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Abstract: Research on facial recognition has recently been flourishing, which has led to the introduc-
tion of many robust methods. However, since the worldwide outbreak of COVID-19, people have had
to regularly wear facial masks, thus making existing face recognition methods less reliable. Although
normal face recognition methods are nearly complete, masked face recognition (MFR)—which refers
to recognizing the identity of an individual when people wear a facial mask—remains the most
challenging topic in this area. To overcome the difficulties involved in MFR, a novel deep learning
method based on the convolutional block attention module (CBAM) and angular margin ArcFace
loss is proposed. In the method, CBAM is integrated with convolutional neural networks (CNNs) to
extract the input image feature maps, particularly of the region around the eyes. Meanwhile, ArcFace
is used as a training loss function to optimize the feature embedding and enhance the discriminative
feature for MFR. Because of the insufficient availability of masked face images for model training,
this study used the data augmentation method to generate masked face images from a common
face recognition dataset. The proposed method was evaluated using the well-known masked image
version of LFW, AgeDB-30, CFP-FP, and real mask image MFR2 verification datasets. A variety of
experiments confirmed that the proposed method offers improvements for MFR compared to the
current state-of-the-art methods.

Keywords: facial recognition; convolutional neural network; deep learning; masked face recognition;
attention module

1. Introduction

Face recognition (FR) has represented one of the most important research topics for
many years. Many researchers [1–6] have introduced robust methods to solve the FR
problem. The trend of developing methods for FR appears to have almost reached its peak
at the time of this writing. Influenced by the convolutional neural networks (CNNs), the
current algorithms using deep learning methods [1–6] have achieved superior accuracy
for FR. Systems based on FR are widely used in many areas across the world including
airports, community gates, and healthcare; FR is also employed in some authentication
applications, such as face-to-face attendance monitoring and mobile payment systems
based on face profiles.

With the emergence of the COVID-19 pandemic, a viral infection caused by severe
acute respiratory syndrome [7] has spread globally and brought many major challenges
to daily human activities. To avoid COVID-19 infection, many people have worn and
continue to wear masks. Mask wearing affects current FR application systems because the
human face—the target of interest—is partially covered. In real-world FR applications,
face occlusion, particularly masked face occlusion, will significantly affect existing FR
performance and decrease re-identification accuracy [8].

Modern deep learning-based models are advanced enough to extract face features and
learn the important key features such as face edges, mouth, nose, and eyes [9]. However,
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the presence of a facial mask occludes most of the key features, thus complicating the
feature extraction process. Since traditional methods for FR have been designed specifically
to work with all face information available, a mask on a face makes the models lose about
50% of the useful information [10]. The facial mask blocks important features such as the
mouth and nose, thus obstructing the face feature structure, as reported in [11]. This specific
issue has recently emerged as a particularly serious barrier to the field of FR. Therefore, to
solve this problem, novel methods must be invented, or the existing algorithms must be
modified substantially.

Initially, facial mask recognition has been attempted, and researchers have introduced
many robust solutions [12–14] to detect facial masks. Many scholars have recently presented
various methods that address the MFR problems using deep learning techniques [9,11,15–20].
Alzu’bi et al. summarized the various MFR methods that have recently been proposed [21].
Further, because of the insufficient availability of masked face images for model training and
testing, studies have proposed several masked face datasets [11,22,23] and data augmentation
tools for generating simulated masked images [9,11].

MFR represents a special case in the occlusion FR domain. In contrast to regular
occluded FR, MFR involves three major challenges: the key features of the face, such as
the mouth, nose, and chin, are occluded; most of the FR methods have been designed
specifically to work with all face features available, and there is currently no publicly
available large-scale masked face training and testing benchmark dataset. Moreover, most
existing methods have been developed for the specific masked face datasets used in their
development. Thus, a specific method may perform well for a limited dataset whereas
it performs badly for other datasets. Further, the average accuracy of the existing MFR
methods is only 89.5% [21]. With this background, it is necessary to develop a method that
can consistently achieve good results on all datasets.

Recently, the methods based on attention mechanism are widely used to solve various
problems in vision tasks such as image classification [24], age-invariant face recognition [25,26],
and specifically face recognition with masked face [11,19]. It should also be noted that the
existing MFR methods which are based on attention demonstrate high accuracy compared
to other methods. Hence, this paper proposes a method for solving the problem of MFR by
verifying individuals with masked faces using an attention module and angular margin
loss ArcFace. This method uses a refined ResNet-50 [5] network as a backbone network and
integrates the attention module into the backbone network. The model can obtain highly
discriminative features and improve facial feature representations through the proposed
method, which successfully overcomes the recognition accuracy problem of MFR. However,
recognizing the face of a person wearing a facial mask with hat, glass, and different face
angles is a limitation of this approach.

The main contributions are summarized as four-fold:

• A new MFR method using a deep learning network architecture based on the attention
module and angular margin loss ArcFace is proposed to focus on the informative parts
not occluded by the facial mask (i.e., the regions around the eyes).

• The CBAM attention module is integrated with a refined ResNet-50 network architec-
ture for feature extraction without additional computational cost.

• Proposed new simulated masked face images generated from regular face recognition
datasets using a data argumentation tool for model training and valuation. Datasets
generated in this research are available through the website https://github.com/
MaskedFaceDataSet/SimulatedMaskedFaceDataset (accessed on 6 May 2022).

• The experimental results on simulated and real masked face datasets demonstrate that
the proposed method outperforms other state-of-the-art methods for all datasets.

2. Related Works

With the success of FR research, researchers have continued to focus on the challenges
posed by occluded face recognition [17,27,28]. The recognition of an occluded face is
challenging because the human face can be covered by visual obstacles of any size or shape
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appearing anywhere [29]. With the COVID-19 pandemic, MFR has become one of the
greatest challenges in the FR domain. MFR is a specific facial occlusion problem since the
essential parts of the face, such as the mouth, nose, or chin, are occluded. The objective of
research on MFR is to identify or verify the specific identity of a person when people are
wearing a facial mask. Some of the existing methods that researchers have proposed to
solve occluded face recognition and MFR problems are described in this section.

Song et al. [17] presented a technique to address partial occlusion by discovering and
disposing of corrupted face feature elements for recognition. This study decomposed the
face recognition challenge under random partial occlusions in three stages: First, they
developed a pairwise differential Siamese Network (PDSN) to capture the differentiation
in the face features between the occluded and non-occluded face pairs. Second, they built
a masked dictionary for masked features that they obtained from the previous stage to
composite the feature discarding mask (FDM). Third, a combination of the FDM of random
partial occlusions from the dictionary is multiplied by the original feature to eliminate the
effect of partial occlusions from recognition. This approach aims to remove the occluded
areas from depth features. However, it is difficult in practice to meet the requirements of
the matched image.

Various studies have adopted restoration-based methods [30–33] to restore the missing
part of the face image and reconstruct a new face image from the training dataset. Since
generative adversarial nets (GANs) were first introduced [34], many researchers have used
GAN methods to address facial occlusion problems. Yeh et al. [35] proposed a method that
involved generating the corrupted pixel(s) and reconstructing the missing content. Din
et al. [18] proposed a model that can detect and remove the mask to provide complete,
unobstructed facial images. First, the model detects the mask region and produces it as
binary segmentation. Then, it uses two discriminators based on the GAN network to learn
the global structure and missing part of the facial image. However, these approaches have
not evaluated the recognition performance of their models. In contrast to the previous
GAN-based methods, Li et al. [36] presented an algorithm framework that consists of de-
occlusion and distillation modules. The de-occlusion module uses GAN to perform masked
face completion, which recovers the occluded features beneath the mask and eliminates
the appearance uncertainty. The distillation module uses a pre-trained model to perform
face classification. On the simulated LFW dataset, their highest accuracy for recognition
performance is 95.44%.

MFR became an urgent research topic to consider during the COVID-19 epidemic.
Mandal et al. [15] proposed a new framework with which to handle the MFR problem that
used a deep network based on ResNet-50 [37]. The authors trained the network using the
small Real-world Masked Face Recognition Dataset (RMFRD) described in [22]. However,
this method did not yield adequate results because the network used only works with
non-occlusion faces. Anwar and Raychowdhury [9] presented a similar strategy using
FaceNet [1], a deep network-based face recognition system, to train with their dataset
VGGFace2-mini-SM1. They used their own proposed simulated masked face dataset to
train the network. This method produced better results than the first method since they
trained with a large dataset from scratch.

Meanwhile, Huang et al. [38] used ArcFace [5], a deep network-based face recognition
system, to train with their simulated dataset. Their simulated dataset was generated with
random occlusion (mask or glasses). In that study, the network was able to learn more
features than the masked dataset. However, their performance results greatly decreased
when tested with only the masked face dataset. Walid Hariri [16] proposed a new method
based on occlusion face removal and deep learning-based features to discard the occlusion
region. They used a pre-trained network to handle the MFR problem. They applied the
cropping filter technique to remove the occluded part covered by a facial mask and therefore
extract only features in the non-masked face region. The occlusion removal technique can
discard non-masked face areas from each image. However, it cannot guarantee a clean
elimination of non-masked face parts since facial masks are not all placed in the same
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position on the face. Moreover, their recognition performance results with both simulated
masked face and real masked face images still need to be improved.

Recent works have attempted to deal with MFR using attention mechanisms.
Li et al. [20] proposed a new strategy by integrating a cropping-based and attention-
based approach with the CBAM [26]. The cropping-based process removes the masked face
region from face images. They examined several cropping proportion cases of the input
image to find the one that achieved the best recognition accuracy. In the attention-based
process, the masked face features and features around the eyes were respectively given
low and high weights. The authors reported that their approach achieved 92.61% MFR
accuracy. In another study, Deng et al. [11] proposed an algorithm using cosine loss (MF-
Cosface) to handle the MFR. As a result, their method improved the accuracy of masked
face recognition compared to the first method based on attention. They also designed an
Attention-Inception module that combined the CBAM with Inception-ResNet to help the
model pay greater attention to the region not covered by the mask. This technique achieved
a slight improvement in the verification task.

The existing works described above inspire our present work. By observing the
strength of the attention module, which plays an important role in MFR work, this study
extends them further by proposing a novel network architecture by integrating the attention
module into the refined ResNet-50 network implemented in the ArcFace repository.

3. Proposed Method
3.1. Feature Extraction Network

Feature extraction—which is a crucial process in masked face recognition—aims to
extract the key face components such as the eyes, nose, mouth, and texture from a face
image. However, this process becomes more complicated when there is a mask covering
the face in question. Therefore, the selection of the feature extracting network is a critical
decision. The refined CNN architecture ResNet-50 implemented in ArcFace work is selected
as a network backbone to extract the face features. This study follows [5] to modify the
layer block in the third stage from the original ResNet-50 [37] architecture {3, 4, 6, 3} to
{3, 4, 14, 3} layer blocks. Further, the improvement residual unit architecture is also
applied to the network, which has a BN-Conv-BN-PReLu-Conv-BN structure and sets
the stride as two for the second convolutional layer instead of the first one (as shown in
Figure 1). After the last layer, the batch normalization, dropout, fully connected layer, and
batch normalization (BN-Dropout-FC-BN) structure is used to obtain the final 512-D face
embedding feature.

Figure 1. Structure of the improved residual unit: BN-Conv-BN-PReLu-Conv-BN.
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3.2. Convolutional Block Attention Module (CBAM)

The proposed method adopts the CBAM presented by Woo et al. [24] in the network
model. The CBAM consists of a channel attention module and a spatial attention mod-
ule, which are arranged in a particular order, as shown in Figure 2. It is a lightweight
module that can smoothly integrate with any CNN architecture. Given an input feature
map FεRC×H×W of the convolutional layer, where C, H, and W are channel size, height,
and width, respectively, let MchannelεRC×1×1 denote a 1D channel attention map and
MspatialεR1×H×W denotes a 2D spatial attention map. The overall attention process can
then be shown as shown in Equations (1) and (2).

F′ = Mchannel(F)⊗ F (1)

F′′ = Mspatial
(

F′
)
⊗ F′ (2)

where ⊗ denotes element-wise multiplication and F′′ is the final output of the feature maps
or refined feature maps.

Figure 2. Overall structure of the convolutional block attention module.

1. Channel Attention Module

The channel attention module focuses on the major features of the input image. This
module uses both average-pooling and max-pooling operations on the input feature map
to generate two different spatial information vectors: Fch

avg and Fch
max, which denote average-

pooled features and max-pooled features, respectively. Both vectors are consecutively
forwarded to a shared network multi-layer perceptron (MLP) with filter kernel size 1× 1 to
produce a channel attention map MchannelεRC×1×1. Next, the output feature vectors from
the shared network are merged using element-wise submission. The final output of the
MchannelεRC×1×1 after element-wise submission is then passed to the sigmoid function σ
to generate the channel weights, as shown in Equation (3). The channel attention module
process can be depicted as shown in Figure 3.

Mchannel(F) = σ(MLP(AvgPooling(F)) + MLP(MaxPooling(F))) (3)

where σ is the sigmoid function and MLP uses the ReLu activation function.

Figure 3. Structure of the channel attention module.
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2. Spatial Attention Module

The spatial attention module focuses on an informative region of the input images
features. Similar to the channel attention module, the spatial attention module adopts the
average-pooling and max-pooling operations to obtain two 2D maps: Fsp

avg and Fsp
max denote

average-pooling and max-pooling features, respectively. Those are then concatenated with
a convolution layer with a filter kernel size of 7× 7 to obtain a 2D spatial attention map
MspatialεR1×H×W . The spatial attention module process can be illustrated as shown in
Figure 4 and Equations (4) and (5).

Mspatial(F) = σ
(

f 7×7([AvgPooling(F); MaxPooling(F)])
)

(4)

= σ
(

f 7×7
([

Fsp
avg; Fsp

max

]))
(5)

where σ is the sigmoid function and f 7×7 denotes a convolution operation with the filter
kernel size of seven.

Figure 4. Structure of the spatial attention module.

3.3. Network Architecture

Figure 5 shows the overall proposed network architecture diagram. As described
in Section 3.1, this work uses the refined ResNet-50 architecture as a backbone to extract
face features. The proposed network model uses no-masked and masked face images
with the size 3× 112× 112 as the input. The network backbone architecture consists of
four main convolutional layer block stages with the number of blocks stacked. Therefore,
the respective numbers of blocks stacked in the first, second, third, and fourth stages are
{3, 4, 14, 3}. The sizes of the feature maps in the first, second, third, and fourth stages
are 64× 56× 56, 128× 28× 28, 256× 14× 14, and 512× 7× 7 with kernel size of 3× 3,
respectively. CBAM is adopted in each output of the convolutional block of the backbone
network to focus more effectively on an object of interest effectively. F represents the feature
map after the pre-operation of the convolution. Then, the channel and spatial attention
modules compute sequentially to produce refined feature maps F′′ . Finally, the refined
output features F′′ are summed with the input feature maps of the previous block. The
network repeats the same operation until the last convolutional layer block and the batch
normalization (BN), dropout, and fully connected layers are applied to obtain 512-D face
embedding features. ArcFace loss adds an angular margin m to the target (ground truth)
and multiplies by the feature scale s. Then, the softmax function proceeds and contributes
to the cross-entropy loss. This technique helps optimize the embedding feature to obtain
highly discriminative features for MFR.

3.4. Loss Function

The loss function helps optimize the model and stabilize the training process. This
method uses Additive Angular Margin Loss (ArcFace) [5], a margin loss function con-
structed by modifying the softmax loss function, which improves the discriminative power
of the model. Furthermore, ArcFace optimizes the feature embedding to have the smallest
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distance possible among the same classes and the largest distance possible among the
different classes. ArcFace can be defined as follows:

LArcFace = −
1
N

N

∑
i=1

log
es(cos (θyi+m))

es(cos (θyi+m)) + ∑n
j=1, j 6=yi

es cos θj
(6)

where θj denotes the angle between the weight and deep features, s denotes the feature
scale, m denotes angular margin penalty, and N and n respectively denote batch size and
class number.

Figure 5. Overall structure of the proposed network architecture. The convolutional block attention
module (CBAM) is integrated into each output of the block. Input image includes masked face and
non-masked images of size 112× 112.

4. Experiments and Results
4.1. Datasets

The developed network needs to be verified on both simulated and real masked face
datasets. A data augmentation method presented by [9] is used to generate the masked face
images version e from the existing normal face datasets for model training and evaluation.
First, a multi-task cascaded convolutional neural network (MTCNN) [39] is used to detect
faces from the raw images. The MTCNN detects the face and obtains five facial landmark
key points: nose, right-eye, left-eye, right-mouth, left-mouth, and then face alignment and
rotation are performed. To generate more realistic masked face images the method uses
Dlib [40] library to detect 68 key points of the face. Lastly, to overlay a mask on the face,
the method calculates the masked positions of the face and selects the suitable facial mask.
All generated masked face datasets are listed in Table 1. A small set of real masked face
MFR2 [9] is also used to evaluate the model.

Table 1. Summary of datasets used for model training and evaluation.

Dataset Type Identities Images

CASIA-WebFace_m Simulated mask 10,575 789,296
LFW_m Simulated mask 5749 12,000

AgeDB-30_m Simulated mask 568 12,000
CFP-FP_m Simulated mask 500 14,000

MFR2 Real masked faces 53 269
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CASIA-WebFace_m is generated from CASIA-WebFace [41] dataset for model training.
This dataset is a large-scale public face recognition dataset. It contains 494,414 images
of 10,575 unique identities. During masked face generation, around 20% of face images
could not be detected by the data augment tool. Therefore, after masked face generation,
394,648 masked images remain. The generated masked face image version is then combined
with the corresponding regular face images to produce CASIA-WebFace_m for the model
training. This means that the total training samples are 789,296 images.

More masked face images are generated from the most widely used benchmark
dataset, LFW [42], AgeDB [43], and CFP [44], respectively. MFR2 [9] is a genuine masked
face dataset instead of a simulated mask dataset. LFW_m, AgeDB-30_m, CFP-FP_m, and
MFR2 datasets among them are used for model evaluation. Each simulated dataset is
described briefly here.

• LFW_m is generated from the LFW dataset, which is most used for face verification.
This dataset contains 5749 unique identities and a total of 13,233 face images. The
experiment in this paper follows the LFW standard protocol using 6000 predefined
comparison pairs, of which 3000 pairs have the same identities and the other 3000 pairs
have different identities.

• AgeDB-30_m is generated from the public benchmark dataset AgeDB, which is an
unconstrained face recognition dataset which is most used for cross-age face verifi-
cation. This dataset contains 568 unique identities and a total of 16,588 face images.
The experiment follows the protocol of AgeDB-30 using 6000 predefined comparison
pairs, of which 3000 pairs have the same identities and the other 3000 pairs have
different identities.

• CFP-FP_m is generated from the public benchmark dataset CFP, which contains
500 celebrities in frontal and profile views. This dataset has two verification protocols:
CFP-FF and CFP-FP. In the experiment, the method uses the CFP-FP protocol using
7000 predefined comparison pairs, of which 3500 pairs have the same identities and
the other 3500 pairs have different identities.

• MFR2 is a small set of real masked face images. It contains 53 identities of celebrities
and politicians among 269 images, where each identity has an average of five images.
This dataset consists of strange mask patterns. We collect 800 pairs of images for real
masked face verification in the experiment. This means that 400 pairs have the same
identities whereas 400 pairs have different identities.

Typical sample images of different datasets are shown in Figure 6.

4.2. Experimental Setting

Initially, this work follows [5] to generate normalized face crops (112 × 112) in the
data processing and applies the Batch-Normalization (BN) [45]-Dropout [46] structure
after the last convolutional layer to obtain the output embedding feature of 512D. Dropout
can effectively help avoid over-fitting and obtain a better generalization for deep face
recognition. In the experiment, the dropout parameter is set to 0.4. The feature scale
s is set as 64 based on [4] and angular margin penalty m is chosen as 0.5 based on [5].
All experiments in this work are implemented using Python programing language and
a Pytorch-based [47] open-source deep learning framework. The batch size is 128, and
the model is trained on NVIDIA Quadro RTX 6000 (48GB) GPUs. The overall model
architecture is trained up to 100 epochs, and the only CASIA-WebFace_m dataset is used to
train the model. The learning rate was set as 0.01 and divided by ten at 13 and 21 epochs.
Lastly, the momentum and weight decay are set as 0.9, and 5 × 10−4, respectively.
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Figure 6. Sample images of training and validation dataset. CASIA-WebFace is a training dataset
whereas the rest are validation datasets. Each dataset has two columns of corresponding images.

4.3. Evaluation Metrics

To assess the proposed method, four evaluation parameters, accuracy, precision, recall
and F1 score are adopted.

Accuracy. The accuracy is an intuitive performance measure, and it is defined to
describe the accuracy of the algorithm for recognition and classification problems. It
represents the ratio of the correctly predicted sample to the total of sample, which can be
computed as shown in Equation (7).

Accuracy = (TP + TN)/(TP + TN + FP + FN), (7)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively.

Precision. The precision is a metric that determines the number of accurate positive
predictions. Therefore, precision computes the accuracy for the minority class. It is com-
puted as the ratio of correctly predicted positive samples divided by the predicted number
of positive samples. Precision can be computed as defined in Equation (8).

Precision = TP/(TP + FP) (8)

Recall. The recall is a metric that measures the number of correct positive predictions
made from all positive predictions that could have been made. This is as opposed to preci-
sion, which only considers the correct positive predictions out of all positive predictions.
Recall can be computed as defined in Equation (9).

Recall = TP/(TP + FN) (9)

F1 score. The F1 score allows for precisions and recalls to be combined into a single
measure that captures both properties. It can express high precision with poor recall or,
alternately, terrible precision with perfect recall. The F1 score can be computed as defined
in Equation (10).

F1 = 2 × (Precision × Recall)/(Precision + Recall) (10)
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4.4. Experimental Results

This section reports the model evaluation results. We performed experiments in
the face verification task and used the 10-fold cross-validation technique to evaluate the
predictive model by randomly dividing the evaluation dataset into ten partitions: nine
partitions are used as a training set whereas the remaining partition is used as a validation
set. The model repeated training ten times and used the average of the ten validation results
as the recognition accuracy. The model was evaluated on simulated masked face images
LFW_m, AgeDB-30_m, CFP-FP_m, and real masked face images MFR2. The model extracts
the features of all face pairings and then computes the cosine similarities between the face
pairs. The accuracy is expressed as the percentage of right predictions, with the highest
accuracy being chosen as the threshold. Table 2 reports measurements of the performance
of the model in terms of accuracy, precision, recall, and F1 score metrics. The results show
that the proposed method achieved high performance in the face verification task. The
average accuracy of 10-fold cross-validation on the LFW_m, AgeDB-30_m, and CFP-FP
datasets reached rates of 99.43%, 95.86%, and 97.74%, respectively. MFR2 achieved a rate of
96.75%, since this dataset contains different facial postures, expressions, and cloth masks in
different textures and colors.

Table 2. Results of recognition accuracy, precision, recall, and F1 score (%) using CASIA-Webface_m.

Dataset Accuracy Precision Recall F1 Score

LFW_m 99.43 99.30 99.56 99.43
AgeDB-30_m 95.86 93.83 97.82 95.78

CFP-FP_m 97.74 96.77 98.69 97.72
MFR2 96.75 96.25 97.22 96.73

We conducted experiments with other state-of-the-art FR methods. Only the proposed
method used the CASIA-WebFace_m dataset, as other methods used the original CASIA-
WebFace dataset from scratch. The results of the verification accuracies were compared
by validating on the same validation dataset. The recognition accuracy results are listed
in Table 3.

Table 3. Comparison of face verification results (%) on validation dataset with different methods.

Method Training Set LFW_m AgeDB-30_m CFP-FP_m MFR2

CosFace [4] CASIA-Webface 95.23 93.40 92.21 63.00
Softmax [5] CASIA-Webface 96.68 93.50 94.78 69.75
ArcFace [5] CASIA-Webface 96.85 94.10 95.10 71.87

Proposed method CASIA-Webface_m 99.43 95.86 97.74 96.75

As reported in Table 3, our method yielded better results in both generated masked
face images and real masked face images. The accuracy rates with the generated images
are high and comparable to the results of the existing FR methods. While the accuracy rates
of compared methods drop considerably with real mask images (MFR2), the proposed
method maintains similar accuracy throughout all benchmark datasets.

Several MFR methods are conducted with their proposed training and validation
datasets. To compare the proposed method to current existing MFR methods, this study
separated the comparison into two parts: In the first part, we compared the presented
method results with the results of other MFR methods, as presented in Table 4. In the
second part, another experiment was conducted to compare the current advanced method
MFCosface [11] with their masked dataset VGG-Face2_m. We trained the proposed network
model using the same VGG-Face2_m and tested with 400 pairs of the MFR2 dataset for
face verification. The verification performance of the recognition accuracy, precision, recall,
and F1 score results are shown in Table 5. Tables 4 and 5 show that the proposed method
performs slightly better than MFCosface [11] for both LFW_m and MFR2 datasets, if it is
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trained with VGGFace2_m. However, MFCosface shows better performance with MFR2
when the proposed method is trained with CASIA-Webface_m.

Table 4. Comparison of face verification results (%) with different methods.

Method Training Set LFW_m AgeDB-30_m CFP-FP_m MFR2

Huang et al. [38] WebFace-OCC 97.08 87.18 86.07 -
Anwar et al. [9] VGGFace2-mini-SM 97.25 - - 95.99
MFCosface [11] VGG-Face2_m 99.33 - - 98.50

Proposed method CASIA-Webface_m 99.43 95.86 97.74 96.75

Table 5. Results of accuracy, precision, recall, and F1 score (%) using VGG-Face2_m.

Dataset Accuracy Precision Recall F1 Score

LFW_m 99.41 99.26 99.56 99.40
AgeDB-30_m 95.38 93.10 98.11 95.53

CFP-FP_m 96.98 96.17 98.40 97.27
MFR2 99.00 99.50 98.54 99.02

4.5. Ablation Experiments

To prove the effectiveness of the proposed method, ablation experiments were per-
formed. All experimental settings—including image size, batch size, and learning rate
were applied—to match the previous experiments. First, we experimented with the CBAM
attention module on proposed masked face dataset, and then explored each attention
module with the backbone. We searched for an effective approach to channel attention
and then spatial attention using our backbone network. Then each of the experimental
models was evaluated on all validation datasets. Table 6 shows the performant reports of
the ablation experiments. It can clearly be seen that the best performance is achieved when
both channel and spatial attention modules are applied throughout all datasets.

Table 6. Ablation experimental results (%).

Method LFW_m AgeDB-30_m CFP-FP_m MFR2

CBAM 98.66 94.45 96.15 95.50
Backbone 99.31 95.28 97.08 96.25

Backbone + Mchannel 99.35 95.53 97.47 96.50
Backbone + Mspatial 99.38 95.58 97.38 96.75

Backbone + Mchannel + Mspatial 99.43 95.86 97.74 96.75

5. Discussion

MFR is a significantly challenging problem that is currently attracting substantial
research interest in computer vision and the face recognition field. As the key features
such as the mouth, nose, and chin are occluded by mask wearing, existing face recognition
methods perform poorly. Further, the insufficient availability of training and validating
datasets currently represents a major barrier to the adoption of deep learning approaches
in MFR. Figure 7 illustrates the loss and accuracy curves of the model. The loss curve
shows that the proposed model is learning from the data by trying to reach the minimum
point and the accuracy curve still slightly increase until the last epoch. The experimental
results show that the proposed method can achieve high performance in the verification
task on simulated masked datasets. However, this method exhibited slightly decreased
performance when evaluated on the real masked dataset due to the small size of the training
real face data. By contrast, other methods exhibited a substantial decrease in performance
when evaluated on the real masked dataset.
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Figure 7. Training curves of the proposed method. (a) Training loss curve. (b) Training accuracy curve.

6. Conclusions

This paper presents a new method to solve the masked face recognition problems using
deep learning technology. Traditional FR methods based on deep learning can address
normal face recognition problems and achieve high performance. However, such methods
show dramatically reduced performance when a face is covered with a mask. Through
the analysis of the masked face images, we found that some of the key facial features are
covered by a facial mask which makes the FR methods cannot recognize the face properly.
To tackle the problem, this study introduced a new network architecture based on an
attention mechanism that can focus on the most informative part around the eyes of the
masked face images and obtain more discriminative feature information. Moreover, one of
the most widely used ArcFace loss functions is implemented into the proposed network to
optimize the feature embedding and to increase the similarity of the intra-class samples
and diversity of the inter-class sample. To handle the problem of insufficient masked face
datasets, new simulated masked face images are generated by using data augmentation
for model training and evaluation. Through the various experiments, the following points
summarize the findings in this paper:

• The attention module can focus on the non-occluded part of the masked face and
significantly improve the recognition performance.

• The newly generated masked face dataset can effectively help the model training
and evaluation.

• The results show that the proposed method provides outstanding performance and a
better recognition rate on both generated masked face and real masked image datasets
compared to the state-of-the-art methods.

We hope this research study becomes a useful solution to solve the masked face
recognition problem. In future work, the improvement of the method to solve masked face
recognition with different postures, expressions, illumination, and the presence of a hat
are considered.
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