
EFFECTIVE ASYMMETRIC XML COMPRESSION

Przemysław Skibiński1, Szymon Grabowski2, Jakub Swacha3

February 1, 2007

1 University of Wrocław, Institute of Computer Science,
Joliot-Curie 15, 50-383 Wrocław, Poland

inikep@ii.uni.wroc.pl
2 Technical University of Łódź, Computer Engineering Department,

Politechniki 11, 90-924 Łódź, Poland
sgrabow@kis.p.lodz.pl

3 Szczecin University, Institute of Information Technology in Management,
Mickiewicza 64, 71-101 Szczecin, Poland

jakubs@uoo.univ.szczecin.pl

This is a preprint of an article accepted for publication in
Software—Practice and Experience

Copyright © 2005 John Wiley & Sons, Ltd.
http://www.interscience.wiley.com

Abstract

The innate verbosity of the Extensible Markup Language remains one of its main
weaknesses, especially when large XML documents are concerned. This problem can
be solved with the aid of XML-specialized compression algorithms.

In this work, we describe a fast and fully reversible XML transform which,
combined with generally used LZ77-style compression algorithms, allows to attain
high compression ratios, comparable to those achieved by the current state-of-the-art
XML compressors. The resulting compression scheme is asymmetric in the sense that
its decoder is much faster than the coder. This is a desirable practical property as in
case of many XML applications data are read much more often than written. The key
features of the transform are dictionary-based encoding of both document structure
and content, separation of different content types into multiple streams, and dedicated
encoding of numbers and dates.

The test results show the proposed transform to improve the XML compression
efficiency of general purpose compressors on average by 35% in case of gzip and 17%
in case of LZMA. Compared to the current state-of-the-art SCMPPM algorithm,
XWRT with LZMA attains over 2% better compression ratio, being 55% faster.

KEY WORDS: Extensible Markup Language, XML compression, XML encoding, text transform.

1. Introduction

Since the advent of the Extensible Markup Language (XML) its verbosity has been viewed
repeatedly as a misfeature. Notwithstanding that a big part of critique is due to hapless
attempts of applying the XML where it certainly should not have been applied, the XML
verbosity is a fact, a crucial one when huge data collections are concerned.

Nowadays the XML is a real standard, not only officially defined and endorsed, but
actually used. Even though proprietary binary formats could help save time and memory,
the XML is simply more convenient. And alternative formats, such as YAML [1], boasted
for its simplicity, seem to be in no position to threaten this popularity.

The primary objective of our research was to design an efficient way of compressing
XML documents. High compression ratio and speed were considered equally important.
As we have observed that archived XML documents are more often decompressed than
recompressed, we focus on attaining quick decompression rather than compression. We
also require the transform to be fully reversible, so that the decompressed document is a
mirror image of the original. Neglected by existing XML compressors, this property has
weighty practical implications, to be discussed later.

The map of the paper is as follows. Section 2 contains a short review of existing XML
compression methods, thus putting our work in a proper context. Section 3 discusses the
sources of redundancy in XML documents. In Section 4 we present our transform step-by-
step. The implementation details are a subject of the next section. Section 6 contains
thorough experimental results and related discussion. We measure not only compression
ratios, but also compression and decompression times, and simulate file transfers over a
network in a range of realistic bandwidths. Section 7 gives our conclusions and points out
several issues for further study.

We start, however, with pointing some remarkable features of the format we tackle
with. XML is a metalanguage: the set of tags used for marking up the data is chosen by the
author of a given document. In this way, various entities from the real world can be
described naturally with XML tag names. XML represents a tree structure: its elements can
be uniquely located by their path starting at the document root. Each element is delimited
with a start tag and an end tag, between which data are usually stored in plain text or
structured form. XML documents have hierarchical structure: start/end tag pairs are nested
so that an outer start tag can have its ending counterpart only after all its inner tags have
been closed. Note that in a file an XML document is stored as a “flattened” tree obtained
from depth-first traversal.

Elements may have one or more attributes, for example (SwissProt.xml):

<Entry id="100K_RAT" class="STANDARD" mtype="PRT" seqlen="889">
 <AC>Q62671</AC>
 <Mod date="01-NOV-1997" Rel="35" type="Created"></Mod>
 <Mod date="01-NOV-1997" Rel="35" type="Last sequence update"></Mod>
 <Mod date="15-JUL-1999" Rel="38" type="Last annotation update"></Mod>
 <Descr>100 KDA PROTEIN (EC 6.3.2.-)</Descr>
 <Species>Rattus norvegicus (Rat)</Species>

where e.g. Mod is a tag and date, Rel and type are its attributes.

After a tag, some data and/or other tags may be located, but eventually we should come
across its matching end tag. Pairless tags are possible too, they are signaled with the /
symbol just before the closing bracket >. Example (Enwikinews.xml):

<namespace key="0" />.

Also, comments are possible, delimited by <!-- and --> sequences.
If an XML document adheres to those simple syntactical rules, it is called well-formed.

Usually there are additional constraints imposed upon XML documents. These can be
defined in Document Type Definition (DTD) or XML Schema, specifying the allowed
tags, attributes and their values, and the structure. We say that a document is valid
according to a given DTD, if it is well-formed and conforms to the specified DTD.

The aforementioned verbosity, and hence redundancy, of many XML documents
(especially large ones) is caused by highly repetitive (sub)structures of those documents
and often long element and attribute names. Therefore, a need to compress XML, both
efficiently and conveniently to use, has been identified nowadays as a burning research
issue in the scientific community.

2. Review of existing XML compression methods

One of the first XML-oriented compressors was XMill [2] presented in 2000. It parses the
XML data and splits them into three components: element and attribute symbol names,
plain text and the document tree structure. As those components are typically vastly
different, it pays to compress them as separate streams. XMill component streams have
been originally compressed with gzip, and then [3] also with bzip2, PPMD+ and PPM*.1
With gzip and order-5 PPMD+ the XMill transform improves compression by about 18%
[3], but once higher order contexts come to play (bzip2, PPM*), the gains disappear, and it
even compresses worse than the respective compressors on non-preprocessed documents.
The supposed reason is that high order PPM compressors already handle the different
contexts well enough, so the XMill transform helps little if at all, and on the other hand
breaking the original structure makes it impossible to exploit the redundancy across
components.

Although XMill makes it possible to encode each container using a dedicated method
(exploiting the type of data stored within it, e.g., numbers or dates), this feature is not
practical as it requires the user to choose the encoding for specific containers.

Cheney’s XMLPPM [3] is a streaming compressor which uses a technique named
multiplexed hierarchical modeling (MHM). It switches between four models: one for
element and attribute names, one for element structure, one for attributes, one for strings,
and encodes them in one stream using PPMD+ or, in newer implementations, Shkarin’s
PPMd. The tag and attribute names are replaced with shorter codes. An important idea in
Cheney’s algorithm is injecting the previous symbol from another model into the current
symbol’s context. Injecting means that both the encoder and decoder assume there is such
a symbol in the context of the current symbol but do not explicitly encode nor decode it.

1 References to all the general purpose compressors mentioned in this work can be found at
http://www.maximumcompression.com.

The idea of symbol injection is to preserve (at least to some degree) contextual
dependencies across different structural models, which was totally lost in XMill.

SCMPPM [4] can be seen as an extreme case of XMLPPM. Instead of using only few
models, it maintains a separate model for each element class. Every class contains
elements having the same name and the same path from the document root. This technique,
called Structure Context Modeling (SCM), wins over XMLPPM on large documents (tens
of megabytes), but loses on smaller files. Also, SCMPPM requires lots of memory for
maintaining multiple statistical models and under limited memory scenarios it may lose
significantly, even compared to pure PPMd [5].

In a recent work [5] Cheney proposed a hybrid solution (Hybrid Context Modeling,
HCM), trying to combine the best features of MHM and SCM. In this algorithm initially a
single model for each structural class is used, with symbol injection, i.e., it starts exactly as
MHM. The novelty is to count occurrences of each element. Once the counter exceeds a
predefined threshold, the given element gets its own model space, so is separated from the
other elements. HCM also imposes a limit on the maximum number of models to confine
memory usage on very large files. Both these parameters are chosen experimentally. Albeit
sound, the HCM algorithm rarely dominates both SCM and MHM.

Several proposals (see e.g., [6] and references therein) make use of the observation that
a valid XML structure can be described by context-free grammar, and grammar based
compression techniques can be applied then. Grammar-based compression can be seen as
generalization of dictionary-based compression, as it can identify and succinctly encode
potentially complex patterns in the text. Still, this approach, albeit promising, so far has not
yielded compressors competitive e.g. to XMLPPM in the compression ratio.

A recent trend in XML compression is to support queries directly in the compressed
representation. The pioneering work in this domain was XGRind [7], while probably the
most advanced solution at the moment is XBzip [8]. Although this scheme is quite
impressive in both compression ratio and search/navigation capabilities, it loses to
SCMPPM in compression ratio even if no support for queries is implemented. Together
with auxiliary structures for searching, it sometimes needs even more space than a
respective gzip archive, at least with the default settings (cf. Table 2, XBzipIndex column,
and Fig. 1 (top) in [8]).

Yet another line of research is to construct DTD- or Schema-aware compressors (XCQ,
ICT XML-Xpress™). Taking into account that the syntax of the document is already
stored in a DTD, impressive compression ratio can be obtained, provided a DTD for a
given XML document is available for both compressor and decompressor, and the given
document fully conforms to it. Theoretically, this could be the best way to handle XML
compression, but in practice XML documents with unavailable (or even undefined) DTD
are often used, and document structure can be rearranged, raising the issue of
incompatibility between compressor and decompressor.

In this paper we shall address neither the problem of making the compressed XML
queriable, nor using DTD in the process. Instead, we shall focus at devising a method to
store XML in a very compact form, and in a way as simple and fast as possible.

3. Handling the redundancy of XML documents

The initial thought that moved our attention to the preprocessing approach was that if XML
is a kind of text, then a word-replacing scheme using a static dictionary of the most
frequent English words should improve compression ratio more or less as much as it does
with plain text [9]. Indeed, the scheme worked nicely with XML-marked textual
documents. As expected, it did not help with compressing XML documents dominated by
numerical data. The real disappointment was that it did not help much compressing most
XML documents, that is those with a mixed textual-numerical content.

A simple investigation revealed that in fact, in most XML documents, there is a short
list of words which appear throughout the document with extremely high frequency. This
is particularly the case with tag and attribute names, but attribute values or some of the
element content words can also appear many times.

The problem is that the lists of frequent words vary greatly between XML documents
with different content type. This is why the static dictionary turned out to be quite a failure.
Yet this redundancy can be exploited with the help of a semi-dynamic dictionary. The
frequent words can be extracted in a preliminary scan over the document to form the
dictionary. Then, every time a dictionary word is found in the document, it can be replaced
by its dictionary index. Notice that this happens very often, as the dynamic dictionary
contains words that are actually frequent in the document, not words that could potentially
be frequent, as was the case with a static dictionary. If encoded properly – and we shall
show later what we mean here – dictionary indices are always shorter than the words they
reference. The only drawback of a semi-dynamic dictionary is that it must be stored
explicitly within the preprocessor output. Still, as the words included in the dictionary are
highly frequent, the size (in bytes) of the stored dictionary is relatively small compared to
the total encoded length of the document.

Another issue to solve is how to encode numbers. They appear in the great bulk of XML
documents, as many fields in real-world databases are numeric. Storing numbers as text is,
roughly spoken, ineffective. Numbers can be encoded more efficiently using a numerical
system with base higher than 10. Moreover, we noticed that numbers – slightly different
among themselves – were often the only non-repetitive element within a very repetitive
context. We can eliminate this unpredictability by removing the numbers to another data
stream, marking only the place of their appearance in the original XML document. Now,
the document content becomes more repetitive, and the numbers in the separate stream can
be encoded as densely as possible, using a numerical system with base 256.

Universal compression algorithms treat an XML document as a stream of homogenous
data. The compression model in universal algorithms is built on the correlation between
adjoining symbols. Such approach is far from optimal though, as XML is actually a mix of
several data streams, each one with structural properties of its own, and there is a lot of
correlation between symbols which are distant but syntactically related.

Knowing the difficulty that universal compression algorithms have coping with this
situation, an easy solution would be to separate the streams. This can be done by moving
the contents of each XML element class to a specific place in the output file. Thus, the

contents of the same element class are kept together, away from the contents of different
elements.

In a well-formed XML document, every end tag must match the corresponding start tag.
This can hardly be exploited by general-purpose compression algorithms, as they maintain
a linear, not stack-alike data model. The compression ratio can then be increased by
replacing every matching end tag with merely an element closing flag.

The following two simple techniques deal with redundancy in the layout of XML
documents. Although they are not relevant for all XML documents, they provide
noticeable gains when compressing documents they were aimed at.

The first one makes use of structural indentation by efficiently encoding the leading
blanks in lines. This kind of redundancy, typical to XML documents created with editors
caring about the output format, cannot be well exploited by general-purpose compression
models. The second technique works for those documents in which an end tag is usually
followed with a newline character. Such a concatenation can be reduced to a single
symbol.

4. XML Word Replacing Transform

In this section we introduce XML Word Replacing Transform (XML-WRT, or XWRT for
short) through detailed description of its main constituents.

XWRT is lossless. Perhaps surprisingly, few of the presented XML compressors in the
literature are truly lossless. This is because the document layout (e.g., trailing spaces) is
often ignored as it carries no meaning. Still, preserving the layout may be useful for human
editors of a document. The exact fidelity of the decompressed document with the original
is also required in order to verify the document integrity using a cyclic redundancy check
or hash functions. These are the reasons for which we have developed a truly lossless
approach, following a long tradition of text compression.

Our transform is designed primarily for LZ77-style [10] compression. We have chosen
LZ77 to keep the decompression fast. There are context-aware algorithms, PPM [11] in
particular, that achieve higher compression efficiency, but the price is much slower
decompression and much higher memory requirement. Compressors from the LZ77 family
differ significantly from the context-aware schemes. Basically, they parse input data into a
stream of matching sequences and single characters. The matches are encoded by
specifying their offsets, i.e., distances to the previous sequence occurrence in a limited past
buffer, and lengths, while the literals are encoded directly, in most variants with Huffman
coding. There have been many refinements since the seminal works of Ziv and Lempel
[10] and Storer and Szymanski [12], but the overall picture has not changed. LZ77
compressors do not predict characters on the basis of their context, or, in some modern
variations, they do it only in a very low order rudimentary manner. The strength of LZ77
lies in succinct encoding of long matching sequences and high decoding speed. In
consequence, an XML preprocessor adapted for LZ77 compressors should attempt to:

• reduce the number of characters to encode;

• decrease the offset (in bytes) of the matching sequences;

• decrease the length (in bytes) of the matching sequence;

• virtually increase the sliding window, i.e., the past buffer in which matching
sequences are looked for.

It appears that in case of LZ77 (but not necessarily PPM or BWT), shortening the output of
the preprocessor has clear positive effect on the final compression ratio.

The architecture of XWRT implementation is portrayed in Fig. 1.

Figure 1: The general XWRT operating scheme

The dictionary

The backbone of our transform is to replace the most frequent words with references to a
dictionary. Our notion of a “word” is broader than its common meaning, and will be
described below. The XWRT dictionary is obtained in a preliminary pass over the data,
and contains sequences of length at least lmin characters that appear at least fmin times in the
document. The dictionary is sorted according to the frequency of occurrence of words.

A dynamic dictionary was previously used in XMill [2], but XMill allows only the
element and attribute names as dictionary entries, while the XWRT dictionary contains
items from the following classes:

• ordinary words – sequences of lowercase and uppercase letters (a-z, A-Z) only,

• start tags – sequences of characters that start with <, contain letters, digits,
underscores, colons, dashes, or dots, and end with >. Start tags can be preceded by one
or more spaces as XML documents usually have regular arrangements of the lines, in
which individual tags very often begin in the same column, preceded with the same
number of spaces,

• URL address prefixes – sequences of the form http://domain/, where domain
is any combination of letters, digits, dots, and dashes,

• e-mails – patterns of the form login@domain, where login and domain are any
combination of letters, digits, dots, and dashes,

• words in form "&data;", where data is any combination of letters, representing
XML entities,

• special digrams – sequences =" and ">, which appear very frequently with attribute
values,

• runs of spaces – sequences of spaces that are not followed by start tags (for documents
with regular layouts).

As noted in the previous section, using a static dictionary is problematic because of the
hardness to select a proper set of words, relevant across a wide range of real-world XML
documents. To give an idea of this difficulty, we note that many tags are word shortcuts or
short word phrases glued according to various conventions (e.g., lastname, lastName,
LastName, last_name, LAST_NAME, etc). It is practically impossible to foresee and
accommodate them all in a predefined dictionary of limited size.

The words selected for the dictionary are written explicitly, with separators, at the
beginning of the output file. For most documents the dictionary contains not more than
several hundred items, hence the codewords have one or two bytes.

Dictionary references are encoded using a byte-oriented prefix code. Although it
produces slightly longer output than, for instance, Huffman coding, the resulting data can
be easily compressed further, which is not the case with the latter.

Actually, XWRT uses two dictionary encoding schemes: one optimized for traditional
LZ77 compressors (e.g., gzip) and a less dense variant, with non-intersecting ranges for
different codeword bytes, for modern LZ77 compressors (e.g., LZMA). Both schemes
employ three kinds of codewords: 1, 2, and 3 bytes long. In the gzip-optimized scheme, the
first byte of the codeword can belong to one of three disjoint ranges:

(i) C1 if it is a one-byte long codeword; there are |C1| such codewords available,
(ii) C2 if it is a prefix of two-bytes long codeword, followed by a single byte in the full

possible value range; there are |C2| * 256 such codewords available,
(iii) C3 if it is a prefix of three-bytes long codeword, followed by two bytes in the full

possible value range; there are |C3| * 256 * 256 such codewords available.
In this way, we obtain |C1| + |C2| * 256 + |C3| * 256 * 256 codewords in total. As this is

a kind of prefix code, all the codewords are immediately decodeable. The size of ranges
C1, C2, and C3 are set according to the size of the document to compress and the resulting
dictionary size.

In the LZMA-optimized scheme we use only two disjoint ranges of bytes, C1 and C2,
but the codeword lengths still span from 1 to 3 bytes (as in the code described in [9]). Any
codeword byte from the range C1 is unambiguously recognized as the suffix byte. In this
way, we have |C1| one-byte codewords, |C2| * |C1| two-byte codewords, and |C2| * |C2| * |C1|
three-byte codewords. Such a reversed byte order was found to improve compression ratio.

As a side benefit, our dictionary encoding, with separate alphabets for original words
and codewords, makes it straightforward to encode only a prefix of a word, if the prefix
matches some word in a dictionary but the whole word does not. Still, the gain we achieve
in this way is insubstantial.

Our scheme applies the spaceless word model [13], in which single spaces before
encoded words are omitted, as they can be automatically inserted on decoding.

Element containers

Another important concept is separating the XML document structure from the content [2].
Contents of the same element should be grouped together, as this implies better LZ77
compression, since the container contents may form long repetitive patterns, the sliding
window contains more matches to be found, and match offsets are reduced. Sometimes,
element contents may have more in common with contents of the different neighboring
elements than with contents of similar elements elsewhere in the document. However, in
practice, cases of XML documents subject to LZ77-type compression, which show no gain
after such treatment, are rare.

In the current implementation containers are identified only by their element names, not
by the whole path. For example, the contents of root/help and root/extra/help
elements will be moved to the same container. This mode of operation was found to
produce higher compression ratios than the one using containers identified by full paths (as
in SCMPPM).

The container streams are arranged in lexicographical order of the names of their
elements. It is conceivable that ordering them according to the characteristics of their
contents would yield some compression gain with small containers, but mostly with back-
end compressors like gzip, suffering from a seriously limited history buffer, and thus
sensitive to spatial location of similar data in their input. Therefore, we may change this
design concept in the future XWRT releases.

In the gzip mode, the containers are compressed separately, one after another, whereas
in the LZMA mode they are all concatenated and then compressed as a single data stream.
Both choices were based on empirical observations showing improved compression ratios.

Number encoding

Another idea in XWRT is the compact encoding of sequences of digits. Any sequence of
digits (even of length 1) is replaced with a flag, which remains in the main output stream,
whereas the actual value is put into a separate container, encoded as a base-256 number.
Although we have observed that for some datasets slightly better results were obtained
with other radix bases, such as 64 or 100, using the densest possible encoding seems the
best choice on average.

The flag is a single character from range ‘1’ to ‘4’, which identifies a digit sequence and
tells the length (in bytes) of its encoded value. As only 2564 integers can be stored on four
bytes, sequences representing larger numbers are simply split into several shorter ones (a
rare case in practice). If the digit sequence starts with one or more zeroes, the initial zeroes
are left intact in the text.

This technique was found to improve compression ratio for each tested compression
scheme. A positive side-effect of this encoding is that the symbols ‘5’…‘9’ are no longer
reserved for the input alphabet in the main output stream, and thus can be used for other
purposes, to be described below.

Some numerical data represent specific information types, such as dates. One of the
most common date formats, which can also be found in XML documents, is YYYY-MM-
DD (Y for year, M for month, D for day). The aforedescribed “general” integer encoding
would require five bytes in the main stream (including two separating hyphens) plus four
bytes in the number stream, to encode any such date.

Assuming for simplicity that each month can have up to 31 days, all the dates in the
interval from 1977-01-01 to 2153-02-26 can be represented as an integer from the range 0-
65535. Therefore, a date can be encoded on just three bytes: one flag (we chose the unused
symbol ‘5’) in the main stream, and a two bytes long integer in a separate stream.

Other date formats sometimes also appear, or only the year is given. This case is
handled separately, namely any integer number in the range from 1900 to 2155 is
considered to be a year, and encoded appropriately. The flag in the main stream is ‘6’,
while a single byte in a separate container tells the difference between the number and
1900.

A similar idea is utilized to encode the time. XWRT recognizes numbers from 1 to 12
followed by the suffix “am” or “pm” (e.g., “11:30pm”), and encodes them as pairs of
bytes: the first byte is the hour in the 24-hour convention, the other specifies the minutes.
The two bytes are saved in two separate containers, while in the main stream, as usual, a
unique flag signals the encoding done.

Some documents, e.g. containing bibliographical information, are flooded with page
ranges. They are usually in the format “x–y” (e.g., “120–148”). A simple observation is
that usually 0 < y – x < 256. If this happens, the value of x, encoded in two bytes, is sent to
one stream, and the 1-byte difference y – x is sent to another stream. The last numerical
category which, in our opinion, deserves special treatment, are fractional numbers. If we
stayed only with the number encoding described above, a fractional number of the form,
e.g., dddd.ddd (where d’s stand for any digit) would be encoded as two integers (dddd and
ddd), with the separator (dot) in between. Now, we handle separately some fractional
numbers: those with exactly two digits after the decimal point and some of those with one
digit after the point. Namely, numbers from 0.0 to 24.9 (one fractional digit) are replaced
with a flag, and their value, encoded on a single byte, is sent to a separate stream. For the
case of any number with two fractional digits (e.g., “102.00”, “95.01”), its suffix, starting
from the decimal point, is replaced with another flag, and those two last digits are encoded
on a single byte and sent to yet another stream.

5. Implementation details

The input data are processed by a finite state automaton (FSA), which accepts proper
words and numerical (including date and time) expressions. The crucial operation in the
encoding is dictionary search. A search function is called twice for each word in the
document: first time during the dynamic dictionary buildup, second time during the actual
parsing and word encoding. The choice of a dictionary data structure can seriously affect
the overall XWRT performance. We have decided to use a fixed-size (4 MB) array with
chained hashing for search, which we previously tested in our work on WRT [9]. Its
advantages are simplicity, moderate memory usage, and O(1) search time (assuming that a
single word is read in constant time).

For the semi-dynamic dictionary, we allocate 8 MB of memory. If the dictionary
reaches that limit, it is frozen, i.e., the counters of already included words can be
incremented but no new word can be added. Still, in practice we rarely get close to the
assumed limit (which can also be changed with a program switch).

The codeword space should not be wasted for very short or very rare words. Therefore,
building the dictionary depends on two parameters: the minimum word length lmin , and the
minimum number of word (i.e., dictionary entry) occurrences in the text, fmin. Only those
words which are not shorter than lmin and have at least fmin occurrences in the text are
included in the dictionary. Empirical observations led us to set lmin = 2 and fmin = 6, as these
values gave good results for most files.

As explained in the previous section, apart from the element containers, the XWRT
transform can produce up to 26 data streams (for storing numbers etc.), buffered in
memory. When the buffer gets full, it is flushed, with its contents saved either
uncompressed (but transformed), or with prior zlib or LZMA compression, depending on
the processing mode used. The buffer size is 8 MB by default but can be changed with a
program switch.

The reverse XWRT is simpler. Again we use an FSA, which now recognizes XWRT
flags and codewords, and transforms them to the original form. Obviously, there is no real
search in the dictionary, only lookups in O(1) time per codeword.

The XWRT transform was implemented in C++ and compiled with MS Visual C++
2005.

6. Experimental results

In order to compare the performance of our algorithm to the existing XML compressors, as
well as several popular or otherwise interesting general-purpose compressors, a set of
experiments has been run. In compression benchmarking, proper selection of datasets used
in experiments is essential. To the best of our knowledge, there is no publicly available and
widely respected XML dataset corpus to this date. We could not use any published corpus
in an exact form due to unavailability of some datasets [14], and presence of datasets
producing completely unreliable compression results, such as the randomly generated
XMark [14] (allowing XWRT to attain astonishingly high compression ratios due to its
small vocabulary of words) and the encrypted Treebank [15] (thwarting XWRT
effectiveness due to its lack of repeatable words). We have based our corpus on datasets
from [14], [15], adding two Wikipedia database files from [16].

As a result, our experimental corpus consists of:
• DBLP, bibliographic information on major computer science journals and

proceedings,
• Enwikibooks, a collection of free content textbooks,
• Enwikinews, a news collection,
• Lineitem, business order line items from the 10 MB version of the TPC-H

benchmark,
• Shakespeare, a corpus of marked-up Shakespeare plays,
• SwissProt, a curated protein sequence database,
• UWM, university courses.

We dubbed our file collection Wratislavia XML Corpus. The references to all its files

are given at [17]. Table 1 presents detailed information for each dataset: its size, the

number of elements, the number of attributes, and the maximum depth. Note that the total
collection size is almost half a gigabyte.

Table 1. Basic characteristics for the XML datasets used in the tests

Dataset File size Elements Attributes Max. depth

DBLP 133 862 735 3 332 130 404 276 6
Enwikibooks 156 300 597 533 698 49 115 5
Enwikinews 46 418 850 278 670 24 607 5

Lineitem 32 295 475 1 022 976 1 3
Shakespeare 7 894 983 179 690 0 7
SwissProt 114 820 211 2 977 031 2 189 859 5

UWM 2 337 522 66 729 6 5
Sum 493 930 373 – – –

The test machine was an Intel Core 2 Duo E6600 2.40 GHz system with 1 GB memory

and two Seagate 250 GB SATA drives in RAID mode 1, running Windows XP 64-bit
edition. We tested the current version of software implementing our transform, XWRT 2.1,
available from [18].

For a reference, we also present results of the preliminary version of XWRT (1.0) [19].
Apart from many minor differences between those two versions, the main distinction lies
in the lack of element containers and embedded compression engines in the old version.

In the first experiment we tested the impact of the individual XWRT (2.1) transform
components onto the compression ratio in comparison with a single compressor – gzip
1.2.4 working with default settings. Table 2 contains the results. The first row is just for
giving an idea to what degree the complete transform (without applying a back-end
compressor) shortens the input XML documents. As we see, the “compression” is on the
order of 70%, but varies significantly from file to file. The second row shows the results of
the gzip compression, and the following rows present the improvement to gzip
compression after adding the XWRT components, one by one. The percentages express the
differences to the previous row.

Table 2. XWRT transform, step-by-step compression improvement

File → DBLP
Enwiki-
books

Enwiki-
news

Lineitem
Shakes-
peare

Swiss-
Prot

UWM Average

XWRT 69.09% 58.09% 59.17% 85.89% 71.06% 65.62% 81.67% 70.08%
gzip 81.66% 70.76% 71.84% 90.91% 72.64% 87.65% 93.07% 81.22%
+ dynamic dict. 31.80% 23.14% 26.13% 41.54% 28.61% 33.02% 30.66% 30.70%
+ EOLs and spaces 0.00% 0.00% 0.05% 0.00% 0.00% 0.14% 2.07% 0.32%
+ numbers 4.33% 1.91% 3.19% 26.72% 0.02% 13.90% 7.02% 8.16%
+ letter sequences 1.83% 1.38% 1.73% 0.99% 1.38% 3.23% 3.39% 1.99%
+ containers 8.01% 0.33% -0.51% 10.41% 3.88% 13.71% 6.80% 6.09%
+ static dict. -0.03% 0.16% 0.60% -0.03% 1.57% -0.48% 3.07% 0.69%
Together,
relative to gzip

41.07% 26.00% 29.83% 61.99% 33.41% 51.68% 44.90% 41.27%

A few observations can be done. Although the input files are already well compressible

with general-purpose compressors, our transform yields further significant gains on all the
files. In two cases (Lineitem and SwissProt) the gzip file after the XWRT transform was

more than halved than without it! From the transform components, the most important is
the dynamic dictionary responsible for over 70% of the total gain, on average. Special
handling of End-of-Line symbols and trailing spaces had a negligible effect: only 0.32% on
average and no gain at all on as many as four files. Succinct encoding of numbers was the
second most successful idea, with gains over 8% on average and over 26% in the best case.
It was of no use only for Shakespeare, a purely textual document. Sending non-dictionary-
encoded sequences of letters to another stream had mediocre but quite stable positive effect
over our collection. Finally, grouping the data into containers gives an average extra gain
of 6%. The mentioned components constitute the XWRT transform. However, we were
also curious if using an external dictionary of English words could significantly boost the
compression. The answer is negative: the average gain was very little, below 1%, and in
the light of the obvious drawbacks of a static dictionary, we decided to leave it apart.

In the following experiments, data transformed with XWRT were passed to several
general-purpose compression tools: gzip, LZMA, bzip2, and grzip2. First we are going to
present briefly those compressors and justify our choice. With one exception (pointed
below), default settings were always used.

Table 3. Compression ratios in bits per characters

 gzip
XWRT1

+gzip
XWRT2
-l2 (gzip)

bzip2
XWRT2
+bzip2

grzip2
-m4

XWRT2
+grzip2

DBLP 1.463 1.029 0.864 0.955 0.789 0.861 0.750
Enwikibooks 2.339 1.795 1.734 1.891 1.702 1.724 1.583
Enwikinews 2.248 1.660 1.590 1.675 1.463 1.500 1.321
Lineitem 0.721 0.488 0.276 0.335 0.269 0.419 0.268
Shakespeare 2.182 1.560 1.481 1.491 1.350 1.423 1.288
SwissProt 0.985 0.675 0.475 0.608 0.430 0.516 0.433
UWM 0.553 0.383 0.315 0.321 0.305 0.346 0.291
Average 1.499 1.084 0.962 1.039 0.901 0.970 0.848

LZMA

-a1
XWRT2

-l6 (LZMA)
XMill
0.9 zip

XMill 0.9
bzip2

XMill 0.9
ppm

XMLPPM
-l9

SCMPPM
-l9

DBLP 0.943 0.747 1.250 0.955 0.940 0.802 0.693
Enwikibooks 1.686 1.505 2.295 1.914 1.838 1.621 1.621
Enwikinews 1.462 1.300 2.198 1.722 1.746 1.379 1.398
Lineitem 0.421 0.243 0.380 0.264 0.270 0.261 0.242
Shakespeare 1.646 1.348 2.044 1.575 1.584 1.295 1.293
SwissProt 0.478 0.388 0.619 0.489 0.477 0.416 0.417
UWM 0.368 0.278 0.382 0.317 0.310 0.259 0.274
Average 1.001 0.830 1.310 1.034 1.024 0.862 0.848

Gzip is based on Deflate, the most widely-used compression algorithm, known for its

fast compression and very fast decompression, but limited efficiency. Deflate uses
Huffman coding for literals, match lengths and match offsets. The buffer (sliding window)
for finding matches has only 32 KB, which is mostly responsible for both very high
compression speed and mediocre compression ratios. We used gzip 1.2.4 in the tests.
Another representative of the LZ77 compression family is LZMA (version 4.43). It uses a
proprietary compression method, also implemented in the better known 7zip compression

utility, respected for its high efficiency and fast decompression, but slow compression.
Some of the major traits of LZMA are sophisticated match parsing, working with large
buffers, and low order contextual encoding of literals.

Bzip2 (version 1.0.2) is certainly the only compressor based on the Burrows–Wheeler
transform which gained a wide acceptance outside the compression community. It is
characterized by high text compression ratios and quite fast decompression. The
compression speed varies, but is typically acceptable. Grzip2, version 2.4, is a newer piece
of software, avoiding some of bad design decisions of bzip2. By default it submits the
input data to a fast LZ preprocessor, and then runs block sorting compression. In the tests,
its fastest mode, -m4, was used, in which Schindler’s Sort Transform [20] is performed
instead of BWT after the LZ preprocessing; we also set the maximum block size (8 MB).

In Table 3, the compression results obtained for XWRT-transformed datasets are
compared to those achieved by the same compression algorithms on the datasets in their
original form. Existing XML-aware compressors are represented in the results with the fast
XMill 0.9, and the current state-of-the-art XML compressors, XMLPPM 0.98.2 and
SCMPPM 0.93.3. We were not able to test XBzip, as it crashes on files larger than 100 MB
on our test machine.

It was found during the tests that XMLPPM is not truly lossless (it did not reproduce
exactly any of the seven test files in the decompression), and XMill fails to exactly
reproduce DBLP file.

Table 4. Compression times in seconds

 gzip
XWRT1

+gzip
XWRT2
-l2 (gzip)

bzip2
XWRT2
+bzip2

grzip2
-m4

XWRT2
+grzip2

DBLP 6.05 11.89 13.64 31.66 22.51 5.92 14.20
Enwikibooks 11.55 15.58 17.15 29.52 26.79 11.14 21.07
Enwikinews 3.02 4.45 4.95 9.27 8.43 2.94 5.87
Lineitem 1.05 2.05 1.90 9.52 3.89 1.09 2.21
Shakespeare 0.64 0.86 0.90 1.77 1.26 0.59 1.07
SwissProt 3.67 9.63 10.48 27.66 24.64 3.28 11.65
UWM 0.06 0.16 0.17 0.77 0.37 0.06 0.20
Average 26.04 44.61 49.22 110.15 87.92 25.03 56.31

LZMA

-a1
XWRT2

-l6 (LZMA)
XMill
0.9 zip

XMill 0.9
bzip2

XMill 0.9
ppm

XMLPPM
-l9

SCMPPM
-l9

DBLP 120.49 33.31 10.63 26.26 17.18 23.13 52.13
Enwikibooks 152.06 50.53 16.75 27.06 32.73 38.55 54.36
Enwikinews 43.47 15.25 4.77 8.37 9.39 10.41 16.17
Lineitem 40.77 3.90 2.34 3.47 1.63 2.66 13.75
Shakespeare 8.00 6.78 0.94 1.91 1.50 2.02 3.55
SwissProt 82.83 31.28 7.94 31.74 9.91 13.60 39.21
UWM 1.61 0.40 0.13 0.52 0.16 0.19 0.84
Average 449.23 141.54 43.49 99.32 72.49 90.54 180.01

It is apparent from the results that the compression ratio has been improved by

transforming XML data, on average, by over 35% in case of gzip, 17% for LZMA, and
13% for non-LZ77-based compressors (bzip2 and grzip2). Compared to the existing XML-

specialized compressors, XWRT combined with gzip is on average 27% better than
XMill’s zip mode, whereas XWRT combined with LZMA is on average 20% better than
XMill’s bzip2 mode. As for the so far best available XML compressors, XWRT with
LZMA beats XMLPPM by 3.7% and SCMPPM by 2.1%, on average.

Compression and decompression times are presented in Table 4 and 5, respectively. The
decompression times usually grow if XWRT is applied, but we think that the compression
gains justify it. When XWRT is used with LZMA, the compression time is greatly reduced,
threefold on average, and by over 10 times in the extreme case of the Lineitem file.

Looking at the combined compression and decompression times, XWRT with gzip is on
average 20% slower than XMill’s zip mode (remember the 27% superiority in compression
ratio), whereas XWRT with LZMA is on average 35% slower than XMill’s bzip2 mode
(for 20% better compression ratio). XWRT with LZMA is faster than SCMPPM by 55%
on average (beating it by 2.1% in compression ratio). For the biggest file that XMLPPM
was able to decompress, DBLP, XWRT with LZMA is faster by 27.8% (attaining 6.5%
better compression ratio).

Table 5. Decompression times in seconds

 gzip
XWRT1

+gzip
XWRT2
-l2 (gzip)

bzip2
XWRT2
+bzip2

grzip2
-m4

XWRT2
+grzip2

DBLP 3.08 7.25 4.46 6.44 6.90 9.50 9.89
Enwikibooks 1.64 8.91 4.70 9.75 9.61 17.27 17.53
Enwikinews 0.50 2.50 1.50 2.78 2.70 4.78 4.79
Lineitem 0.24 1.77 0.96 1.48 1.28 1.72 1.47
Shakespeare 0.09 0.31 0.26 0.50 0.46 0.81 0.78
SwissProt 2.31 6.27 3.89 5.03 5.45 5.49 6.68
UWM 0.03 0.09 0.07 0.09 0.10 0.08 0.11
Average 7.89 27.10 15.87 26.08 26.53 39.64 41.27

LZMA

-a1
XWRT2

-l6 (LZMA)
XMill
0.9 zip

XMill 0.9
bzip2

XMill 0.9
ppm

XMLPPM
-l9

SCMPPM
-l9

DBLP 4.31 3.79 2.94 5.41 17.16 28.25 50.83
Enwikibooks 6.47 7.82 3.08 7.83 37.17 – 58.57
Enwikinews 1.74 2.18 0.49 2.27 10.44 – 17.27
Lineitem 0.80 1.04 0.39 0.72 1.55 3.87 13.03
Shakespeare 0.34 0.45 0.11 0.44 1.70 2.51 3.61
SwissProt 2.92 4.64 3.50 4.05 9.98 18.38 35.25
UWM 0.06 0.09 0.06 0.08 0.16 0.28 0.81
Average 16.64 20.04 10.56 20.78 78.15 – 179.37

Finally, we examined the practical impact of applying compression to large XML

documents published on the Internet. To an end user, a practical measure of compression
“usability” can be the total time it takes to fetch a compressed document, and then
decompress it. Of course, this measure, let us call it document delivery time, depends on
two factors: computer processing speed and available network bandwidth. Below, we
present the document delivery time calculated for a set of five of the seven test files
(Enwikibooks and Enwikinews were omitted due to problems with XMLPPM). The results
were obtained by adding transmission and decompression times of every file; they do not

include lesser real-world factors such as connection setup time, transfer protocol
overheads, etc. The decompression times were measured on the same machine as in the
remaining tests (Intel Core 2 Duo E6600 2.40 GHz). Fig. 2 shows results simulated for a 8
Mb/s network connection, Fig. 3 for a 512 kb/s network connection.

Figure 2: The average speedup for the bandwidth of 8 Mbit/s

Figure 3: The average speedup for the bandwidth of 512 kbit/s

We could not show that on the graphs (and keep a readable scale), but most large XML
databases are so redundant that even the simplest compression using the bare gzip results
in about seven-fold document delivery speedup compared to transmission without
compression.

Still, specific compression algorithms fare even better. For both of the investigated
network throughputs, the fastest scheme is XWRT 2.1 -l6, i.e., the proposed transform with
LZMA as the back-end compressor. As it can be easily noticed, the lower is the
transmission speed, the more important is the compression ratio, and the higher is the
transmission speed, the more important is the processing time. XWRT (either with gzip or
LZMA) is the clear winner for the entire range of typical Internet bandwidths. It yields to
the efficient SCMPPM only for speeds lower than about 128 kb/s, and to the fast gzip for
speeds higher than about 100 Mb/s.

For the two investigated network throughputs, applying the proposed transform was
found to be helpful for each of the four investigated back-end compressors, attaining
average relative improvement of, respectively, 38% for gzip, 17% for bzip2, 16% for
LZMA, and 13% for grzip2. The highest relative improvement measured for gzip is good
news, considering gzip's widespread popularity and low computational and memory
requirements.

7. Conclusions and future work

We have presented a fast XML transform aiming to improve lossless XML compression in
combination with existing general purpose compressors. We focused on fast decoding of a
compressed document, i.e. the reverse transform is not only fast, but it is also optimized for
the LZ77-style compression characterized by very fast decompression. The main
components of our algorithms are: a semi-dynamic dictionary of frequent alphanumerical
phrases (not limited to “words” in a conventional sense), splitting document contents into
many dedicated containers, and binary encoding of numbers and dates.

Thanks to the proposed transform, the XML compression ratio of a widely-used LZ77-
type algorithm, Deflate (used by default in gzip and zip), can be improved by as much as
35%. Although the decoding speed gets twice worse, the longer decompression time is
more than compensated by shorter transmission time for typical Internet transfer rates. To
this end, XWRT with LZMA as the back-end compressor achieves the shortest document
delivery time across a vast range of realistic bandwidths.

It appears from the results that the main advantage of our algorithm over the
competitors comes from applying the dictionary encoding not only for structural elements
(tags, attributes) but also to the textual content. We expect that relaxing the rules for the
items in our dictionary (e.g., accepting pairs of words, full URL paths, more timestamp
formats, etc.) could produce even better results for the price of further complication of the
transform.

There are a couple of ways likely to increase the compression further. One is using
container-related dictionaries. Another is order-0 entropy encoding of the contents of those
elements which have few distinct values in the document. Preliminary experiments suggest
that for some databases, like Lineitem, the gain can be very significant. Some little gain can
also be obtained by more specific encoding of the list of words in the (dynamically built)

dictionary. Another line of our research is to optimize the transform for PPM compression,
to increase its advantage over XMLPPM and SCMPPM even more.

REFERENCES

[1] YAML home page. http://www.yaml.org.
[2] Liefke H, Suciu D. XMill: an efficient compressor for XML data. Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 2000, 153–164.
[3] Cheney J. Compressing XML with multiplexed hierarchical PPM models. In Storer JA, Cohn M,

editors, Proceedings of the 2001 IEEE Data Compression Conference, IEEE Computer Society Press,
Los Alamitos, California, 2001; 163–172.

[4] Adiego J, Navarro G, de la Fuente P. Using Structural Contexts to Compress Semistructured Text
Collections. Information Processing and Management 2007; 43:769–790.

[5] Cheney J. Tradeoffs in XML Database Compression. In Storer JA, Cohn M, editors, Proceedings of the
2006 IEEE Data Compression Conference, IEEE Computer Society Press, Los Alamitos, California,
2006; 392–401.

[6] Leighton G. Two New Approaches for Compressing XML. M.Sc. Thesis. Acadia University, Wolfville,
Nova Scotia, 2005. (Also available at http://cs.acadiau.ca/~005985l/MThesis.zip.)

[7] Tolani P, Haritsa J. XGRIND: a query-friendly XML compressor. Proceedings of the 2002 International
Conference on Database Engineering, San Jose, CA, USA, 2002, 225–234.

[8] Ferragina P, Luccio F, Manzini G, Muthukrishnan S. Compressing and Searching XML Data Via Two
Zips. Proceedings of the 2006 International World Wide Web Conference (WWW), Edinburgh, Scotland,
2006, 751–760.

[9] Skibiński P, Grabowski Sz, Deorowicz S. Revisiting dictionary-based compression. Software–Practice
and Experience 2005; 35(15):1455–1476.

[10] Ziv J, Lempel A. A Universal Algorithm for Sequential Data Compression. IEEE Transactions on
Information Theory 1977; IT-23:337–342.

[11] Cleary JG, Witten IH. Data compression using adaptive coding and partial string matching. IEEE
Transactions on Communications 1984; COM-32(4):396–402.

[12] Storer J, Szymanski TG. Data compression via textual substitution. Journal of the ACM 1982; 29:928–
951.

[13] Moura ES, Navarro G, Ziviani N. Indexing Compressed Text. In Baeza-Yates R, editor, Proceedings of
the 4th South American Workshop on String Processing (WSP’97), Valparaiso, Carleton University
Press, 1997; 95–111.

[14] Ng W, Lam W-Y, Cheng J. Comparative Analysis of XML Compression Technologies. World Wide
Web 2005; 9(1):5–33.

[15] Miklau G. XML Data Repository, University of Washington, 2004. http://
www.cs.washington.edu/research/xmldatasets/www/repository.html.

[16] Wikipedia databases. http://download.wikipedia.org/backup-index.html [November
2006].

[17] Wratislavia XML Corpus. http://www.ii.uni.wroc.pl/~inikep/research/
Wratislavia/index.htm.

[18] Skibiński P. XWRT program version 2.1. http://www.ii.uni.wroc.pl/~inikep/
research/XML/XML-WRT21.zip.

[19] Skibiński P, Grabowski Sz, Swacha J. Fast transform for effective XML compression. CADSM conf.,
accepted, Lviv, Ukraine, 2007.

[20] Schindler M. A Fast Block-Sorting Algorithm for Lossless Data Compression. In Storer JA, Cohn M,
editors, Proceedings of the 1997 IEEE Data Compression Conference, IEEE Computer Society Press,
Los Alamitos, California, 1997; 469.

