher level of mycorrhizal mediated biocontrol [60]. Mycorrhizal
colonization is characterized by the presence of a high amount of arbuscules, which seems
to be a requirement for biocontrol.

5. Conclusions

The biological approaches for plant-parasitic-nematodes constitute an effective al-
ternative to the conventional toxic chemical nematicides. The use of different species of
mycorrhizal fungi, in addition to T. harzianum, aims at ecofriendly protection, increased soil
fertility, and improved plant growth and, thus, has an advantage to sustainable agriculture.
T. harzianum exhibited a high potentiality to produce plant growth promoting compounds
(indole acetic acid and ammonia). As well, T. harzianum revealed varied enzymatic activities
(protease and lipase) that may illustrate their hydrolytic abilities against nematode eggs
and juveniles. Furthermore, in bioagent inoculated tomato plants, the penetration rates of
nematodes, juveniles and females numbers, egg and gall mass were reduced. Furthermore,
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glutathione peroxidase and catalase enzymatic activities were enhanced. So, the applied
bioagents revealed various effective strategies for the management of nematodes, including
the production of secondary metabolites, hydrolytic enzymes, as well as providing greater
nutrient and water uptake to the host plant, altering root morphology and rhizospheric
interactions and consequently competing for colonization/infection sites or photosynthates.
Moreover, the biocontrol agents stimulate induced systematic resistance in plants against
infection by pathogen and/or pests. In summary, the use of biocontrol agents in combi-
nation is a promising biocontrol tactic in agriculture against plant-parasitic nematodes
that may enhance the feasibility and commercial application of ecofriendly biofertilizers in
agriculture cropping systems.
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