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Abstract

An attention matrix of a transformer self-

attention sublayer can provably be decom-

posed into two components and only one of

them (effective attention) contributes to the

model output. This leads us to ask whether

visualizing effective attention gives different

conclusions than interpretation of standard at-

tention. Using a subset of the GLUE tasks and

BERT, we carry out an analysis to compare the

two attention matrices, and show that their in-

terpretations differ. Effective attention is less

associated with the features related to the lan-

guage modeling pretraining such as the separa-

tor token, and it has more potential to illustrate

linguistic features captured by the model for

solving the end-task. Given the found differ-

ences, we recommend using effective attention

for studying a transformer’s behavior since it is

more pertinent to the model output by design.

1 Introduction

Attention mechanism (Bahdanau et al., 2015) is

an essential component of many NLP models, in-

cluding those that are built on the ubiquitous trans-

former architecture (Vaswani et al., 2017). As a

result, visualizing attention weights is a widely

used technique to interpret models’ behavior (Be-

linkov and Glass, 2019). Despite that, the validity

of this analysis method is a subject undergoing

intense discussion and study in NLP (Jain and Wal-

lace, 2019; Wiegreffe and Pinter, 2019; Serrano

and Smith, 2019; Moradi et al., 2019; Mohanku-

mar et al., 2020; Tutek and Snajder, 2020, i.a.).

Related to this discussion, Brunner et al. (2020)

show that, under mild conditions, the attention ma-

trix of a transformer self-attention sublayer can be

written as a sum of two components. One of them is

irrelevant for the model output because its product

with the value matrix is zero. They term the other

component as effective attention (formally defined

in §2). We study whether effective attention gives

interpretations that differ from conclusions we get

by analyzing standard attention. If this is the case,

interpretation of effective attention is better suited

for studying transformers’ internals because it is

more pertinent to the model output by design.

Brunner et al. (2020) briefly discuss this by com-

paring standard and effective attention matrices

from a single BERT head (Devlin et al., 2019) for

one example. They observe that: (i) standard atten-

tion is largely concentrated on the delimiter tokens

([SEP], [CLS]) or on near-diagonal elements; (ii)

effective attention is more dispersed; (iii) effective

attention disregards the delimiters. They stress that

we should not extrapolate too much from these ob-

servations since they are based on a single example,

and that further research is needed on this topic.

In this work, we aim to reliably answer whether

effective attention disregards the [SEP] and [CLS]

tokens, and if so, are effective attention weights

dispersed to linguistic features? To address these

questions, we embrace the methodology for a quan-

titative analysis of the attention patterns produced

by individual transformer heads proposed by Ko-

valeva et al. (2019). We carry out their experiments

on a subset of the GLUE tasks with BERT’s stan-

dard and effective attention. We show that effective

attention “ignores” [SEP] and punctuation symbols

(§3.1, §3.2), but not [CLS] (§3.2), and that it high-

lights end-task features instead (§3.1, §3.2, §3.3).1

2 Background: Effective Attention

Each transformer layer consists of multi-head self-

attention and feedforward sublayers (Vaswani et al.,

2017, see Appendix A). Brunner et al. (2020) show

that the standard attention matrix A can be de-

composed into two components, if a mild condition

1Our code is available at https:

//github.com/KaiserWhoLearns/

Effective-Attention-Interpretability

https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
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is satisfied. Specifically, if the left nullspace of the

value matrix V :

LN(V ) := {x⊤ ∈ R
1×ds |x⊤V = 0},

is not trivial (contains vectors other than ~0). This is

satisfied when the maximum input sequence length

is larger than the value matrix dimension (see Ap-

pendix A). The two components are: the compo-

nent in the left nullspace of V (A‖) and the com-

ponent orthogonal to the nullspace (A⊥). Notably,

A‖ does not contribute to the output of the self-

attention sublayer:

AV = (A‖ +A⊥)V = ~0 +A⊥V = A⊥V. (1)

The effective attention matrix is defined as A⊥. If

visualizations of standard and effective attention

differ, interpretation of effective attention is an ac-

curate interpretation because effective attention is

what contributes to the model output (per Eq. 1).

We explain how to compute A⊥ since that was

not described in Brunner et al. (2020). We first

compute the singular value decomposition (SVD)

of the value matrix V = UΣW T . The rows of

U that correspond to singular values equal to zero

span LN(V ):

LN(V ) = span{u1, . . . , uk},

where k is the number of singular values that equal

zero. We project each row ai of the attention matrix

A ∈ R
ds×ds to LN(V ) to construct a projection of

the matrix A to LN(V ):

PLN(V )(ai) =

k
∑

j=1

〈ai, uj〉uj , ∀i ∈ {1, . . . , ds},

PLN(V )(A) = [PLN(V )(a1), . . . ,PLN(V )(ads)]
⊤,

where 〈·, ·〉 denotes the dot product. Finally,

effective attention equals to:

A⊥ := A− PLN(V )(A).

Effective attention is not guaranteed to be a prob-

ability distribution as some of its weights might be

negative and larger than 1.

We observe that effective attention is slower to

compute due to the SVD decomposition of V for

each out of 144 BERT-base heads, and additional

matrix multiplications (Table 3; §B). If speed is

bottleneck, we recommend doing quantitative anal-

yses with effective attention on a subset of the dev

set. For qualitative analyses, common practice is

already to select a subset for a manual analysis.

Dataset Task |Train| |Test|
RTE NLI 2.5K 3K

MRPC paraphrase identification 3.7K 1.7K

QNLI QA as NLI 105K 5.4K

SST-2 binary sentiment classification 67K 1.8K

STS-B sentence similarity 7K 1.4K

Table 1: Specifications of the datasets.

3 What Does Effective Attention Reveal?

We compare visualizations of standard and effec-

tive attention following the methodology for analy-

sis of the attention patterns (Kovaleva et al., 2019).

We carry out our analyses using five English-

language datasets in the GLUE benchmark (Wang

et al., 2019): RTE (Dagan et al., 2005; Haim et al.,

2006; Giampiccolo et al., 2007; Bentivogli et al.,

2009), MRPC (Dolan and Brockett, 2005), QNLI

(Rajpurkar et al., 2016; Wang et al., 2019), SST-

2 (Socher et al., 2013), and STS-B (Cer et al.,

2017).2 See Table 1 for their specifications. For

each dataset, we train BERT-base with standard

attention, a batch size of 8, maximum sequence

length of 128, and 3 training epochs.3 For analyz-

ing effective attention, we replace standard with

effective attention at the test time.

3.1 Classification of Attention Patterns

In this section, we start studying whether effective

attention disregards the delimiter tokens.

The visualizations of attention matrices exhibit

patterns (Clark et al., 2019; Vig and Belinkov,

2019). Kovaleva et al. (2019) identified five fre-

quently occurring pattern categories:

• vertical (associated with the delimiters tokens)

• diagonal (either syntactic features between

neighbouring words in the English language

or the previous/following token attention com-

ing from the language modeling pretraining)

• vertical + diagonal

• block (intra-sentence attention for the tasks

with two distinct sequences; potentially en-

codes semantic and syntactic information)

• heterogeneous (as “block”, more likely to cap-

ture interpretable linguistic features).

They annotated 400 BERT’s attention matrices

using these categories, and used them to train a

2We omit larger datasets (QQP, MNLI), due to the limit of
our computation budget (a single Nvdia GTX1070 with 8GB
memory), and CoLA/WNLI following Kovaleva et al. (2019).

3All other hyperparameters are set to default values in the
transformers library (Wolf et al., 2020).
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Task Attention B D V+D H V

Standard 4.50 7.40 15.20 45.10 27.90
RTE

Effective 32.60 12.80 2.80 40.30 11.50

Standard 3.40 10.20 14.90 39.80 31.80
MRPC

Effective 25.50 17.40 3.60 40.40 13.00

Standard 4.70 7.40 15.20 45.10 27.90
QNLI

Effective 29.30 15.80 3.40 46.40 5.10

Standard 38.50 6.10 0.00 37.80 17.60
SST-2

Effective 33.80 11.50 0.80 39.40 14.60

Standard 4.00 8.20 1.80 50.40 35.50
STS-B

Effective 36.00 10.30 0.60 39.40 13.60

Table 2: Estimated percentage of the attention patterns

(§3.1): block (B), diagonal (D), vertical + diagonal (V +

D), heterogeneous (H), vertical (V). Effective attention

exhibits different patterns than standard attention, i.e.,

less vertical patterns (associated with delimiter tokens)

and more block patterns (associated with task features).

ConvNet for pattern classification of 1K random

test set attention matrices. We replicate their results

for standard attention (using their code), and clas-

sify effective attention matrices for a comparison.4

Results Table 2 (Fig. 4 in Appendix B) shows a

drop in the percentage of the “vertical” and “verti-

cal + diagonal” patterns when we replace the stan-

dard with effective attention. Since the vertical

patterns are associated predominantly with atten-

tion to the delimiters tokens, this result supports the

hypothesis that effective attention disregards the de-

limiter tokens. Moreover, although the amount of

“heterogeneous” patterns did not change notably,

the amount of “block” and “diagonal” patterns in-

creased. This suggests that we are better positioned

to find end-task linguistic features captured by the

model by visualizing effective attention.

As an illustration, Figure 2 presents the attention

matrices for one sentence from one attention head.

In this example, effective attention highlights all

mentions of the noun “antibiotics” that the adjec-

tive “new” modifies and that is also the object of

the preposition “against”, instead of giving promi-

nence to the [SEP] token as standard attention.

3.2 Delimiter Tokens vs. Linguistic Features

We showed that the “vertical” pattern, associated

with the delimiter tokens, is less dominant with

effective attention (§3.1). To verify that both delim-

iter tokens are indeed less relevant with effective

attention, following Kovaleva et al. (2019), we re-

4We thank the authors for sharing their code and model
weights for this experiment.

(a) RTE

(b) MRPC

(c) QNLI

(d) SST-2

(e) STS-B

(f) AVERAGE OVER TASKS

Figure 1: Effective attention “pays less attention” to

[SEP] and punctuation. Per-task and per-head (0–11)

attention when processing [CLS] in the final layer, av-

eraged over test set. The darker colors correspond to

larger attention values. The green plots (two upper

rows in subfigures) illustrate standard, and blue plots

(two lower rows in subfigures) effective attention.
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(a) Standard attention

(b) Effective attention

Figure 2: Visualizations of standard and effective attention from one head for one example from the RTE dataset

(recognizing textual entailment). Only the last few rows are visible; see the full version in Fig. 7 (Appendix §B).

port the standard and effective attention weights of

specific token types when processing the [CLS] to-

ken in the final layer. Namely, the attention weights

of linguistic features (nouns, pronouns, verbs), the

delimiter tokens ([SEP], [CLS]), and punctuation

symbols that are conceptually similar to [SEP].5

Results Figure 1 shows that [SEP] is among the

two most relevant features for all tasks except QNLI

according to standard attention (upper two rows in

each subfigure, colored green). For all but one

task (SST-2), it loses its dominance with effective

attention and its weights are apparently shifted to

linguistic features. This is also the case for punc-

tuation symbols. This result shows that the [SEP]

token and punctuation symbols are not as impor-

tant for understanding how the model solves the

end-task as standard attention suggests.

We observe that [CLS] is attended similarly with

effective and standard attention, contrary to what

Brunner et al. suggested. To rule out this is because

we plot the attention assigned to [CLS] when pro-

5If there are multiple tokens of the same type in the input,
we use the one with the maximum weight. If a word consists of
the multiple subtokens, we use the weight of the first subtoken.

cessing [CLS], we report the attention assigned to

[CLS] when processing other input words (regard-

less of their type) in Fig. 5 in Appendix B. Again,

we do not observe differences between standard

and effective attention, unlike for [SEP] (Fig. 6 in

§B). These results confirm the hypothesis of Brun-

ner et al. that effective attention disregards [SEP],

but not [CLS] as they also hypothesized. Notably,

[SEP] is associated with the LM pretraining and

[CLS] only with the task-specific finetuning.

3.3 Effects of Task-Specific Finetuning

To provide our final evidence that effective atten-

tion captures end-task features, we investigate how

attention changes with finetuning layer-wise; again

following Kovaleva et al. (2019). They calculate

the cosine similarity between pretrained and fine-

tuned flattened attention matrices. The layers that

change the most, encode most task-specific fea-

tures. To reiterate, effective attention is the part of

standard attention that contributes to the model out-

put (Eq. 1; §2), and we showed that it is less asso-

ciated with the pretraining feature [SEP] and more

with linguistic features (§3.1, §3.2). Thus, changes

of standard attention from task-specific finetuning
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Figure 3: Per-task cosine similarity between the pretrained and finetuned attention weights for selected GLUE

tasks, calculated across layers and heads. The darker colors corresponding to larger absolute attention weights.

The top (green) figure is computed with the standard attention, and the bottom (blue) figure with the effective

attention.

should be the product of changes of effective atten-

tion, and the outcome of this analysis should be the

same, regardless of the attention “type”.

Results As expected, we come to the same con-

clusion with effective attention as Kovaleva et al.

did with the standard: the last two layers change

the most with finetuning (Fig. 3). This soundness

check suggests once again that effective attention is

the component of standard attention that manifests

end-task features.

4 Conclusions

We study whether effective attention, the part of

the transformer attention matrix that does not get

canceled out with the value matrix, gives different

interpretations than standard attention. We present

a comparison of the two attentions and show that

they differ in weights assigned to delimiter tokens

such as [SEP] and punctuation marks, but not [CLS]

as it was previously thought. Instead, effective

attention gives more weight to linguistic features.

Given the differences, and that effective attention

is more pertinent to the model output by design, we

urge to use it for studying transformers’ internals.

As an alternative to analyzing attention weights,

Kobayashi et al. (2020) propose anayzing the norm

of vectors produced by multiplying the outputs of

the value matrix with the attention weights. Follow-

ing the experimental setting of Clark et al. (2019),

i.e., by analyzing 992 sequences extracted from

Wikipedia, their norm-based analysis also shows

that the contributions of [SEP] and punctuations

are actually small. However, unlike us, they report

the same observation for [CLS]. Future work might

consider a more formal study between the norm-

based analysis and effective attention, especially

since the norm-based analysis could circumvent

the problem of costly SVD.

Acknowledgments

The authors thank Noah A. Smith, members of

Noah’s ARK, as well as anonymous reviewers for

their helpful feedback, and Olga Kovaleva for shar-

ing the code and model weights for classification

of attention patterns.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In the Interna-
tional Conference on Learning Representations.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254


4131

Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Gino Brunner, Y. Liu, Damián Pascual, Oliver Richter,
Massimiliano Ciaramita, and Roger Wattenhofer.
2020. On Identifiability in Transformers. In the
International Conference on Learning Representa-
tions.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
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A Background: On The Rank Of The

Value Matrix

The output Z of an individual self-attention head

is given by:

Q = Zl−1W
Q ∈ R

ds×dq

K = Zl−1W
K ∈ R

ds×dk

V = Zl−1W
V ∈ R

ds×dv

A = Softmax
(QKT

√
dk

)

∈ R
ds×ds

Z = AV ∈ R
ds×dv ,

where ds is the maximum length of the input se-

quence (in number of subtokens), Zl−1 is the output

of the previous transformer layer, WQ,WK ,W V

are the query, key, and value weight matrices, re-

spectively. For BERT-base, dq = dk = dv = 64,

nheads = 12, ds = 512, and dv · nheads = 768.

Brunner et al. (2020) show that the upper bound

of the rank of the value matrix V is given by:

rank(V ) = rank(Zl−1W
V )

≤ min{ds, dv, ds, dv · nheads}
≤ min{ds, dv}.

As a result, the left nullspace of V , defined as:

LN(V ) := {x⊤ ∈ R
1×ds |x⊤V = 0},

is non-trivial (LN(V ) 6= {~0}) when the maximum

input length, ds, is larger than the dimension of the

value matrix dv, i.e., ds > dv. In this case, we can

construct infinitely many matrices A+ Ã,

Ã = [x1, . . . , xds ]
⊤, xi ∈ LN(V ),

which contribute exactly the same to the output as

the attention matrix A:

(A+ Ã)V = AV + ÃV = AV +~0 = AV.

This also holds when the weights of A + Ã are

constrained to the probability simplex, and such

constrained matrices A+ Ã exist.

B Additional Results

We provide the following additional results that

complement the discussions in Section 3:

• A comparison of the evaluation time with stan-

dard vs. effective attention.

• In Figure 4, visualization of results presented

in Table 2.

• Attention to the [CLS] token in Figure 5.

• Attention to the [SEP] token in Figure 6.

• Complete Figure 2.

RTE MRPC QNLI SST-2 SST-B

standard 0:29 0:45 10:59 1:41 2:54

effective 0:58 1:27 21:05 3:20 5:53

Table 3: A comparison of the evaluation clock time

(minutes:seconds) of BERT models (trained with the

standard attention) evaluated with standard attention

and effective attention separately.

(a) Standard attention.

(b) Effective attention.

Figure 4: Estimated percentage of the attention patterns

(§3.1) for each task.
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Figure 5: Per-task attention across layers and heads to the [CLS] token when processing other input tokens, aver-

aged over sequence length and dataset items for the selected GLUE task. The darker colors corresponding to larger

absolute attention weights. The top (green) figure is computed with the standard attention, and the bottom (blue)

figure with the effective attention. Since the effective attention does not have a fixed range as the standard attention

(from 0 to 1), we use the minimum and maximum effective attention weight for each task calculated across all

weights (not only those associated with the [CLS] token).

Figure 6: Per-task attention across layers and heads to the [SEP] token when processing other input tokens, aver-

aged over sequence length and dataset items for the selected GLUE task. The darker colors corresponding to larger

absolute attention weights. The top (green) figure is computed with the standard attention, and the bottom (blue)

figure with the effective attention. Since the effective attention does not have a fixed range as the standard attention

(from 0 to 1), we use the minimum and maximum effective attention weight for each task calculated across all

weights (not only those associated with the [SEP] token).
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(a) Standard attention

(b) Effective attention

Figure 7: Complete Figure 2.


