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Summary, Theoretical developments of Hudson demonstrate how to 
calculate the variations of velocity and attenuation of seismic waves propa- 
gating through solids containing aligned cracks. The analysis can handle a 
wide variety of crack configurations and crack geometries. Hudson associates 
the velocity variations with effective elastic constants. In this paper we 
associate the variation of attenuation with the imaginary parts of complex 
effective elastic constants. These complex elastic constants permit the simu- 
lation of wave propagation through two-phase materials by the calculation 
of wave propagation through homogeneous anisotropic solids. 

1 Introduction 

Wave propagation in material containing a uniform weak concentration of aligned cracks can 
be simulated under a wide range of conditions by wave propagation in a purely elastic 
anisotropic solid which has the same velocity variations with direction as the cracked solid 
(Crampin 1978). A key step in this procedure is the use of effective elastic constants for the 
cracked material so that wave propagation can be calculated by the range of computer 
programs for seismic anisotropy reviewed by Crampin (1981). Crampin (1978) obtained 
?ffective elastic constants by modelling the variation of wave velocity through a cracked 
solid derived in a first-order approximation theory by Garbin & Knopoff (1973, 1975a, b). 
Hudson has now developed a more general theoretical approach for calculating the elastic 
constants of cracked solids that includes first-order (Hudson 1981) and second-order 
(Hudson 1982) interactions between the scattering inclusions. These methods include the 
results of Garbin & Knopoff and other authors for specific crack geometries. 

Hudson’s developments, including the correction of a minor copying error in Garbin & 
Knopoff (1975a), allow a more systematic treatment for calculating elastic constants than 
was available to Crampin (1978). In particular, Hudson (1981) develops techniques for 
modelling attenuation in cracked solids. The most convenient formulation for anisotropic 
attenuation is to represent the attenuation parameter l/Q as the eigenvalue of a matrix 
of the imaginary parts of complex elastic constants (Crampin 1981), where the real parts 
model the purely elastic behaviour. This then allows attenuative wave-propagation to  be 
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136 S. Cramp in 
calculated by the same range of anisotropy programs as the purely elastic behaviour 
(Crampin 1981). 

In this paper, we outline the procedure and calculate some complex elastic constants for 
two representative systems of cracks. 

2 Theoretical formulations for velocity variations 

We consider a weak distribution of parallel penny-shaped cracks, normal to the xl-direction, 
with crack density E = Na3/u ( E  < I), where N is the number of cracks of radius Q in volume 
u in an isotropic solid with Lame constants h and p.  Hudson (1981, 1982) showed that the 
general expression for effective elastic constants cJkmn applicable to the propagation of long- 
wavelength seismic waves through a cracked solid is: 

(1) 1 2 .  
c j h n  = Cjgmn + C j h n  + C i h n  9 

where cJLn is the first-order and c;~,, the second-order perturbation of the isotropic (or 
anisotropic) elastic constants c L n  of the uncracked solid. The effective first-order pertur- 
bation for cracks normal to the x,-axis in an isotropic solid can be written (Hudson 1981): 

( X t 2 p ) Z  X ( h t 2 p )  X ( h + 2 P )  0 0 0 

A(ht21.0 hZ h' 0 0 0  

h ( h t 2 P )  A2 h2 0 0 0  

0 0 0 0 u2 0 

0 0 0 0 0 p; 

0 0 0 0 0 0  

and the second-order perturbation (Hudson 1982): 

D; 

where q = 15(A/p)'t 28(h/p) t 28; X = 2 p ( 3 h  t 8p)/(X t 2 p ) ;  and D is the diagonal matrix 
with trace (Ull, Vll ,  Ul l ,  0, UJ3, U33). The quantities 17, depend on the conditions at the 
crack face and are integrands over the face of P/Q times the k th  components of the discon- 
tinuity in displacement across the crack due to the imposed tractions in the xm -direction 
(Hudson 198 1). 

The elastic constants are fully specified for systems of parallel cracks if U11 and V33 

can be calculated for the particular crack configuration. 'The constants for mixtures of 
cracks with different parameters and different orientations can be obtained, by adding the 
perturbations ( c ; ~ ~  t c ;hn)  calculated separately for each parallel element of the mixture 
with appropriate values of E ,  U I 1 ,  and VJ3 and appropriate orientations. 

Hudson (1981) determines expressions for UI1 and V3, in the long-wavelength limit for 
ellipsoidal inclusions with semi-axes Q, Q and c, small aspect ratio d = C/Q (c < Q), and filled 
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Effecrive elnstic consrunts for cracked solids 
with weak isotropic material having Lame constants X' and p'. Hudson obtains: 

U,1=(4/3) [(A + "/(A +P)1/(1 +mi 
and 
V, = (1  6/3) [(A + 2p) / (3h t 41414 I + M): 
where 

K = [(K ' t (4/3)p'Y(n d p ) ]  I0 + W ( X  + u)l; 
M =  [4~'/(7rdp)J [(A + 9 , ~ ) / ( 3 h  +4~)1; 

I37 

(4) 

and K'= X' f (2/3) p' is the bulk modulus of the weak material, 
Equations (4) model saturated water-filled cracks with aspect ratio d by putting p '=  0 

and K'= A '  a '1.25 x 109N rn4. The condition for thin cracks d a 0 then gives UI1 = 0 and 
Us = (16/3) (A t 3p)/(3X t 4p). This leads to the same expressions for the velocity 
variation with direction as those in Garbin & Knopoff (1975b) for weak anisotropy. 

Equations (4) model dry cracks with aspect ratio d by putting X' = 0 and p' = 0, giving 
U1, = (4/3) ( A  t 2 p ) / ( h  + p )  and U, = (1613) (A t 2 p ) / ( 3 h  t 4p). These lead to expressions 
demonstrating the physically plausible result that the scattering due to  cracks is independent 
of the aspect ratio for small values of the ratio. 

These expressions have the same vetocity variations as the corrected expressions of Garbin 
& Knopoff (1973, I975a) for weak anisotropy. The correction (Hudson finds a factor of 2 
missing in the last term in equation (60) of Garbin & Knopoff 1975a) results in the contri- 
butions with 48 terms in the squares o f  the velocity variations of the qP-wave and the shear 
wave with coplanar polarization (43') being equal and opposite in sign in the symmetry 
plane through the crack normal, This equality is a necessary feature of propagation in aniso- 
tropic symmetry planes (Crampin JSSl), and the previous inequality caused ambiguity in 
Crampin's (1978) modelling of the Garbin & Knopoff expressions for dry cracks. 

Note that Hudson (1981, 1981) writes the elastic tensor as a 6 x 6 matrix iCi/) for 
i, j = 1, 2, . . . 6  with the notation that c,/ = Ckf,,$n for i ,  j < 4 (which is standard) and 
cri = 2ck,,," for 4 4 i, j (non-standard) where k. I, m, n take appropriate value I ,  '1,3 given 
by equation (48) of Hudson (1982). 

3 Theoretical formulations for attenuation variations 

Hudson (1981) also determined the angular variations of the dissipation coefficient I/Q for 
parallel cracks. Hudson obtained the expressions: 

8 is the angle from the norma1 to the crack; w is the angular frequency; a and 0 are the 
compressional and shear-wave velocities in the uncracked solid: qSP, and qSR are the quasi 
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138 S. Oampin 
shear-waves polarized parallel, and at right angles, respectively, to the symmetry plane 
through the crack normals. 

Crampin (1981) demonstrated that anisotropic dissipation coefficients may be modelled 
as the imaginary parts c ; ~ ~  of complex elastic constants cjkm,, = cThn + i c;-,,, where the 
real parts are the conventional elastic constants (we may drop the suffix R on the real part 
without causing ambiguity). These imaginary parts form a fourth-order tensor, and the 
variation of the dissipation in symmetry planes has similar approximate equations to those 
of the velocity variations (Crampin 198 1). 

The real parts of the imaginary elastic constants equivalent to (5) are obtained by solving 
the approximate equations for specific values of the dissipation coefficient. We have: 

A = [ ( c ~ i i ~  + C Z Z Z Z ) / ~  + c i izz+ 2 ~ 1 ~ 1 2 1  Qq~(45") 
I 

- k L 1 1  + c2222)/2 - 2c:212>; 

B = C&U~ - 2 c 2 3 2 3 ; c =  I Qqp(0"); D = Qqp(90');E = Q q s ~  (90"); F =  Q O ~ ~ ( O o ) ;  

and the constants c 1 h n  without superscripts are defmed in equation (1). 

4 Specimen cradced solids: elastic propagation 

Specimen elastic constants for dry and water-saturated parallel cracks in an isotropic 
solid, with crack densities E = 0.1, are listed for specified parameter in Table 1. The velocity 
variations are compared with the equivalent Garbin & Knopoff expressions in Fig. 1. 

Fig. l(a) compares the second-order Hudson velocity variations in a solid with dry cracks 
with the first-order variations of the equivalent Garbin & Knopoff model. The uncorrected 
Garbin & Knopoff model GKFFl (Crampin 1978) is also shown. The Hudson velocities and 
corrected Garbin & Knopoff velocities are in good agreement. Note that, unusually for hexa- 
gonal symmetry systems, the two shear-wave velocity surfaces do not touch except in the 
direction of the symmetry axis normal to the plane of the cracks. This means that the delay 
between the split shear-waves, which is zero in the direction of the normal, increases smoothlv 
with increasing angle from the normal. 

Fig. l(b) shows that the second-order Hudson velocity variations for saturated cracks are 
essentially identical with those of the equivalent first-order Garbin & Knopoff model 
GKLF1. In this case the two shear-wave sheets do intersect and there are significant shear- 
wave delays for all directions except for very close to the normal, and for directions 
approximately 60" to the normal. 
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Effective elastic constants for cracked solids 139 
Table 1. Effective real and imaginary elastic constants for wave propagation through parallel cracks 
(normal to the x,axis) in an isotropic solid with density p = 2.6g ~ r n - ~  and velocities (I = 5.8 and 
p = 3.349 km s - ' .  The real elastic constants are derived from equations ( l ) ,  (2) and (3), and the imaginary 
constants from equation (6). All constants are in units 109N m-2. The cracks have radius 5 m, aspect 
ratio 0.0001, crack density e = 0.1, and are penetrated by waves of frequency 40 Hz. 

jkmn 

1111 

3333 2222 I 
2233 

1133 122 I 
2323 

1313 

Perturbations of the elastic constants 
(HCD1) 
Dry cracks 

I 
c;krnn cjim n cjkrnn Cjkrnn 

87.464 -52.473 16.555 0.1910 

87.464 -5.825 1.838 0.0343 

29.142' -5.825 1.838 0.0343 

29.142 -17.483 5.5  16 0.1008 

29.161 0.000 0.000 0.0000 

29.161 -6.666 0.745 0.0213 

(HCS1) 
Saturated cracks 
Cikrnn Cjkrnn ';krnn 

-0.142 0.000 0.0000 

-6.016 0.000 0.0000 

-0.016 0.000 0.0000 

-0.047 0.000 0.0072 

0.000 0.000 0.0000 

-6.666 0.745 0.0213 

These differences between the shear-wave delays in dry and saturated cracks could be a 
valuable criterion to assess the degree of water saturation in system of parallel cracks. The 
differences are more clearly shown in the projections in Fig. 2. These are equal-area 
projections of the delays for diagonal paths through spheres with diagonals of lOkm for 
three orientations of parallel cracks. The delays are plotted for group-velocity (ray-path) 
propagation, such as would be observed in a horizontal plane over a source of seismic waves. 
The deviations in the direction between the group (energy) and phase propagation are 
comparatively small at these crack densities (see Crampin & McGonigle 1981), and replacing 
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Figure 1. Variations in the phase velocities of the three body-waves for angles of incidence between 0" 
(normal) and 90" (tangential) to parallel cracks. The qP- and qSP-waves are polarized parallel, and the 
qSR-wave perpendicular to, the incident plane of symmetry. (a) Dry cracks: solid line - GKFFl 
(Crampin 1978); short dash - GKFF1 with Hudson's (1981) correction to Garbin & Knopoff (1975b); 
and long dash - HCDl specified in Table 1. (b) Saturated cracks: solid line - GKLFl (Crampin 1978); 
and long dash - HCSl specified in Table 1. 
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140 S. Cramp in 

'' a H C D l N  X O Z  

4 30 a 

Figure 2. Equal-area projections of the shear-wave delays and shear-wave polarizations for group-velocity 
(ray-path) propagation through a 1 0  km radius upper-hemisphere containing parallel cracks. On the left 
of each delay projection is a north-south section of the delays. Both contours and sections are labelled 
in hundredths of a second. The solid bar in the polarization stereograms is the projection on a horizontal 
plane (not a free surface) of the polarization of the faster shear-wave, and the broken line is the 
projection of the polarization of the slower shear-wave. The orientations of the parallel cracks are, from 
the bottom: (i) vertical, (ii) dipping 45" to the south and (iii) horizontal. The projections of the delays 
and polarizations are shown for: (a) dry cracks, HCDl  and (b) saturated cracks, HCS1. 

phase by group arrivals does not alter the essential features. Note that the effects of a free 
surface on the behaviour of shear-waves have not been considered here. 

Cracks in the Earth are probably most commonly oriented vertically perpendicular to the 
minimum compressive stress which is usually horizontal (Hubbert & Willis 1957; Zoback & 
Zoback 1980). Fig. 2 indicates that the relative delays for dry vertical cracks (bottom set 
of diagrams in Fig. Za) are large in a broad stripe of directions nearly parallel to the cracks 
smoothly decreasing to zero perpendicular to the cracks. The delays for saturated vertical 
cracks show similar values as those for saturated cracks in the broad stripe parallel to the 
cracks, but the stripe is now bordered by two bands of small delays before increasing again 
before returning to zero for the direction normal to the cracks. 

Fig. 2 also shows equal-area projections of the shear-wave polarizations as would be 
observed on horizontal instruments in a horizontal plane over the soprce; again surface 
effects have not been considered. The polarizations of the faster shear-waves through dry 
cracks are approximately parallel to the plane of the cracks over the whole of the projection. 
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Effective elastic constants for cracked solids 141 
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Figure 2 - continued 

The polarizations of the faster shear-wave through saturated cracks, although parallel to the 
cracks in a broad stripe across the centre of the projection, change abruptly to approxi- 
mately normal to the cracks for directions more steeply inclined to the plane of the cracks. 

Although the projections show marked differences, both in delays and polarizations, 
between dry and saturated cracks, it must be remembered that the effect of the free surface 
is not shown in the projections of Fig. 2. Shear waves at the free surface will only clearly 
indicate the polarization of the incident waves for angles of incidence less than about 35' 
(Booth & Crampin 1984), and within this circle the projections for dry and saturated cracks 
are very similar. 

Observations of shear-wave delays and shear-wave polarizations, if they can be obtained, 
are measurements of two almost independent phenomena determined by the crack 
configuration. Any valid interpretation or inversion must satisfy both sets of observations, 
and is a valuable check on the solution. 

5 Comparison of the Hudson and Garbin & Knopoff derivations 

The first-order expressions of Hudson (1981, 1982) for the velocity variations in a weak 
distribution of cracks in an isotropic solid may be written: 

v =  vo [ i - ~ f ( e ) p ~ ;  (7) 
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142 S. Cramp in 
where Vo is the appropriate P- or S-wave velocity in the uncracked isotropic solid; E is the 
crack density; and f ( S ) ,  a function of the angle to the crack normal, is dependent on the 
particular wave-type qP, qSP or qSR. 

The equivalent expressions of Garbin & Knopoff (l973,1975a, b) are of the form: 

v= vo/[i  + ~ f ( e ) ] ~ / ~ ;  (8) 
where f ( 0 )  is the same function for appropriate wave types in (7) and (8). 

Thus the First-order expressions of Hudson and Garbin & Knopoff formally agree to the 
first order in E (E 4 l), but they differ significantly for velocity anisotropy greater than 5 per 
cent, say. However, the Hudson perturbations, correct to the second order, are similar to 
the first-order Garbin & Knopoff expressions for dry cracks in Fig. l(a), and are nearly 
identical for saturated cracks in Fig. l(b). This agreement is remarkable considering the 
different approach used in the derivations. 

Hudson (private communication) writes that the range of validity of such truncated 
series depends on how it is expressed: as a straightforward polynomial; as a polynomial 
raised to some positive or negative power; or as a quotient of two polynomials (such as 
Pad6 approximants, see Cabannes 1976). All such representations may be the same when 
expanded as a straightforward series in E up to some given power, but their ranges of 
validity will be different. It follows that, to remain valid over the same range of values of 
E ,  one representation will need to be taken to a higher power of E than another. 

6 Specimen cracked solids: anelastic propagation 

The attenuation of wave propagation in cracked solids can be simulated by the imaginary 
elastic constants in equation (6). The imaginary parts of the elastic constants for specified 
parameters appropriate to HCDl and HCSl are listed in Table 1. The angular variations 
derived from the imaginary elastic constants in (6) are compared in Fig. 3 with Hudson's 
first-order expressions (5 ) .  The overall pattern of variations compares very well. However, 

30 60 Y go 

Figure 3. Variations in attenuation of waves of 40 Hz frequency for propagation over the same angles as 
in Fig. 1 for: (a) dry cracks, HCDl and (b) saturated cracks, HCS1. Dashed lines are calculated from the 
expressions of Hudson (1981), and solid lines are from the elastic constants in equation (6). 
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Effective elastic constants for cracked solids 143 
there is the same problem of the difference of the 40 variations of qP and qSP, that was 
present with Crampin’s (1978) fit of elastic constants to the (uncorrected) Garbin & 
Knopoff variations, but the agreement between the two derivations could be improved by 
empirical fitting as in Crampin (1978). As expected, the variation of attenuation bears an 
inverse relationship to the velocity variations, in the sense that in directions where the wave 
type is particularly affected by the presence of cracks the attenuation is high and the 
velocity is low, whereas in directions less affected by cracks the attenuation is low and the 
velocity approaches the higher value in the uncracked solid. The attenuation of the qSR- 
wave is the same for dry and saturated conditions, whereas the attenuation of qP and qSP 
decreases as the cracks become saturated. 

It is worth noting a computational detail. The velocities (Fig. 1) and the attenuation 
(Fig, 3) are obtained from the complex eigenvalue of a matrix of complex elastic constants. 
The real and imaginary parts of the eigenvalues (the square of the velocities, and the 
attenuation l/Q, respectively) may be found independently by solving the real and 
imaginary parts of the matrix separately. This procedure gives the same numerical values, but 
it is then difficult to order the imaginary eigenvalues correctly. Solving the complex eigen- 
problem ties the real and imaginary eigenvalues together, and the velocities are naturally 
ordered by the polarizations of their eigenvectors. 

7 Discussion 

Equations (2) and (3) show that the perturbations to the effective (real) elastic constants 
controlling the seismic velocities in aligned cracks are linearly dependent on the crack 
density E .  In the long-wavelength limit, the velocities are insensitive to the crack radius 
(at constant crack density), to the aspect ratio, and the particular material filling the 
crack apart from the major effect of the presence or absence of liquid in the cracks. The 
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Figure 4. Variations of the maximum values of  qP- and qS-wave attenuation for crack radii between 1 
and 10 m at a constant crack density of e = 0.1. Solid lincs are the attenuation of 20 Hz waves, short 
dashes are 40 Hz waves; and long dashes are 80 Hz waves in: (a) dry cracks and (b) Sattirated cracks. 
The positions of the maxima of the attenuation shown in Fig. 3 are marked by solid circles. 
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144 S. Crampin 
attenuation, however, derived from equations (5) and (6) varies rapidly with crack radius 
and with the frequency of the wave penetrating the cracked solid. Fig. 4 shows the variation 
of the maximum 4P- and qS-wave attenuation of waves of 20, 40 and 8OHz through a 
cracked solid with crack density e = 0.1 and a range of crack radii from 1 to 10m.  

The maximum of the qS-wave attenuation is independent of the degree of saturation of 
the cracks, but falls off rapidly with decreasing crack radius, and increases with increasing 
frequency. Note that the maximum attenuation of @-waves is approximately 3 times greater 
than the maximum qS-wave attenuation in dry cracks, and 3 times less than the maximum 
of the 4S attenuation in saturated cracks. The presence of cracks, which will tend to be 
aligned by stress (Crampin, Evans & Atkinson 1984) and hence effectively anisotropic 
(Crampin 1978), can also cause the rapid fluctuations that characterize observations of shear 
waves in the Earth. Shear waves propagating through parallel cracks show large varying 
delays between the split shear-waves with significant differences between dry and saturated 
cracks (Figs 1 and 2). The split shear-waves also have very different attenuations (Fig. 3). 
This means that small changes in the direction of propagation, small changes in polarization, 
or small changes in the degree of water saturation, may have large effects on the appearance 
of the shear wavetrain particularly on subsurface recoordings and demonstrates the 
sensitivity of shear-waves to the presence of cracks. 

8 Conclusions 

The examples of cracked solids we have shown have relatively large crack densities and are 
approximate solutions. However, the three-dimensional pattern of the velocity variations 
and shear-wave delays are changed very little by the crack density; although the absolute 
values may vary widely. In many circumstances, and this is the justification for presenting 
them, the three-dimensional pattern is more informative thzn the absolute values. This is 
supported by Crampin, McGonigle & Bamford (1980) who obtained similar parameters 
from the inversions of rather different velocity variations observed in cracked limestone at 
three neighbouring quarries. The differences were attributed to different degrees of 
saturation by water, with the interpretation that despite the wide variation in the dilatation 
of the very large cracks, the overall patterns of the variations were similar to those of much 
smaller crack densities. 

Hudson’s formulations for calculating real and imaginary effective elastic constants as 
outlined in this paper are very flexible and will accommodate a wide range of crack 
geometries by the technique of summing the individual perturbations. It is clear that 
shear wavetrains contain much more information about the internal structure of the material 
through which they propagate than P wavetrains. If the various problems associated with the 
interpretation of shear waves can be overcome, particularly the interaction with the free 
surface at over-critical angles (Booth & Crampin 1984), the study of shear waves may reveal 
much new information about the interior of the Earth. 

The overall patterns of the velocity variations for the parallel cracks of Garbin & Knopoff 
of both the uncorrected, but particularly the corrected version, are similar to the Hudson 
variations in Fig. 1. The technique for calculating the effects of crack systems with mixed 
orientations suggested by Crampin (1978) (by multiplying the relative reductions in 
velocity for each parallel system) is in agreement with the technique of Hudson (1981, 
1982) of adding the perturbations of the elastic contents. This means that the figures and 
conclusions of Crampin (1978) are largely unaltered by adopting the preferred analysis of 
cracked solids developed by Hudson, although the detailed behaviour of the shear-waves in 
dry cracks changes because of the correction to the Garbin & Knopoff expressions. The main 
conclusion of this paper is that the Hudson (1981) formulations provide a very flexible 
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Effective elastic constants for cracked solids 145 

technique for calculating real and imaginary effective elastic constants of cracked solids, 
whch then provide the essential model parameters for calculating seismic-wave propagation 
through anisotropic solids by the techniques reviewed by Crampin (198 1). 
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