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Abstract 

The innate verbosity of the Extensible Markup Language remains one of its main 
weaknesses, especially when large XML documents are concerned. This problem can 
be solved with the aid of XML-specialized compression algorithms. 

In this work, we describe a fast and fully reversible XML transform which, 
combined with generally used LZ77-style compression algorithms, allows to attain 
high compression ratios, comparable to those achieved by the current state-of-the-art 
XML compressors. The resulting compression scheme is asymmetric in the sense that 
its decoder is much faster than the coder. This is a desirable practical property as in 
case of many XML applications data are read much more often than written. The key 
features of the transform are dictionary-based encoding of both document structure 
and content, separation of different content types into multiple streams, and dedicated 
encoding of numbers and dates. 

The test results show the proposed transform to improve the XML compression 
efficiency of general purpose compressors on average by 35% in case of gzip and 17% 
in case of LZMA. Compared to the current state-of-the-art SCMPPM algorithm, 
XWRT with LZMA attains over 2% better compression ratio, being 55% faster. 
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1. Introduction 

Since the advent of the Extensible Markup Language (XML) its verbosity has been viewed 
repeatedly as a misfeature. Notwithstanding that a big part of critique is due to hapless 
attempts of applying the XML where it certainly should not have been applied, the XML 
verbosity is a fact, a crucial one when huge data collections are concerned. 

Nowadays the XML is a real standard, not only officially defined and endorsed, but 
actually used. Even though proprietary binary formats could help save time and memory, 
the XML is simply more convenient. And alternative formats, such as YAML [1], boasted 
for its simplicity, seem to be in no position to threaten this popularity. 

The primary objective of our research was to design an efficient way of compressing 
XML documents. High compression ratio and speed were considered equally important. 
As we have observed that archived XML documents are more often decompressed than 
recompressed, we focus on attaining quick decompression rather than compression. We 
also require the transform to be fully reversible, so that the decompressed document is a 
mirror image of the original. Neglected by existing XML compressors, this property has 
weighty practical implications, to be discussed later. 

The map of the paper is as follows. Section 2 contains a short review of existing XML 
compression methods, thus putting our work in a proper context. Section 3 discusses the 
sources of redundancy in XML documents. In Section 4 we present our transform step-by-
step. The implementation details are a subject of the next section. Section 6 contains 
thorough experimental results and related discussion. We measure not only compression 
ratios, but also compression and decompression times, and simulate file transfers over a 
network in a range of realistic bandwidths. Section 7 gives our conclusions and points out 
several issues for further study. 

We start, however, with pointing some remarkable features of the format we tackle 
with. XML is a metalanguage: the set of tags used for marking up the data is chosen by the 
author of a given document. In this way, various entities from the real world can be 
described naturally with XML tag names. XML represents a tree structure: its elements can 
be uniquely located by their path starting at the document root. Each element is delimited 
with a start tag and an end tag, between which data are usually stored in plain text or 
structured form. XML documents have hierarchical structure: start/end tag pairs are nested 
so that an outer start tag can have its ending counterpart only after all its inner tags have 
been closed. Note that in a file an XML document is stored as a “flattened” tree obtained 
from depth-first traversal. 

Elements may have one or more attributes, for example (SwissProt.xml): 
 
<Entry id="100K_RAT" class="STANDARD" mtype="PRT" seqlen="889"> 
 <AC>Q62671</AC> 
 <Mod date="01-NOV-1997" Rel="35" type="Created"></Mod> 
 <Mod date="01-NOV-1997" Rel="35" type="Last sequence update"></Mod> 
 <Mod date="15-JUL-1999" Rel="38" type="Last annotation update"></Mod> 
 <Descr>100 KDA PROTEIN (EC 6.3.2.-)</Descr> 
 <Species>Rattus norvegicus (Rat)</Species> 
 

where e.g. Mod is a tag and date, Rel and type are its attributes.  



After a tag, some data and/or other tags may be located, but eventually we should come 
across its matching end tag. Pairless tags are possible too, they are signaled with the / 
symbol just before the closing bracket >. Example (Enwikinews.xml): 

<namespace key="0" />. 

Also, comments are possible, delimited by <!-- and --> sequences. 
If an XML document adheres to those simple syntactical rules, it is called well-formed. 

Usually there are additional constraints imposed upon XML documents. These can be 
defined in Document Type Definition (DTD) or XML Schema, specifying the allowed 
tags, attributes and their values, and the structure. We say that a document is valid 
according to a given DTD, if it is well-formed and conforms to the specified DTD. 

The aforementioned verbosity, and hence redundancy, of many XML documents 
(especially large ones) is caused by highly repetitive (sub)structures of those documents 
and often long element and attribute names. Therefore, a need to compress XML, both 
efficiently and conveniently to use, has been identified nowadays as a burning research 
issue in the scientific community. 

2. Review of existing XML compression methods 

One of the first XML-oriented compressors was XMill [2] presented in 2000. It parses the 
XML data and splits them into three components: element and attribute symbol names, 
plain text and the document tree structure. As those components are typically vastly 
different, it pays to compress them as separate streams. XMill component streams have 
been originally compressed with gzip, and then [3] also with bzip2, PPMD+ and PPM*.1 
With gzip and order-5 PPMD+ the XMill transform improves compression by about 18% 
[3], but once higher order contexts come to play (bzip2, PPM*), the gains disappear, and it 
even compresses worse than the respective compressors on non-preprocessed documents. 
The supposed reason is that high order PPM compressors already handle the different 
contexts well enough, so the XMill transform helps little if at all, and on the other hand 
breaking the original structure makes it impossible to exploit the redundancy across 
components. 

Although XMill makes it possible to encode each container using a dedicated method 
(exploiting the type of data stored within it, e.g., numbers or dates), this feature is not 
practical as it requires the user to choose the encoding for specific containers.  

Cheney’s XMLPPM [3] is a streaming compressor which uses a technique named 
multiplexed hierarchical modeling (MHM). It switches between four models: one for 
element and attribute names, one for element structure, one for attributes, one for strings, 
and encodes them in one stream using PPMD+ or, in newer implementations, Shkarin’s 
PPMd. The tag and attribute names are replaced with shorter codes. An important idea in 
Cheney’s algorithm is injecting the previous symbol from another model into the current 
symbol’s context. Injecting means that both the encoder and decoder assume there is such 
a symbol in the context of the current symbol but do not explicitly encode nor decode it. 

                                                
1 References to all the general purpose compressors mentioned in this work can be found at 
http://www.maximumcompression.com. 



The idea of symbol injection is to preserve (at least to some degree) contextual 
dependencies across different structural models, which was totally lost in XMill. 

SCMPPM [4] can be seen as an extreme case of XMLPPM. Instead of using only few 
models, it maintains a separate model for each element class. Every class contains 
elements having the same name and the same path from the document root. This technique, 
called Structure Context Modeling (SCM), wins over XMLPPM on large documents (tens 
of megabytes), but loses on smaller files. Also, SCMPPM requires lots of memory for 
maintaining multiple statistical models and under limited memory scenarios it may lose 
significantly, even compared to pure PPMd [5]. 

In a recent work [5] Cheney proposed a hybrid solution (Hybrid Context Modeling, 
HCM), trying to combine the best features of MHM and SCM. In this algorithm initially a 
single model for each structural class is used, with symbol injection, i.e., it starts exactly as 
MHM. The novelty is to count occurrences of each element. Once the counter exceeds a 
predefined threshold, the given element gets its own model space, so is separated from the 
other elements. HCM also imposes a limit on the maximum number of models to confine 
memory usage on very large files. Both these parameters are chosen experimentally. Albeit 
sound, the HCM algorithm rarely dominates both SCM and MHM. 

Several proposals (see e.g., [6] and references therein) make use of the observation that 
a valid XML structure can be described by context-free grammar, and grammar based 
compression techniques can be applied then. Grammar-based compression can be seen as 
generalization of dictionary-based compression, as it can identify and succinctly encode 
potentially complex patterns in the text. Still, this approach, albeit promising, so far has not 
yielded compressors competitive e.g. to XMLPPM in the compression ratio. 

A recent trend in XML compression is to support queries directly in the compressed 
representation. The pioneering work in this domain was XGRind [7], while probably the 
most advanced solution at the moment is XBzip [8]. Although this scheme is quite 
impressive in both compression ratio and search/navigation capabilities, it loses to 
SCMPPM in compression ratio even if no support for queries is implemented. Together 
with auxiliary structures for searching, it sometimes needs even more space than a 
respective gzip archive, at least with the default settings (cf. Table 2, XBzipIndex column, 
and Fig. 1 (top) in [8]). 

Yet another line of research is to construct DTD- or Schema-aware compressors (XCQ, 
ICT XML-Xpress™). Taking into account that the syntax of the document is already 
stored in a DTD, impressive compression ratio can be obtained, provided a DTD for a 
given XML document is available for both compressor and decompressor, and the given 
document fully conforms to it. Theoretically, this could be the best way to handle XML 
compression, but in practice XML documents with unavailable (or even undefined) DTD 
are often used, and document structure can be rearranged, raising the issue of 
incompatibility between compressor and decompressor. 

In this paper we shall address neither the problem of making the compressed XML 
queriable, nor using DTD in the process. Instead, we shall focus at devising a method to 
store XML in a very compact form, and in a way as simple and fast as possible.  



3. Handling the redundancy of XML documents 

The initial thought that moved our attention to the preprocessing approach was that if XML 
is a kind of text, then a word-replacing scheme using a static dictionary of the most 
frequent English words should improve compression ratio more or less as much as it does 
with plain text [9]. Indeed, the scheme worked nicely with XML-marked textual 
documents. As expected, it did not help with compressing XML documents dominated by 
numerical data. The real disappointment was that it did not help much compressing most 
XML documents, that is those with a mixed textual-numerical content. 

A simple investigation revealed that in fact, in most XML documents, there is a short 
list of words which appear throughout the document with extremely high frequency. This 
is particularly the case with tag and attribute names, but attribute values or some of the 
element content words can also appear many times.  

The problem is that the lists of frequent words vary greatly between XML documents 
with different content type. This is why the static dictionary turned out to be quite a failure. 
Yet this redundancy can be exploited with the help of a semi-dynamic dictionary. The 
frequent words can be extracted in a preliminary scan over the document to form the 
dictionary. Then, every time a dictionary word is found in the document, it can be replaced 
by its dictionary index. Notice that this happens very often, as the dynamic dictionary 
contains words that are actually frequent in the document, not words that could potentially 
be frequent, as was the case with a static dictionary. If encoded properly – and we shall 
show later what we mean here – dictionary indices are always shorter than the words they 
reference. The only drawback of a semi-dynamic dictionary is that it must be stored 
explicitly within the preprocessor output. Still, as the words included in the dictionary are 
highly frequent, the size (in bytes) of the stored dictionary is relatively small compared to 
the total encoded length of the document.  

Another issue to solve is how to encode numbers. They appear in the great bulk of XML 
documents, as many fields in real-world databases are numeric. Storing numbers as text is, 
roughly spoken, ineffective. Numbers can be encoded more efficiently using a numerical 
system with base higher than 10. Moreover, we noticed that numbers – slightly different 
among themselves – were often the only non-repetitive element within a very repetitive 
context. We can eliminate this unpredictability by removing the numbers to another data 
stream, marking only the place of their appearance in the original XML document. Now, 
the document content becomes more repetitive, and the numbers in the separate stream can 
be encoded as densely as possible, using a numerical system with base 256. 

Universal compression algorithms treat an XML document as a stream of homogenous 
data. The compression model in universal algorithms is built on the correlation between 
adjoining symbols. Such approach is far from optimal though, as XML is actually a mix of 
several data streams, each one with structural properties of its own, and there is a lot of 
correlation between symbols which are distant but syntactically related.  

Knowing the difficulty that universal compression algorithms have coping with this 
situation, an easy solution would be to separate the streams. This can be done by moving 
the contents of each XML element class to a specific place in the output file. Thus, the 



contents of the same element class are kept together, away from the contents of different 
elements.  

In a well-formed XML document, every end tag must match the corresponding start tag. 
This can hardly be exploited by general-purpose compression algorithms, as they maintain 
a linear, not stack-alike data model. The compression ratio can then be increased by 
replacing every matching end tag with merely an element closing flag. 

The following two simple techniques deal with redundancy in the layout of XML 
documents. Although they are not relevant for all XML documents, they provide 
noticeable gains when compressing documents they were aimed at.  

The first one makes use of structural indentation by efficiently encoding the leading 
blanks in lines. This kind of redundancy, typical to XML documents created with editors 
caring about the output format, cannot be well exploited by general-purpose compression 
models. The second technique works for those documents in which an end tag is usually 
followed with a newline character. Such a concatenation can be reduced to a single 
symbol. 

4. XML Word Replacing Transform 

In this section we introduce XML Word Replacing Transform (XML-WRT, or XWRT for 
short) through detailed description of its main constituents.  

XWRT is lossless. Perhaps surprisingly, few of the presented XML compressors in the 
literature are truly lossless. This is because the document layout (e.g., trailing spaces) is 
often ignored as it carries no meaning. Still, preserving the layout may be useful for human 
editors of a document. The exact fidelity of the decompressed document with the original 
is also required in order to verify the document integrity using a cyclic redundancy check 
or hash functions. These are the reasons for which we have developed a truly lossless 
approach, following a long tradition of text compression.  

Our transform is designed primarily for LZ77-style [10] compression. We have chosen 
LZ77 to keep the decompression fast. There are context-aware algorithms, PPM [11] in 
particular, that achieve higher compression efficiency, but the price is much slower 
decompression and much higher memory requirement. Compressors from the LZ77 family 
differ significantly from the context-aware schemes. Basically, they parse input data into a 
stream of matching sequences and single characters. The matches are encoded by 
specifying their offsets, i.e., distances to the previous sequence occurrence in a limited past 
buffer, and lengths, while the literals are encoded directly, in most variants with Huffman 
coding. There have been many refinements since the seminal works of Ziv and Lempel 
[10] and Storer and Szymanski [12], but the overall picture has not changed. LZ77 
compressors do not predict characters on the basis of their context, or, in some modern 
variations, they do it only in a very low order rudimentary manner. The strength of LZ77 
lies in succinct encoding of long matching sequences and high decoding speed. In 
consequence, an XML preprocessor adapted for LZ77 compressors should attempt to: 

• reduce the number of characters to encode; 

• decrease the offset (in bytes) of the matching sequences; 



• decrease the length (in bytes) of the matching sequence; 

• virtually increase the sliding window, i.e., the past buffer in which matching 
sequences are looked for. 

It appears that in case of LZ77 (but not necessarily PPM or BWT), shortening the output of 
the preprocessor has clear positive effect on the final compression ratio.  

The architecture of XWRT implementation is portrayed in Fig. 1.  
 
 

 
Figure 1: The general XWRT operating scheme 

 
 
The dictionary 

The backbone of our transform is to replace the most frequent words with references to a 
dictionary. Our notion of a “word” is broader than its common meaning, and will be 
described below. The XWRT dictionary is obtained in a preliminary pass over the data, 
and contains sequences of length at least lmin characters that appear at least fmin times in the 
document. The dictionary is sorted according to the frequency of occurrence of words. 

A dynamic dictionary was previously used in XMill [2], but XMill allows only the 
element and attribute names as dictionary entries, while the XWRT dictionary contains 
items from the following classes: 

• ordinary words – sequences of lowercase and uppercase letters (a-z, A-Z) only, 

• start tags – sequences of characters that start with <, contain letters, digits, 
underscores, colons, dashes, or dots, and end with >. Start tags can be preceded by one 
or more spaces as XML documents usually have regular arrangements of the lines, in 
which individual tags very often begin in the same column, preceded with the same 
number of spaces, 

• URL address prefixes – sequences of the form http://domain/, where domain 
is any combination of letters, digits, dots, and dashes, 

• e-mails – patterns of the form login@domain, where login and domain are any 
combination of letters, digits, dots, and dashes, 



• words in form "&data;", where data is any combination of letters, representing 
XML entities, 

• special digrams – sequences =" and ">, which appear very frequently with attribute 
values, 

• runs of spaces – sequences of spaces that are not followed by start tags (for documents 
with regular layouts). 

As noted in the previous section, using a static dictionary is problematic because of the 
hardness to select a proper set of words, relevant across a wide range of real-world XML 
documents. To give an idea of this difficulty, we note that many tags are word shortcuts or 
short word phrases glued according to various conventions (e.g., lastname, lastName, 
LastName, last_name, LAST_NAME, etc). It is practically impossible to foresee and 
accommodate them all in a predefined dictionary of limited size. 

The words selected for the dictionary are written explicitly, with separators, at the 
beginning of the output file. For most documents the dictionary contains not more than 
several hundred items, hence the codewords have one or two bytes. 

Dictionary references are encoded using a byte-oriented prefix code. Although it 
produces slightly longer output than, for instance, Huffman coding, the resulting data can 
be easily compressed further, which is not the case with the latter.  

Actually, XWRT uses two dictionary encoding schemes: one optimized for traditional 
LZ77 compressors (e.g., gzip) and a less dense variant, with non-intersecting ranges for 
different codeword bytes, for modern LZ77 compressors (e.g., LZMA). Both schemes 
employ three kinds of codewords: 1, 2, and 3 bytes long. In the gzip-optimized scheme, the 
first byte of the codeword can belong to one of three disjoint ranges: 

(i) C1 if it is a one-byte long codeword; there are |C1| such codewords available, 
(ii ) C2 if it is a prefix of two-bytes long codeword, followed by a single byte in the full 

possible value range; there are |C2| * 256 such codewords available, 
(iii ) C3 if it is a prefix of three-bytes long codeword, followed by two bytes in the full 

possible value range; there are |C3| * 256 * 256 such codewords available. 
In this way, we obtain |C1| + |C2| * 256 + |C3| * 256 * 256 codewords in total. As this is 

a kind of prefix code, all the codewords are immediately decodeable. The size of ranges 
C1, C2, and C3 are set according to the size of the document to compress and the resulting 
dictionary size. 

In the LZMA-optimized scheme we use only two disjoint ranges of bytes, C1 and C2, 
but the codeword lengths still span from 1 to 3 bytes (as in the code described in [9]). Any 
codeword byte from the range C1 is unambiguously recognized as the suffix byte. In this 
way, we have |C1| one-byte codewords, |C2| * |C1| two-byte codewords, and |C2| * |C2| * |C1| 
three-byte codewords. Such a reversed byte order was found to improve compression ratio. 

As a side benefit, our dictionary encoding, with separate alphabets for original words 
and codewords, makes it straightforward to encode only a prefix of a word, if the prefix 
matches some word in a dictionary but the whole word does not. Still, the gain we achieve 
in this way is insubstantial. 

Our scheme applies the spaceless word model [13], in which single spaces before 
encoded words are omitted, as they can be automatically inserted on decoding. 
 



Element containers 

Another important concept is separating the XML document structure from the content [2]. 
Contents of the same element should be grouped together, as this implies better LZ77 
compression, since the container contents may form long repetitive patterns, the sliding 
window contains more matches to be found, and match offsets are reduced. Sometimes, 
element contents may have more in common with contents of the different neighboring 
elements than with contents of similar elements elsewhere in the document. However, in 
practice, cases of XML documents subject to LZ77-type compression, which show no gain 
after such treatment, are rare. 

In the current implementation containers are identified only by their element names, not 
by the whole path. For example, the contents of root/help and root/extra/help 
elements will be moved to the same container. This mode of operation was found to 
produce higher compression ratios than the one using containers identified by full paths (as 
in SCMPPM). 

The container streams are arranged in lexicographical order of the names of their 
elements. It is conceivable that ordering them according to the characteristics of their 
contents would yield some compression gain with small containers, but mostly with back-
end compressors like gzip, suffering from a seriously limited history buffer, and thus 
sensitive to spatial location of similar data in their input. Therefore, we may change this 
design concept in the future XWRT releases. 

In the gzip mode, the containers are compressed separately, one after another, whereas 
in the LZMA mode they are all concatenated and then compressed as a single data stream. 
Both choices were based on empirical observations showing improved compression ratios. 

 
Number encoding 

Another idea in XWRT is the compact encoding of sequences of digits. Any sequence of 
digits (even of length 1) is replaced with a flag, which remains in the main output stream, 
whereas the actual value is put into a separate container, encoded as a base-256 number. 
Although we have observed that for some datasets slightly better results were obtained 
with other radix bases, such as 64 or 100, using the densest possible encoding seems the 
best choice on average.  

The flag is a single character from range ‘1’ to ‘4’, which identifies a digit sequence and 
tells the length (in bytes) of its encoded value. As only 2564 integers can be stored on four 
bytes, sequences representing larger numbers are simply split into several shorter ones (a 
rare case in practice). If the digit sequence starts with one or more zeroes, the initial zeroes 
are left intact in the text. 

This technique was found to improve compression ratio for each tested compression 
scheme. A positive side-effect of this encoding is that the symbols ‘5’…‘9’ are no longer 
reserved for the input alphabet in the main output stream, and thus can be used for other 
purposes, to be described below. 

Some numerical data represent specific information types, such as dates. One of the 
most common date formats, which can also be found in XML documents, is YYYY-MM-
DD (Y for year, M for month, D for day). The aforedescribed “general” integer encoding 
would require five bytes in the main stream (including two separating hyphens) plus four 
bytes in the number stream, to encode any such date. 



Assuming for simplicity that each month can have up to 31 days, all the dates in the 
interval from 1977-01-01 to 2153-02-26 can be represented as an integer from the range 0-
65535. Therefore, a date can be encoded on just three bytes: one flag (we chose the unused 
symbol ‘5’) in the main stream, and a two bytes long integer in a separate stream. 

Other date formats sometimes also appear, or only the year is given. This case is 
handled separately, namely any integer number in the range from 1900 to 2155 is 
considered to be a year, and encoded appropriately. The flag in the main stream is ‘6’, 
while a single byte in a separate container tells the difference between the number and 
1900. 

A similar idea is utilized to encode the time. XWRT recognizes numbers from 1 to 12 
followed by the suffix “am” or “pm” (e.g., “11:30pm”), and encodes them as pairs of 
bytes: the first byte is the hour in the 24-hour convention, the other specifies the minutes. 
The two bytes are saved in two separate containers, while in the main stream, as usual, a 
unique flag signals the encoding done. 

Some documents, e.g. containing bibliographical information, are flooded with page 
ranges. They are usually in the format “x–y” (e.g., “120–148”). A simple observation is 
that usually 0 < y – x < 256. If this happens, the value of x, encoded in two bytes, is sent to 
one stream, and the 1-byte difference y – x is sent to another stream. The last numerical 
category which, in our opinion, deserves special treatment, are fractional numbers. If we 
stayed only with the number encoding described above, a fractional number of the form, 
e.g., dddd.ddd (where d’s stand for any digit) would be encoded as two integers (dddd and 
ddd), with the separator (dot) in between. Now, we handle separately some fractional 
numbers: those with exactly two digits after the decimal point and some of those with one 
digit after the point. Namely, numbers from 0.0 to 24.9 (one fractional digit) are replaced 
with a flag, and their value, encoded on a single byte, is sent to a separate stream. For the 
case of any number with two fractional digits (e.g., “102.00”, “95.01”), its suffix, starting 
from the decimal point, is replaced with another flag, and those two last digits are encoded 
on a single byte and sent to yet another stream. 

5. Implementation details 

The input data are processed by a finite state automaton (FSA), which accepts proper 
words and numerical (including date and time) expressions. The crucial operation in the 
encoding is dictionary search. A search function is called twice for each word in the 
document: first time during the dynamic dictionary buildup, second time during the actual 
parsing and word encoding. The choice of a dictionary data structure can seriously affect 
the overall XWRT performance. We have decided to use a fixed-size (4 MB) array with 
chained hashing for search, which we previously tested in our work on WRT [9]. Its 
advantages are simplicity, moderate memory usage, and O(1) search time (assuming that a 
single word is read in constant time).  

For the semi-dynamic dictionary, we allocate 8 MB of memory. If the dictionary 
reaches that limit, it is frozen, i.e., the counters of already included words can be 
incremented but no new word can be added. Still, in practice we rarely get close to the 
assumed limit (which can also be changed with a program switch). 



The codeword space should not be wasted for very short or very rare words. Therefore, 
building the dictionary depends on two parameters: the minimum word length lmin , and the 
minimum number of word (i.e., dictionary entry) occurrences in the text, fmin. Only those 
words which are not shorter than lmin and have at least fmin occurrences in the text are 
included in the dictionary. Empirical observations led us to set lmin = 2 and fmin = 6, as these 
values gave good results for most files. 

As explained in the previous section, apart from the element containers, the XWRT 
transform can produce up to 26 data streams (for storing numbers etc.), buffered in 
memory. When the buffer gets full, it is flushed, with its contents saved either 
uncompressed (but transformed), or with prior zlib or LZMA compression, depending on 
the processing mode used. The buffer size is 8 MB by default but can be changed with a 
program switch.  

The reverse XWRT is simpler. Again we use an FSA, which now recognizes XWRT 
flags and codewords, and transforms them to the original form. Obviously, there is no real 
search in the dictionary, only lookups in O(1) time per codeword. 

The XWRT transform was implemented in C++ and compiled with MS Visual C++ 
2005. 

6. Experimental results 

In order to compare the performance of our algorithm to the existing XML compressors, as 
well as several popular or otherwise interesting general-purpose compressors, a set of 
experiments has been run. In compression benchmarking, proper selection of datasets used 
in experiments is essential. To the best of our knowledge, there is no publicly available and 
widely respected XML dataset corpus to this date. We could not use any published corpus 
in an exact form due to unavailability of some datasets [14], and presence of datasets 
producing completely unreliable compression results, such as the randomly generated 
XMark [14] (allowing XWRT to attain astonishingly high compression ratios due to its 
small vocabulary of words) and the encrypted Treebank [15] (thwarting XWRT 
effectiveness due to its lack of repeatable words). We have based our corpus on datasets 
from [14], [15], adding two Wikipedia database files from [16]. 

As a result, our experimental corpus consists of: 
• DBLP, bibliographic information on major computer science journals and 

proceedings, 
• Enwikibooks, a collection of free content textbooks, 
• Enwikinews, a news collection, 
• Lineitem, business order line items from the 10 MB version of the TPC-H 

benchmark, 
• Shakespeare, a corpus of marked-up Shakespeare plays, 
• SwissProt, a curated protein sequence database, 
• UWM, university courses. 

 
We dubbed our file collection Wratislavia XML Corpus. The references to all its files 

are given at [17]. Table 1 presents detailed information for each dataset: its size, the 



number of elements, the number of attributes, and the maximum depth. Note that the total 
collection size is almost half a gigabyte. 

 
Table 1. Basic characteristics for the XML datasets used in the tests 

Dataset File size Elements Attributes Max. depth 

DBLP 133 862 735 3 332 130 404 276 6 
Enwikibooks 156 300 597 533 698 49 115 5 
Enwikinews 46 418 850 278 670 24 607 5 

Lineitem 32 295 475 1 022 976 1  3 
Shakespeare 7 894 983 179 690 0 7 
SwissProt 114 820 211 2 977 031 2 189 859 5 

UWM 2 337 522 66 729 6 5 
Sum 493 930 373 – – – 

 
The test machine was an Intel Core 2 Duo E6600 2.40 GHz system with 1 GB memory 

and two Seagate 250 GB SATA drives in RAID mode 1, running Windows XP 64-bit 
edition. We tested the current version of software implementing our transform, XWRT 2.1, 
available from [18].  

For a reference, we also present results of the preliminary version of XWRT (1.0) [19]. 
Apart from many minor differences between those two versions, the main distinction lies 
in the lack of element containers and embedded compression engines in the old version.  

In the first experiment we tested the impact of the individual XWRT (2.1) transform 
components onto the compression ratio in comparison with a single compressor – gzip 
1.2.4 working with default settings. Table 2 contains the results. The first row is just for 
giving an idea to what degree the complete transform (without applying a back-end 
compressor) shortens the input XML documents. As we see, the “compression” is on the 
order of 70%, but varies significantly from file to file. The second row shows the results of 
the gzip compression, and the following rows present the improvement to gzip 
compression after adding the XWRT components, one by one. The percentages express the 
differences to the previous row. 

 

Table 2. XWRT transform, step-by-step compression improvement 

File → DBLP 
Enwiki- 
books 

Enwiki-
news 

Lineitem 
Shakes- 
peare 

Swiss- 
Prot 

UWM Average 

XWRT 69.09% 58.09% 59.17% 85.89% 71.06% 65.62% 81.67% 70.08% 
gzip 81.66% 70.76% 71.84% 90.91% 72.64% 87.65% 93.07% 81.22% 
+ dynamic dict. 31.80% 23.14% 26.13% 41.54% 28.61% 33.02% 30.66% 30.70% 
+ EOLs and spaces 0.00% 0.00% 0.05% 0.00% 0.00% 0.14% 2.07% 0.32% 
+ numbers 4.33% 1.91% 3.19% 26.72% 0.02% 13.90% 7.02% 8.16% 
+ letter sequences 1.83% 1.38% 1.73% 0.99% 1.38% 3.23% 3.39% 1.99% 
+ containers 8.01% 0.33% -0.51% 10.41% 3.88% 13.71% 6.80% 6.09% 
+ static dict. -0.03% 0.16% 0.60% -0.03% 1.57% -0.48% 3.07% 0.69% 
Together, 
relative to gzip  

41.07% 26.00% 29.83% 61.99% 33.41% 51.68% 44.90% 41.27% 

 
A few observations can be done. Although the input files are already well compressible 

with general-purpose compressors, our transform yields further significant gains on all the 
files. In two cases (Lineitem and SwissProt) the gzip file after the XWRT transform was 



more than halved than without it! From the transform components, the most important is 
the dynamic dictionary responsible for over 70% of the total gain, on average. Special 
handling of End-of-Line symbols and trailing spaces had a negligible effect: only 0.32% on 
average and no gain at all on as many as four files. Succinct encoding of numbers was the 
second most successful idea, with gains over 8% on average and over 26% in the best case. 
It was of no use only for Shakespeare, a purely textual document. Sending non-dictionary-
encoded sequences of letters to another stream had mediocre but quite stable positive effect 
over our collection. Finally, grouping the data into containers gives an average extra gain 
of 6%. The mentioned components constitute the XWRT transform. However, we were 
also curious if using an external dictionary of English words could significantly boost the 
compression. The answer is negative: the average gain was very little, below 1%, and in 
the light of the obvious drawbacks of a static dictionary, we decided to leave it apart. 

In the following experiments, data transformed with XWRT were passed to several 
general-purpose compression tools: gzip, LZMA, bzip2, and grzip2. First we are going to 
present briefly those compressors and justify our choice. With one exception (pointed 
below), default settings were always used. 

 

Table 3. Compression ratios in bits per characters 

 gzip 
XWRT1  

+gzip 
XWRT2 
-l2 (gzip) 

bzip2 
XWRT2 
+bzip2 

grzip2  
-m4 

XWRT2 
+grzip2  

DBLP 1.463 1.029 0.864 0.955 0.789 0.861 0.750 
Enwikibooks 2.339 1.795 1.734 1.891 1.702 1.724 1.583 
Enwikinews 2.248 1.660 1.590 1.675 1.463 1.500 1.321 
Lineitem 0.721 0.488 0.276 0.335 0.269 0.419 0.268 
Shakespeare 2.182 1.560 1.481 1.491 1.350 1.423 1.288 
SwissProt 0.985 0.675 0.475 0.608 0.430 0.516 0.433 
UWM 0.553 0.383 0.315 0.321 0.305 0.346 0.291 
Average 1.499 1.084 0.962 1.039 0.901 0.970 0.848 

 

 
LZMA  

-a1 
XWRT2 

-l6 (LZMA) 
XMill 
0.9 zip 

XMill 0.9 
bzip2 

XMill 0.9 
ppm 

XMLPPM 
-l9 

SCMPPM  
-l9 

DBLP 0.943 0.747 1.250 0.955 0.940 0.802 0.693 
Enwikibooks 1.686 1.505 2.295 1.914 1.838 1.621 1.621 
Enwikinews 1.462 1.300 2.198 1.722 1.746 1.379 1.398 
Lineitem 0.421 0.243 0.380 0.264 0.270 0.261 0.242 
Shakespeare 1.646 1.348 2.044 1.575 1.584 1.295 1.293 
SwissProt 0.478 0.388 0.619 0.489 0.477 0.416 0.417 
UWM 0.368 0.278 0.382 0.317 0.310 0.259 0.274 
Average 1.001 0.830 1.310 1.034 1.024 0.862 0.848 

 
Gzip is based on Deflate, the most widely-used compression algorithm, known for its 

fast compression and very fast decompression, but limited efficiency. Deflate uses 
Huffman coding for literals, match lengths and match offsets. The buffer (sliding window) 
for finding matches has only 32 KB, which is mostly responsible for both very high 
compression speed and mediocre compression ratios. We used gzip 1.2.4 in the tests. 
Another representative of the LZ77 compression family is LZMA (version 4.43). It uses a 
proprietary compression method, also implemented in the better known 7zip compression 



utility, respected for its high efficiency and fast decompression, but slow compression. 
Some of the major traits of LZMA are sophisticated match parsing, working with large 
buffers, and low order contextual encoding of literals. 

Bzip2 (version 1.0.2) is certainly the only compressor based on the Burrows–Wheeler 
transform which gained a wide acceptance outside the compression community. It is 
characterized by high text compression ratios and quite fast decompression. The 
compression speed varies, but is typically acceptable. Grzip2, version 2.4, is a newer piece 
of software, avoiding some of bad design decisions of bzip2. By default it submits the 
input data to a fast LZ preprocessor, and then runs block sorting compression. In the tests, 
its fastest mode, -m4, was used, in which Schindler’s Sort Transform [20] is performed 
instead of BWT after the LZ preprocessing; we also set the maximum block size (8 MB). 

In Table 3, the compression results obtained for XWRT-transformed datasets are 
compared to those achieved by the same compression algorithms on the datasets in their 
original form. Existing XML-aware compressors are represented in the results with the fast 
XMill 0.9, and the current state-of-the-art XML compressors, XMLPPM 0.98.2 and 
SCMPPM 0.93.3. We were not able to test XBzip, as it crashes on files larger than 100 MB 
on our test machine. 

It was found during the tests that XMLPPM is not truly lossless (it did not reproduce 
exactly any of the seven test files in the decompression), and XMill fails to exactly 
reproduce DBLP file. 

 

Table 4. Compression times in seconds 

 gzip 
XWRT1  

+gzip 
XWRT2 
-l2 (gzip) 

bzip2 
XWRT2 
+bzip2 

grzip2  
-m4 

XWRT2 
+grzip2  

DBLP 6.05 11.89 13.64 31.66 22.51 5.92 14.20 
Enwikibooks 11.55 15.58 17.15 29.52 26.79 11.14 21.07 
Enwikinews 3.02 4.45 4.95 9.27 8.43 2.94 5.87 
Lineitem 1.05 2.05 1.90 9.52 3.89 1.09 2.21 
Shakespeare 0.64 0.86 0.90 1.77 1.26 0.59 1.07 
SwissProt 3.67 9.63 10.48 27.66 24.64 3.28 11.65 
UWM 0.06 0.16 0.17 0.77 0.37 0.06 0.20 
Average 26.04 44.61 49.22 110.15 87.92 25.03 56.31 

 

 
LZMA  

-a1 
XWRT2 

-l6 (LZMA) 
XMill 
0.9 zip 

XMill 0.9 
bzip2 

XMill 0.9 
ppm 

XMLPPM 
-l9 

SCMPPM  
-l9 

DBLP 120.49 33.31 10.63 26.26 17.18 23.13 52.13 
Enwikibooks 152.06 50.53 16.75 27.06 32.73 38.55 54.36 
Enwikinews 43.47 15.25 4.77 8.37 9.39 10.41 16.17 
Lineitem 40.77 3.90 2.34 3.47 1.63 2.66 13.75 
Shakespeare 8.00 6.78 0.94 1.91 1.50 2.02 3.55 
SwissProt 82.83 31.28 7.94 31.74 9.91 13.60 39.21 
UWM 1.61 0.40 0.13 0.52 0.16 0.19 0.84 
Average 449.23 141.54 43.49 99.32 72.49 90.54 180.01 
 
It is apparent from the results that the compression ratio has been improved by 

transforming XML data, on average, by over 35% in case of gzip, 17% for LZMA, and 
13% for non-LZ77-based compressors (bzip2 and grzip2). Compared to the existing XML-



specialized compressors, XWRT combined with gzip is on average 27% better than 
XMill’s zip mode, whereas XWRT combined with LZMA is on average 20% better than 
XMill’s bzip2 mode. As for the so far best available XML compressors, XWRT with 
LZMA beats XMLPPM by 3.7% and SCMPPM by 2.1%, on average. 

Compression and decompression times are presented in Table 4 and 5, respectively. The 
decompression times usually grow if XWRT is applied, but we think that the compression 
gains justify it. When XWRT is used with LZMA, the compression time is greatly reduced, 
threefold on average, and by over 10 times in the extreme case of the Lineitem file. 

Looking at the combined compression and decompression times, XWRT with gzip is on 
average 20% slower than XMill’s zip mode (remember the 27% superiority in compression 
ratio), whereas XWRT with LZMA is on average 35% slower than XMill’s bzip2 mode 
(for 20% better compression ratio). XWRT with LZMA is faster than SCMPPM by 55% 
on average (beating it by 2.1% in compression ratio). For the biggest file that XMLPPM 
was able to decompress, DBLP, XWRT with LZMA is faster by 27.8% (attaining 6.5% 
better compression ratio). 

 

Table 5. Decompression times in seconds 

 gzip 
XWRT1  

+gzip 
XWRT2 
-l2 (gzip) 

bzip2 
XWRT2 
+bzip2 

grzip2  
-m4 

XWRT2 
+grzip2  

DBLP 3.08 7.25 4.46 6.44 6.90 9.50 9.89 
Enwikibooks 1.64 8.91 4.70 9.75 9.61 17.27 17.53 
Enwikinews 0.50 2.50 1.50 2.78 2.70 4.78 4.79 
Lineitem 0.24 1.77 0.96 1.48 1.28 1.72 1.47 
Shakespeare 0.09 0.31 0.26 0.50 0.46 0.81 0.78 
SwissProt 2.31 6.27 3.89 5.03 5.45 5.49 6.68 
UWM 0.03 0.09 0.07 0.09 0.10 0.08 0.11 
Average 7.89 27.10 15.87 26.08 26.53 39.64 41.27 

 

 
LZMA  

-a1 
XWRT2 

-l6 (LZMA) 
XMill 
0.9 zip 

XMill 0.9 
bzip2 

XMill 0.9 
ppm 

XMLPPM 
-l9 

SCMPPM  
-l9 

DBLP 4.31 3.79 2.94 5.41 17.16 28.25 50.83 
Enwikibooks 6.47 7.82 3.08 7.83 37.17 – 58.57 
Enwikinews 1.74 2.18 0.49 2.27 10.44 – 17.27 
Lineitem 0.80 1.04 0.39 0.72 1.55 3.87 13.03 
Shakespeare 0.34 0.45 0.11 0.44 1.70 2.51 3.61 
SwissProt 2.92 4.64 3.50 4.05 9.98 18.38 35.25 
UWM 0.06 0.09 0.06 0.08 0.16 0.28 0.81 
Average 16.64 20.04 10.56 20.78 78.15 – 179.37 

 
Finally, we examined the practical impact of applying compression to large XML 

documents published on the Internet. To an end user, a practical measure of compression 
“usability” can be the total time it takes to fetch a compressed document, and then 
decompress it. Of course, this measure, let us call it document delivery time, depends on 
two factors: computer processing speed and available network bandwidth. Below, we 
present the document delivery time calculated for a set of five of the seven test files 
(Enwikibooks and Enwikinews were omitted due to problems with XMLPPM). The results 
were obtained by adding transmission and decompression times of every file; they do not 



include lesser real-world factors such as connection setup time, transfer protocol 
overheads, etc. The decompression times were measured on the same machine as in the 
remaining tests (Intel Core 2 Duo E6600 2.40 GHz). Fig. 2 shows results simulated for a 8 
Mb/s network connection, Fig. 3 for a 512 kb/s network connection. 

 

 
Figure 2: The average speedup for the bandwidth of 8 Mbit/s 

 
 

 
Figure 3: The average speedup for the bandwidth of 512 kbit/s 

 



We could not show that on the graphs (and keep a readable scale), but most large XML 
databases are so redundant that even the simplest compression using the bare gzip results 
in about seven-fold document delivery speedup compared to transmission without 
compression.  

Still, specific compression algorithms fare even better. For both of the investigated 
network throughputs, the fastest scheme is XWRT 2.1 -l6, i.e., the proposed transform with 
LZMA as the back-end compressor. As it can be easily noticed, the lower is the 
transmission speed, the more important is the compression ratio, and the higher is the 
transmission speed, the more important is the processing time. XWRT (either with gzip or 
LZMA) is the clear winner for the entire range of typical Internet bandwidths. It yields to 
the efficient SCMPPM only for speeds lower than about 128 kb/s, and to the fast gzip for 
speeds higher than about 100 Mb/s. 

For the two investigated network throughputs, applying the proposed transform was 
found to be helpful for each of the four investigated back-end compressors, attaining 
average relative improvement of, respectively, 38% for gzip, 17% for bzip2, 16% for 
LZMA, and 13% for grzip2. The highest relative improvement measured for gzip is good 
news, considering gzip's widespread popularity and low computational and memory 
requirements. 

7. Conclusions and future work 

We have presented a fast XML transform aiming to improve lossless XML compression in 
combination with existing general purpose compressors. We focused on fast decoding of a 
compressed document, i.e. the reverse transform is not only fast, but it is also optimized for 
the LZ77-style compression characterized by very fast decompression. The main 
components of our algorithms are: a semi-dynamic dictionary of frequent alphanumerical 
phrases (not limited to “words” in a conventional sense), splitting document contents into 
many dedicated containers, and binary encoding of numbers and dates. 

Thanks to the proposed transform, the XML compression ratio of a widely-used LZ77-
type algorithm, Deflate (used by default in gzip and zip), can be improved by as much as 
35%. Although the decoding speed gets twice worse, the longer decompression time is 
more than compensated by shorter transmission time for typical Internet transfer rates. To 
this end, XWRT with LZMA as the back-end compressor achieves the shortest document 
delivery time across a vast range of realistic bandwidths. 

It appears from the results that the main advantage of our algorithm over the 
competitors comes from applying the dictionary encoding not only for structural elements 
(tags, attributes) but also to the textual content. We expect that relaxing the rules for the 
items in our dictionary (e.g., accepting pairs of words, full URL paths, more timestamp 
formats, etc.) could produce even better results for the price of further complication of the 
transform.  

There are a couple of ways likely to increase the compression further. One is using 
container-related dictionaries. Another is order-0 entropy encoding of the contents of those 
elements which have few distinct values in the document. Preliminary experiments suggest 
that for some databases, like Lineitem, the gain can be very significant. Some little gain can 
also be obtained by more specific encoding of the list of words in the (dynamically built) 



dictionary. Another line of our research is to optimize the transform for PPM compression, 
to increase its advantage over XMLPPM and SCMPPM even more. 
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