
Effective Automatic Parallelization of Stencil Computations

Sriram Krishnamoorthy1 Muthu Baskaran1 Uday Bondhugula1

J. Ramanujam2 Atanas Rountev1 P. Sadayappan1

1Dept. of Computer Science and Engineering 2Dept. of Electrical & Computer Engg. and
The Ohio State University Center for Computation & Technology

2015 Neil Ave. Columbus, OH, USA Louisiana State University
{krishnsr,baskaran,bondhugu,rountev,saday}@cse.ohio-state.edu jxr@ece.lsu.edu

Abstract
Performance optimization of stencil computations has been
widely studied in the literature, since they occur in many
computationally intensive scientific and engineering appli-
cations. Compiler frameworks have also been developed that
can transform sequential stencil codes for optimization of
data locality and parallelism. However, loop skewing is typ-
ically required in order to tile stencil codes along the time
dimension, resulting in load imbalance in pipelined parallel
execution of the tiles. In this paper, we develop an approach
for automatic parallelization of stencil codes, that explicitly
addresses the issue of load-balanced execution of tiles. Ex-
perimental results are provided that demonstrate the effec-
tiveness of the approach.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Algorithms, Performance

Keywords Stencil computations, Tiling, Automatic paral-
lelization, Load balance

1. Introduction
Stencil computations represent a practically important class
of computations that arise in many scientific/engineering
codes. Computational domains that involve stencils in-
clude those that use explicit time-integration methods for
numerical solution of partial differential equations (e.g.,
climate/weather/ocean modeling [23], computational elec-
tromagnetics codes using the Finite Difference Time Do-
main method [27]), and multimedia/image-processing ap-
plications that perform smoothing and other neighbor pixel
based computations [13]. There has been some prior work
from the computer science community that has addressed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 Jun 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

performance optimization of stencil computations (e.g.,
[24, 19, 18, 10]). Since stencil computations are character-
ized by a regular computational structure, they are amenable
to automatic compile-time analysis and transformation for
exploitation of parallelism and data locality optimization.
However, as elaborated later through an example, existing
compiler frameworks have limitations in generating efficient
code optimized for parallelism and data locality.

Loop tiling is the key transformation to enable paral-
lelization and data-locality optimization of stencil codes.
Much research has been published on tiling of iteration
spaces [17, 29, 28, 26, 8, 25, 21, 22, 14, 7, 15, 9, 16, 3].
With few exceptions (e.g. work of Griebl [11, 12]), re-
search on performance optimization with tiling has gener-
ally focused on one or the other of the two complemen-
tary aspects: (a) data locality optimization [2, 3, 28, 26, 8];
or (b) tile size/shape optimization for parallel execution
[25, 21, 6, 14, 7, 15, 9, 16]. Tiling for data locality optimiza-
tion involves maximization of data reuse, i.e., tiling along
directions of the data dependence vectors. But such tiling
may result in inter-tile dependences that inhibit concurrent
execution of tiles on different processors. To the best of
our knowledge, no prior work has addressed in an integrated
fashion, the issues of tiling for data locality optimization and
load balancing for parallel execution. We first use the simple
example of a one-dimensional Jacobi code to illustrate the
problem and introduce two approaches we propose to avoid
the problem: overlapped tiles and split tiles. As an example
of a stencil computation, let us consider the one-dimensional
Jacobi code shown in Figure 1. Optimizing this stencil com-
putation for reduction of cache misses requires loop fusion
and tiling; in order to fuse the two inner loops, loop skew-
ing is needed. Frameworks have been previously proposed
for data locality optimizations of imperfectly nested loops.
Using an approach proposed by Ahmed et al. [3, 4], the
loop nest can be transformed into the one shown in Figure 2
by first embedding the iterations in the imperfectly-nested
loops into a perfectly-nested iteration space. Loop trans-
formations and tiling can then applied in the transformed
perfectly-nested iteration space. The transformed iteration
space can subsequently translated into efficient code by re-
ducing/eliminating the control overhead [20]. In this pa-
per, we focus on load-balanced parallel execution of tiled

235

iteration spaces that have already been embedded into a
perfectly-nested iteration space using a technique such as
that developed in [4].

Figure 3 shows a single-statement form of the 1-D Jacobi
code obtained by adding an additional dimension to array A.
The flow dependences in this code are the same as that of the
previously shown version, but there are no anti-dependences.
Hence a single statement is sufficient in the loop body in-
stead of a sequence of two statements, for update and copy,
respectively, as seen in Figures 1 and 2. Although such a
memory-inefficient code would not be used in practice, it
is more convenient to use a single-statement iteration space
in explaining the main ideas in this paper. However, the de-
veloped approach is not restricted to such single-statement
loops, but is applicable to general multi-statement stencil
codes such as the one in Figure 1. The generalization of
the approach for the more memory-efficient multi-statement
versions of code is explained in the Appendix. The experi-
mental results presented later also use the memory-efficient
multi-statement versions.

The perfect loop nest of Figure 3 has constant depen-
dences (1, 0), (1, 1), and (1,−1). Tiling for data reuse op-
timization (e.g. using the approach presented in [2]) results
in tiles of shape as shown in Figure 4. The horizontal axis
corresponds to the spatial dimension, with time along the
vertical dimension. Using a sufficiently large tile size along
the time dimension facilitates significant data reuse within
caches/registers. However, there are inter-tile dependences
in the horizontal direction, inhibiting concurrent execution
of tiles by different processors. However, if the vertical tile
size is reduced to one (i.e., tiling is eliminated along the
time dimension), all tiles along the spatial dimension (ad-
joining the x-axis) can be executed concurrently. Thus there
is a trade-off between achieving good data reuse and load
balancing of parallel execution.

Instead of the standard tiling described above, consider
the tiling shown in Figure 5. Starting with the tiles formed
by the same hyperplanes, an additional triangular region is
added to the left of the tile, overlapping with the points at the
right end of the neighboring tile. With this tiling, the iteration
points processed by the tiles are no longer disjoint. Some of
the iterations are executed redundantly by two neighboring
tiles. This results in an increase in the computation cost. But
doing so eliminates the dependence between tiles along the
horizontal direction. All processors can start executing in
parallel, eliminating the initial processor idling that results
with the pipelined parallel execution of tiles in Figure 4.

While standard tiling can enhance data locality in this
context, overlapped tiling can both improve data locality and

for t = 0 to T-1
for i = 1 to N-1
B[i] = (A[i-1]+A[i]+A[i+1])/3; (S1)

for i = 1 to N-1
A[i] = B[i]; (S2)

Figure 1. Example: 1-D Jacobi code

for t = 0 to T-1
for i = 1 to N
if(i>=1 and i<=N-1)
B[i] = (A[i-1]+A[i]+A[i+1])/3; (S1)

if(i>=2 and i<=N)
A[i-1] = B[i-1]; (S2)

Figure 2. Fused 1-D Jacobi code

for t = 0 to T-1
for i = 1 to N-1

A[t,i] =
(A[t-1,i-1] + A[t-1,i] + A[t-1,i+1])/3;

Figure 3. Single-statement form of 1-D Jacobi code

Figure 4. Standard tiling for one-dimensional Jacobi. s1

and s2 denote the inter-tile dependences.

eliminate the overhead of pipelined parallelism, at the cost of
slightly increased computation time. However, the increased
computational cost is independent of tile size. Therefore the
fractional computation overhead is inversely proportional to
the tile size in the direction of overlapped tiling, and can be
made insignificant if a sufficiently large tile size is chosen
along the time dimension.

An alternate approach, shown in Figure 6, splits the inte-
rior of each tile into two sub-tiles, where the points in only
one of the two sub-tiles (shaded) are dependent on points in
the neighbor tile, while the points in the other sub-tile are not
dependent on any neighboring tile’s points, and therefore ex-
ecutable concurrently. With this approach, each standard tile
is split into two sub-tiles, and load-balanced concurrent ex-
ecution is possible as a sequence of two steps: first all non-
dependent sub-tiles are concurrently executed and communi-
cate with the neighbor tiles, and then the dependent sub-tiles
are all concurrently executed.

The paper is organized as follows. Section 2 defines the
problem addressed in this paper. In Section 3, we character-
ize the conditions under which tiled iteration spaces can ben-
efit from overlapped/split tiling. In Section 4, we show how
to transform a given tiled iteration space in order for over-
lapped/split tiling to be applicable. Section 5 discusses code
generation and Section 6 analyzes the cost benefits of over-
lapped tiling. Section 7 provides experimental results that
demonstrate the benefits of overlapped/split tiling. In Sec-
tion 8, we discuss related work and conclude in Section 9
with a summary.

236

Figure 5. Overlapped tiling for 1-D Jacobi.

Figure 6. Split tiling for 1-D Jacobi.

2. Background and Problem Statement
This section introduces some standard background on the
polyhedral model of computation, and defines the problem
statement. Consider a perfectly-nested loop nest with n lev-
els of nesting. The iteration space polyhedron defines an n-
dimensional set of points, characterized by a set of bounding
hyperplanes and modeled as B.I ≥ b where I is the itera-
tion vector. The rows bi of B define the normals to the corre-
sponding bounding hyperplanes. For example, the iteration
space for the one-dimensional Jacobi example is

⎛
⎜⎝

1 0
−1 0

0 1
0 −1

⎞
⎟⎠ .

(
t
i

)
≥

⎛
⎜⎝

0
−T + 1

1
−N + 1

⎞
⎟⎠

The dependences in the computation can be represented by
a matrix D where each column defines a dependence vector.
The dependences in the 1-D Jacobi example are

D =
(

d1 d2 d3

)
=

(
1 1 1

−1 0 1

)

Assume that we are given a set of tiling hyperplanes that
tile the iteration space. These hyperplanes are encoded by
a matrix H , where each row represents the normal vector
of a tiling hyperplane. For example, the tiling hyperplanes
corresponding to Figure 4 are encoded as

H =
(

h1

h2

)
=

(
1 0
1 1

)

A tiling defined by a set of tiling hyperplanes is legal if each
tile can be executed atomically and there exists a valid total
ordering of the tiles. Intuitively, a tiling is legal if no two tiles
influence each other. It can be shown [17] that this validity
condition is given by

H.D ≥ 0

Figure 7. Iteration spaces with (1, 0) and (0, 1) dependen-
cies: (a) concurrent start is not possible (b) concurrent start
is possible from the gray boundary.

A schedule has a concurrent start if all processors can start
execution in parallel, without a pipeline start-up overhead.
Such a schedule is referred to as a concurrent start schedule.

Problem Statement. In this paper, we are interested in
the following problem. Consider a given (non-tiled) iteration
space in which a concurrent start schedule is possible. How-
ever, for a given tiling of this space defined by a set of tiling
hyperplanes, it is possible that the tile dependencies in the
corresponding tiled iteration space inhibit concurrent start.
We consider the following question: How can concurrent
start be achieved in the tiled iteration space? Our first goal
is to characterize analytically the situations in which tiling
inhibits concurrent start. Next, we define two approaches,
overlapped tiling and split tiling, that enable concurrent start
in the tiled space and recover the load-balancing properties
lost due to tiling.

3. Inhibition of Concurrent Start
If the original non-tiled iteration space does not have a con-
current start schedule, tiling cannot enable such a schedule.
However, if concurrent start is possible in the absence of
tiling, the introduction of tiling can potentially inhibit this
concurrent start. This section characterizes the conditions
under which a non-tiled space supports a concurrent start
schedule, and then derives a concurrent start inhibition con-
dition for the tiled space. For simplicity of presentation, the
discussion assumes an iteration space with a single state-
ment, but we have defined a general version of the tech-
nique for multi-statement iteration spaces (outlined in the
appendix).

3.1 Concurrent Start in the Non-Tiled Space

First, we describe the condition for the existence of concur-
rent start in the original non-tiled iteration space. Consider,
for example, dependence vectors (1, 0) and (0, 1). Two itera-
tion spaces with these dependences are shown in Figure 7. In
Figure 7(a), the parallel computation has to begin from the
origin (0, 0) and suffers from pipeline start-up overhead. On
the other hand, the iteration space in Figure 7(b) can be tra-
versed by all processors in parallel starting from the bound-
ary shown in gray.

237

In general, the presence of concurrent start in an itera-
tion space depends on the boundaries that define the itera-
tion space polyhedron. An iteration space supports concur-
rent start if there exists a bounding hyperplane that does not
contain a dependence, i.e. carries all dependences. A hyper-
plane contains a dependence if both the source and destina-
tion iteration points of the dependence are contained in the
hyperplane. Since the rows bi of B define the normal vectors
of the bounding hyperplanes, this property is represented by
the condition

∃bi ∈ B : ∀dj ∈ D : bi.dj > 0

Note that this condition is independent of the tiling hyper-
planes. We will refer to this property as the point-wise con-
current start condition. When this condition does not hold,
no tiled iteration space can have concurrent start. For the 1-D
Jacobi example, the condition holds because the normal vec-
tor b1 = (1 0) for one of the bounding hyperplanes satisfies
b1.dj > 0 for all dependence vectors dj .

3.2 Inhibition of Concurrent Start in the Tiled Space

Next, we consider the condition for the inhibition of the
concurrent start condition in the tiled iteration space. Given
the tiling hyperplanes and their normal vectors hi ∈ H ,
we define the shift vector si for the hyperplane with hi as
normal to be a vector connecting two instances of the same
hyperplane, while traveling parallel to all other hyperplanes.
Clearly, the following holds for the set S of shift vectors:

∀si ∈ S : ∀j �= i : hj .si = 0

For the 1-D Jacobi example, we will use shift vectors

S =
(

s1 s2

)
=

(
0 1
1 −1

)

as illustrated in Figure 4.
The execution of two adjacent tiles should be ordered if

there is a dependence vector dj such that for some iteration
points i1 and i2 related by dj , point i1 is in one of the tiles
and point i2 is in the other one. Note that this is possible only
if there is a dependence that passes through the hyperplane
that separates the two tiles — in other words, if the following
condition holds

∃dk ∈ D : hi.dk �= 0

When this condition is satisfied for a given hyperplane with
hi ∈ H , the shift direction si along that dimension car-
ries the inter-tile dependence. For the 1-D Jacobi example,
both s1 and s2 carry inter-tile dependencies (for example,
h1.d1 > 0 and h2.d1 > 0).

The inter-tile dependences can introduce dependence di-
rections that do not exist in the original iteration space. The
concurrent start condition is inhibited in the tiled iteration
space, if for some boundary bi, the concurrent start condi-
tion is satisfied by the dependences in the original iteration
space, but not by the inter-tile dependences in the tiled iter-
ation space. A tiling inhibits concurrent start if

∃bi ∈ B, hj ∈ H, dk ∈ D : bi.D > 0∧ bi.sj = 0∧hj .dk �= 0

When the above condition is true, there exists an inter-
tile dependence within a hyperplane parallel to the boundary
bi, precluding concurrent execution of all the tiles in the
boundary. Thus, concurrent start is inhibited even though
the original iteration space supports it. This situation occurs
for the 1-D Jacobi example due to bounding plane normal
b1 = (1 0), tiling hyperplane normal h1 = (1 0), and any
dependence dk for k = 1 . . . 3.

4. Overlapped Tiling
The basic idea behind overlapped tiling is to eliminate cer-
tain inter-tile dependencies by “duplicating” points in the
original iteration space. As a result, the same iteration point
can be a member of two neighboring tiles (i.e., the tiles can
overlap). This section outlines a constructive procedure to
determine overlapping tiles that eliminate the inter-tile de-
pendences, which removes the inhibition on concurrent start.
The key step is the construction of a companion hyperplane
that eliminates the dependence along a desired direction. The
new tile will not have any incoming dependence along the
direction in which the dependence was eliminated.

In standard tiling, a hyperplane with a normal vector hi

defines two faces of the tile. We will denote these faces as
hi(l) (the back face) and hi(l + 1) (the front face). The
front face is shared with the subsequent tile along the shift
direction defined by shift vector si. The back face hi(l) has
no incoming dependences if hi.D ≥ 0. On the other hand,
the front face hi(l + 1), by the tiling validity condition,
does not have any incoming dependences. All dependences
between the hyperplanes can be eliminated if the back face
of the tile is replaced by an overlapped hyperplane with a
normal vector h′

i such that

∀dj ∈ D : h′
i.dj ≤ 0

Note that the hyperplanes span the iteration space and any
vector in the iteration space; hence, the companion hyper-
plane can be defined as a linear combination of the existing
hyperplanes. Scaling a given hyperplane vector hi does not
eliminate any additional dependences. In addition, we are
interested in the companion hyperplane that forms the back
face of the tile. Thus, it is constructed by going “backwards”
on the other hyperplanes, represented by a negative linear
combination of the hyperplanes, and is given by:

hi.D ≥ 0 ⇒ h′
i = hi −

∑
j �=i

kj .hj ∧ h′
i.D ≤ 0 ∧ kj > 0

Such a companion hyperplane eliminates dependences
along a shift vector. This procedure is repeated for every
hyperplane/shift vector that inhibits concurrent start.

4.1 Cost analysis for overlapped tiling

Consider n-D Jacobi with an n + 1 dimensional iteration
space, and an n dimensional data space with a length of N
along each dimension. Let B be the space tile size along each
of the n space dimensions. Let p be the number of processors
organized in an n-dimensional grid. B = N/ n

√
p. Let t be

the time tile size.

238

P(i,j)

P(i,j+1)

P(i+1,j)P(i−1,j)

Exact comm

local

volume

B
+

2t
t

B

t

t

P(i,j−1)

Figure 8. Overlapped tiling for 2-D Jacobi: top view

The schedule for overlapped tiling requires the processors
to cycle to maintain load balance. We illustrate the deter-
mination of communication frequency using a simpler vari-
ation. Starting from orthogonal tiling, both planes can be
swiveled partially to form trapezoid-like tiles for 1-D Jacobi,
and a square pyramid for 2-D Jacobi, top view for which is
shown in Figure 8. This overlapped tiling scheme has the
same communication volume as the original one, but double
the number of startups. However, code generation is simpler
for this case due to the absence of the need to cycle. The
number of startup’s do not matter when the communication
volume is higher; this is particularly true for higher dimen-
sional Jacobi (greater than 1) for which the space tile size
comes into the volume.

Consider the overlapped tiling scheme that is obtained
from orthogonal tiling. The point-wise difference between
the coordinates of a given processor and any of its neighbors
in the processor space is an n-vector, and each of its n com-
ponents being 1, 0, or -1. Discounting the all zeros case, we
have 3n−1 neighbors. Hence, the number of communication
startups per tile (without forwarding) is given by:

S1 = 3n − 1 (1)

For example, for 3-D Jacobi, we have 8 corners, 12 edges,
and 6 faces, i.e., a total of 26 (= 33-1) neighbors to send and
receive data to/from to compute the overlapped tile.

With communication forwarding, the number of commu-
nication startups per tile can be reduced to 2n (one for each
of the faces).

S′
1 = 2n (2)

Similarly the number of startups for the original schedule
without and with forwarding are:

S2 = 2n − 1 (3)

S′
2 = n (4)

The exact communication volume assuming orthogonal
tiling is given by:

V =
n∑

i=1

(
n

n − i

)
2iB(n−i)f(i, t) (5)

≈ 2ntBn−1 when t � B

where

f(k, t) =
t−1∑

in−k+1=1

. . .

i(n−1)∑
in=1

in (6)

The communication volume for the original schedule re-
duces to:

V =
n∑

i=1

(
n

n − i

)
B(n−i)f(i, 2t) (7)

≈ 2ntBn−1 when t � B

The communication schedule and the data being com-
munication can be quite complex for higher dimensions.
Adding a small number of points to the communication
volume greatly simplifies code generation. In Figure 8, the
points in each of the four corners are those that can be added.
The total communication volume then becomes:

V ′ = (B + 2t)n − Bn

= nC1B
n−1(2t) + nC2B

n−2(2t)2

+ . . . + (2t)n (8)

≈ 2ntBn−1 if t � B

= Θ(tBn−1) (9)

For n = 2:
V ′ = 4tB + 4t2 (10)

4.2 Split Tiling

Overlapped tiling eliminates inter-tile dependences by re-
dundantly computing portions of a tile. While eliminating
dependences, this approach increases the overall amount of
computation. In this section we leverage the idea of depen-
dence inhibition to develop an alternative approach, referred
to as split tiling, in order to enable concurrent start without
the computation overhead. In split tiling, rather than redun-
dantly computing a portion of the predecessor tile along a
dimension, the processor executing the predecessor tile first
computes that portion and sends the results to its successor
along that dimension.

We show that for stencil computations, a tile sub-region
can be identified such that this sub-region can be executed
in parallel in all tiles. This enables concurrent start. We
outline an algorithm that divides a tile into sub-regions and
schedules the computation and communication to achieve
concurrent start and load-balanced execution in which all
processors execute the same amount of work in all the steps
in the schedule.

4.2.1 Tile Regions

A tile in a stencil computation is bounded by the hyperplane
instances:

∀I,B.I ≥ b, hj ∈ H : hj .I ≥ loj , hj .I ≤ hij

where two parallel instances of each hyperplane are defined,
one bounding the tile below along that dimension and an-
other bounding the tile from above.

239

Along a dimension j, dependence inhibition identifies
a partner hyperplane such that the region enclosed by the
partner hyperplane (h′

j) in the positive direction (h′
j .I ≥ lo′i

can be computed independently of the rest of the tile. This
region was redundantly computed in the overlapped tiling
approach.

DEFINITION 1. The independent region along a dimension
j is denoted by ¬j. The rest of the tile along that region will
be denoted by j.

In the subsequent discussion, it should be clear from the con-
text whether j refers to the dimension or to the complement
of the independent region along that dimension.

The region ¬j is defined by making the partner hyper-
plane to be bounded from below along that dimension:

∀I,B.I ≥ b, hk ∈ H, k �= j : hk.I ≥ lok, hk.I ≤ hik

∀I,B.I ≥ b : h′
j .I ≥ lo′k, hj .I ≤ hij

Note that the hyperplanes along all the other dimensions
remain unchanged.

A tile can be divided into these two regions along each
of the dimensions. The various intersections of these regions
divides the tile into 2k tile components for k such dimen-
sions. We only consider dimensions along which there is po-
tential for dependence inhibition, which would eliminate the
time dimension. For example, a tile in two-dimensional Ja-
cobi with x and y as the dimensions can be divided into the
components ¬x ∩ ¬y, ¬x ∩ y, x ∩ ¬y, and x ∩ y.

From the definition of independent region, a tile compo-
nent ¬i ∩ . . . is not dependent on its predecessor along di-
mension i. Thus, the tile component that is the intersection
of the independent tile region along all the processors can be
computed in parallel, without any communication — that is,
all processors can start executing this in parallel, resulting in
concurrent start.

Consider the tile component i ∩ . . ., where all other tile
regions are independent. This tile component does not carry
any dependence along any dimension other than i. The re-
gion in the predecessor tile that it depends on is derived
as the tile-component with the same hyperplanes along all
other dimensions as the tile component, with the hyperplanes
along dimension i replaced by the lower-bounding hyper-
plane for this tile becoming the upper-bounding hyperplane,
and the partner hyperplane for dependent inhibition becom-
ing the lower-bounding hyperplane. This is the tile compo-
nent ¬i ∩ Thus, the tile component i ∩ . . . can be com-
puted once the boundary along i computed by ¬i∩ . . . in the
predecessor tile.

In general, for each dimension i along which a tile com-
ponent is dependent, the inter-tile boundary is computed by
the tile component in the predecessor tile obtained by re-
placing i by ¬i For example, the tile component x ∩ y in
two-dimensional Jacobi, can be computed after the shared
boundary with ¬x∩y is received from the predecessor along
x, and the one with x ∩ ¬y is received from the predecessor
along y.

1. If (n==1), say a dimension x. Compute ¬x,
send and receive the result along the x
dimension, compute x and return.

2. Execute algorithm for (n-1)-dimensional
stencil computation for all dimensions
except one, say z. Thus all values computed
will be for those independent along z (all
tile sections have ¬z as the z dimension
component).

3. Send all computed values along the z
dimension.

4. Execute algorithm for n-dimensional stencil
computation for all dimensions except z.
But this time, all values computed will be
dependent for dependent regions along z.

Figure 9. Computation/communication scheduling algo-
rithm for split-tiling

Figure 9 presents a scheduling algorithm with 2n−1 com-
munication steps for an n-dimensional stencil computation.
In this recursive formulation, the number of communication
steps is given by :

L(n) = 2 ∗ L(n − 1) + 1

with L(1)=1; that is, L(n) = 2n − 1. Note that this approach
does not incur any addition computation cost. In addition,
only inter-tile boundaries in the spatial dimensions are com-
municated, thus incurring the same communication volume
cost as standard tiling.

5. Code Generation
In this section, we discuss the generation of the code for
the iteration space with the overlapped and split tiles. We
describe the derivation of the parameters necessary to utilize
the code generation framework described by Ancourt and
Irigoin [5].

Each tile in the tiled iteration space is identified by a tile
origin. The execution of the tiled iteration space is defined
as the traversal of the tiles in terms of their origins, together
with the execution of the iterations mapped to each tile as it
is traversed.

The origin of the tiled iteration space defined to be the
origin of the original iteration space. Given the origin, all the
tile origins can be enumerated as linear combinations of the
shift vectors. The tile size is defined as the distances between
the tile origins along the shift vector, and is embedded in the
specification of the shift vector itself.

The matrix of shift vectors specifies the traversal order of
the tile origins. The shift vectors are ordered to enable an
outer loop along the direction bi so that there is parallelism-
inner synchronization-outer.

Given the tile origin x0, defined equivalently in terms of
the shift vectors or as iteration points in the original iteration
space, each of the hyperplanes bounding the tiles can be
identified by a point in it. For hyperplanes hi along which

240

no overlap is identified as necessary, the iteration points x
in the iteration space that form this tile satisfy the following
conditions:

hi.x ≥ hi.x0 ∧ hi.x < hi.(x0 + si)

Note that x0 is a vertex on all the non-overlapped hyper-
planes that form the back face of the tile. x0 + si is a point
on the front face of the tile for all hyperplanes hi. Since over-
lapping does not change the front face, this is also true for
hyperplanes that utilize overlap.

When an overlapped hyperplane is identified along a di-
mension, we replace the back face of the original hyperplane
hi by an overlapped hyperplane h′

i. Since h′
i is constructed

from hi by only shifting it along the other hyperplanes, the
point x0 +

∑
j �=i si is a valid point on it irrespective of the

choice of h′
i. Thus the boundary conditions for the tile for

these hyperplanes is given by:

hi.x ≥ hi.(x0 +
∑
j �=i

si) ∧ hi.x < hi.(x0 + si)

Given the tile origins and their traversals, and the shape
of the overlapped tile, the code generation procedure of An-
court and Irigoin [5] can be used to generate code. The gen-
erated code would have n outer tile space loops, each corre-
sponding to a tiling hyperplane, and inner loops enumerating
all iterations belonging to a tile. Let us assume that k of the n
hyperplanes have been identified for overlapped tiling. Over-
lapped tiling enables concurrent startup along a hyperplane
by eliminating any inter-tile dependence along that hyper-
plane. Hence, the tile space loops corresponding to the re-
maining n − k hyperplanes carry all inter-tile dependences,
and can be run sequentially as the outer loops, and the k tile
space loops corresponding to overlapped tiling hyperplanes
can all be run in parallel by mapping to a k-dimensional or
lower processor space.

The traversal of tile origins for split tiling is the same as
that for standard tiling. The intra-tile code is generated for
the various tile components by scanning the polytopes de-
rived by specifying the appropriate hyperplane instances that
bound the tile component, as defined earlier. The appropri-
ate hyperplane boundaries between sub-tiles define the data
to be communicated between processors for the communi-
cation phases, as discussed earlier.

6. Experimental Evaluation
Both the proposed tiling schemes—overlapped tiling and
split tiling—enable load-balanced tiled execution of sten-
cil codes that inherently satisfy the concurrent-start crite-
rion. The degree of exploited concurrency is the same with
both schemes; they differ in the computation/communication
overheads relative to standard tiling. With overlapped tiling,
there is a small amount of computational overhead and also
a small increase in the total communication volume. Split
tiling requires no additional redundant computations and re-
quires exactly the same total communication volume as stan-
dard tiling, but requires additional messages, i.e., incurs a
higher message-startup-cost overhead.

Below, we report experimental results comparing over-
lapped/split tiling with standard (pipelined) tiling for the 1-
D Jacobi code. The experiments were conducted on a cluster
consisting of 32 compute nodes each of which is a 2.8 GHz
dual-processor Opteron 254 (single core) with 4GB of RAM
and 1MB L2 cache, running Linux kernel 2.6.9. We used
one processor per node in our experiments. The code was
compiled using the Intel C Compiler with -O3 optimization
flag.

The iteration space of 1-D Jacobi has a space dimension
and a time dimension. Two versions of pipelined schedule
were implemented: (i) one in which the processor space
was mapped along the time dimension and time along the
space, and (ii) the other one in which the processors were
distributed in a block-cyclic fashion to execute tiles along
time dimension.

First we conducted experiments to determine the opti-
mal time tile size and space tile size for the two pipelined
schedules. The experiments were conducted for 1000 time
steps on 32 processors for a total problem size of 64000 ele-
ments. The execution times are shown in Figures 10 and 11.
The number of communication startups decreases with an
increase in the spatial tile size. This typically results in a de-
crease in the execution time with an increase in the space tile
size. But for larger space tile sizes, the pipeline startup costs
increase thus dominating and increasing the execution time.
Increase in the time tile size reduces the number of time tiles
and hence the number of synchronizations. But larger time
tile sizes as in the case of larger space tile sizes increase
the pipeline startup costs. Hence an increase in the time tile
size decreases the execution time until the pipeline startup
costs begin to dominate. The execution times for both the
pipelined schedules, as inferred from the experiments, are
minimum for a time tile size of 16 and space tile size of
1000. Hence a time tile size of 16 and space tile size of 1000
were used for subsequent evaluation of the schemes.

For overlapped and split tiling, the space tile size is fixed
to be N/nproc, where N is the space dimension size and
nproc is the number of processors used for parallel execu-
tion. The time tile size is chosen to be 16 to match the choice
for the pipelined schedules.

Given these choices of space and time tile sizes, the
performance of the four schemes for various problem sizes is
shown in Figure 12. The split and overlapped tiling schemes
result in a linear increase in execution time with problem
size, unlike the pipelined tiling solutions. The improvement
in execution time achieved by split and overlapped tiling
schemes with increase in problem size is due to the better
exploitation of data locality. In addition, unlike the pipelined
schedules, the communication cost is independent of the
problem size.

The improved scalability of the overlapped and split
tiling schemes, due to an absence of the pipeline startup
cost, is shown in Figure 13. The problem size was fixed
at 20000 elements per processor. The number of proces-
sors was varied to measure the weak scaling capability of
the various schemes. A straight line parallel to the x-axis
corresponds to linear scaling. The split tiling solution per-

241

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Space tile size

Time Tile Size = 1
Time Tile Size = 2
Time Tile Size = 4

Time Tile Size = 16
Time Tile Size = 32

Figure 10. Optimal space and time tile size for pipelined
schedule 1

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Space tile size

Time Tile Size = 1
Time Tile Size = 2
Time Tile Size = 4

Time Tile Size = 16
Time Tile Size = 32

Figure 11. Optimal space and time tile size for pipelined
schedule 2

forms best, followed by the overlapped tiling solution. The
pipelined schedules suffer from performance degradation
with increase in the number of processors.

6.1 Multi-statement stencils

We now consider multi-statement stencil codes that are rep-
resentative of multimedia applications. The code is a se-
quence of loop nests with a producer-consumer relationship
between adjacent ones as shown in Figure 14. The ‘parallel’
implementation exploits do-all parallelism in each loop nest
with synchronization after each of the loop nests. The finite
number of statements limits solutions exploiting pipelined
parallelism to five processors. Figures 14 and 15 show the
performance measured with overlapped and split tiling for
this code. As can be seen from Figure 15, split and over-
lapped tiling perform better than the straightforward paral-
lel implementation. The speedup with overlapped and split
tiling is super-linear due to exploitation of data locality and
enabling of concurrent start.

 25

 50

 75

 100

 125

 150

 175

 200

 225

 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(m

s)

Problem size (x 103)

Split tiling
Overlapped tiling

Pipelined tiling(schedule 1)
Pipelined tiling(schedule 2)

Figure 12. Execution Time as a function of problem size

 0

 50

 100

 150

 200

 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(m

s)

#procs

Pipelined tiling (schedule 1)
Pipelined tiling (schedule 2)

Overlapped tiling
Split tiling

Figure 13. Execution Time for 1-D Jacobi code

for i=2 to N-2
a1[i] = 0.33*(in[i-1] + in[i] + in[i+1]);

for i=3 to N-3
a2[i] = 0.33*(a1[i-1] + a1[i] + a1[i+1]);

for i=4 to N-4
a3[i] = 0.33*(a2[i-1] + a2[i] + a2[i+1]);

for i=5 to N-5
a4[i] = 0.33*(a3[i-1] + a3[i] + a3[i+1]);

for i=6 to N-6
a5[i] = 0.33*(a4[i-1] + a4[i] + a4[i+1]);

7. Related Work
Several recent works have presented manual optimizations
and experimental studies on stencil computations [19, 18,
10]. Iteration space tiling [17, 29] is a method of aggregating
a number of loop iterations into tiles where the tiles execute
atomically; communication (or synchronization) with other
processors takes place before or after the tile but not during

242

 0

 20

 40

 60

 80

 100

 120

 140

 50000 100000 150000 200000 250000

E
xe

cu
tio

n
tim

e
(u

s)

Problem size

Overlapped tiling
parallel

Split tiling

Figure 14. Multi-statement stencil: 32 processors

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(u

s)

#procs

Overlapped tiling
Split tiling

Parallel

Figure 15. Multi-statement stencil: problem size = 64K

the execution of the iterations of a tile. Several works have
used tiling for exploiting data locality [2, 3, 28, 26, 8].
Others have addressed the selection of tile shape and size
to minimize overall execution time [25, 21, 6, 22, 14, 7].
The size of tiles has an impact on the amount of parallelism
and communication: smaller tiles increase parallelism by
reducing pipelined startup cost, while larger tiles reduce
frequency of communication among processors. This has
been studied by a number of researchers [6, 22, 14, 15, 9,
16]. Griebl [11, 12] presents an integrated framework for
optimizing data locality and parallelism in the use of tiling;
however, pipelining issues are not considered.

Sawdey and O’Keefe [24] describe TOPAZ the tool that
explores the replicated computation of boundary values in
the context of SPMD execution of stencil codes, in which
the user marks regions of code to be replicated; the tool
then analyzes and generates the correct code. This approach
helps with reducing communication costs and improving
load balance. Adve et al. [1] describe computation parti-
tioning strategies used in the dHPF compiler that exploit
replicated computation using the LOCALIZE directive that
is available in dHPF. Both these approaches rely on user-

specification of replicated computation, unlike our approach
to automatic parallelization.

8. Conclusions
Iteration space tiling has received considerable attention mo-
tivated by optimizing for data locality as well as by exploit-
ing parallelism for nested loops. The choice of the shape
of iteration space tiles may result in inter-tile dependences
that inhibit concurrent execution of tiles on different pro-
cessors, leading to a pipelined start overhead. This paper
has addressed the issue of enhancing concurrency with tiled
execution of loop computations with constant dependences.
Two approaches, namely overlapped tiling and split tiling
were presented, that enabled the removal of inter-tile de-
pendences, thereby enabling additional concurrency. Exper-
imental results demonstrated the effectiveness of the pro-
posed schemes.

Acknowledgments
This work is supported in part by the National Science
Foundation through awards 0121676, 0121706, 0403342,
0508245, 0509442, and 0509467. We thank David Callahan
for suggesting split tiling.

Appendix: Treatment of multi-statement
iteration spaces
The characterization of the feasibility of enhanced concur-
rency through overlapped/split tiling is directly applicable
for single-statement iteration spaces, such as the simplified
(but space-wise inefficient) version of the Jacobi code of Fig-
ure 2. But the efficient version of the Jacobi code contains
two distinct statements. In this Appendix, we discuss how
overlapped/split tiling can be used with multi-statement iter-
ation spaces.

Consider the Jacobi code of Figure 2. The two statements
S1 and S2 are nested within the t and i loops. If we treat
the entire body of the of the nested loop (i.e., S1 and S2)
as the basis for defining dependences, the data dependences
are (0,1), (0,2), (1,0), (1,-1), and (1,-2). Considering as be-
fore, the bounding hyperplane b corresponding to t=0, i.e.,
with normal vector (1,0), we find that the dependence vec-
tors (0,1) and (0,2) have a zero dot-product with b. In other
words, the point-wise concurrent start condition is not satis-
fied. The problem here is due to the coarse granularity used
in defining dependences based on the entire loop body. In-
stead, it is possible to take a finer-grained view, separating
out dependences due to instances of S1 and S2. There is a
flow dependence (0,1) from S1 to S2, i.e., a flow dependence
from S1(t,i) to S2 (t,i+1)) and anti-dependences (0,0), (0,1)
and (0,2) from S1 to S2. From S2 to S1, we have flow depen-
dences (1,0), (1,-1), and (1,-2), as well as anti-dependence
(1,-1). It is clear by examining the dependences between in-
stances of S1 and S2 (rather than the aggregate computation
from S1 and S2 at each iteration space point) that all in-
stances of S1 for a particular value of t are all concurrently
executable: there are no direct dependences between them,
and all incoming dependences are from instances of S2 at

243

time-step t-1. The instances of S2 at a given time step are
also concurrently executable, because the incoming depen-
dences are all from instances of S1 at the same time-step.

Given a multi-statement iteration space for a stencil com-
putation with statements S1, S2, ...Sk, we first form strongly
connected components among the statements. For each
strongly connected component, all self-transitive depen-
dences are computed starting from some statement, forming
all possible chains of dependences that end in an instance
of the same statement. These self-transitive dependences
are then used for checking for concurrent-start, instead of
the single-statement dependences assumed in the treatment
of Section 4. This technique allows a hyperplane-based ap-
proach, typically employed to restructure perfectly-nested
loops, to be applied in this context.

Considering the Jacobi example of Figure 2, the self-
transitive dependences may be computed from S1 through
S2 back to S1, or vice versa (S2 through S1 to S2). The
dependences from S1 to S2 are (0,0), (0,1), and (0,2), while
the S2-S1 dependences are (1,0), (1,-1), and (1,-2). Forming
all possible transitive dependences from S1 to S1, we get (1,-
2), (1,-1), (1,0), (1,1), and (1,2). With these self-transitive
dependences, it may be seen that their dot product with
the t=0 boundary hyperplane (with normal (1,0)) is always
positive, i.e., point-wise concurrent start is feasible for this
iteration space.

References
[1] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High

performance fortran compilation techniques for parallelizing
scientific codes. In Proceedings of Supercomputing ’98,
pages 1–23, 1998.

[2] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing
transformations for locality enhancement of imperfectly
nested loops. In Proceedings of ACM ICS 2000, pages 141–
152, 2000.

[3] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-
nested loop nests. In Proceedings of SC’00, page 31, 2000.

[4] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transfor-
mations for locality enhancement of imperfectly-nested loop
nests. International Journal of Parallel Programming, 29(5),
Oct. 2001.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops.
In Proceedings of PPOPP ’91, pages 39–50, 1991.

[6] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal
semi-oblique tiling. IEEE Trans. Par. & Dist. Sys., 14(9):944–
960, 2003.

[7] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate
tiling? Integration, the VLSI Journal, 17(1):33–51, 1994.

[8] S. Coleman and K. S. McKinley. Tile size selection using
cache organization and data layout. In Proceedings of PLDI
’95, pages 279–290, 1995.

[9] F. Desprez, J. Dongarra, F. Rastello, and Y. Robert. De-
termining the idle time of a tiling: new results. Journal of
Information Science and Engineering, 14:167–190, 1998.

[10] M. Frigo and V. Strumpen. The memory behavior of cache
oblivious stencil computations. J. of Supercomputing, 2006.

[11] M. Griebl. On tiling space-time mapped loop nests. In
Proceedings of SPAA ’01, pages 322–323, 2001.

[12] M. Griebl. Automatic Parallelization of Loop Programs for
Distributed Memory Architectures. University of Passau,
2004. Habilitation Thesis.

[13] R. Haralick and L. Shapiro. Computer and Robot Vision.
Addison Wesley, 1992.

[14] E. Hodzic and W. Shang. On time optimal supernode shape.
IEEE Trans. Par. & Dist. Sys., 13(12):1220–1233, 2002.

[15] K. Hogstedt, L. Carter, and J. Ferrante. Determining the idle
time of a tiling. In Proceedings of POPL ’97, pages 160–173,
1997.

[16] K. Hogstedt, L. Carter, and J. Ferrante. Selecting tile shape
for minimal execution time. In Proceedings of SPAA ’99,
pages 201–211, 1999.

[17] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of POPL ’88, pages 319–329, 1988.

[18] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Implicit and explicit optimizations for stencil
computations. In Proceedings of MSPC ’06, pages 51–60,
2006.

[19] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Im-
pact of modern memory subsystems on cache optimizations
for stencil computations. In Proceedings of MSP ’05, pages
36–43, 2005.

[20] W. Kelly, W. Pugh, and E. Rosser. Code generation for
multiple mappings. In Proceedings of FRONTIERS ’95, page
332, 1995.

[21] J. Ramanujam and P. Sadayappan. Tiling multidimensional
iteration spaces for nonshared memory machines. In
Proceedings of Supercomputing ’91, pages 111–120, 1991.

[22] L. Renganarayana and S. Rajopadhye. A geometric program-
ming framework for optimal multi-level tiling. In Proceed-
ings of SC ’04, page 18, 2004.

[23] A. Sawdey, M. O’Keefe, and R. Bleck. The design, imple-
mentation, and performance of a parallel ocean circulation
model. In Proceedings of 6th ECMWF Workshop on the Use
of Parallel Processors in Meteorology: Coming of Age, pages
523–550, 1995.

[24] A. Sawdey and M. T. O’Keefe. Program analysis of overlap
area usage in self-similar parallel programs. In Proceedings
of LCPC ’97, pages 79–93, 1998.

[25] R. Schreiber and J. Dongarra. Automatic blocking of nested
loops. Technical report, University of Tennessee, Knoxville,
TN, Aug. 1990.

[26] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proceedings of PLDI ’99, pages 215–
228, 1999.

[27] A. Taflove and S. C. Hagness. Computational Electrody-
namics: The Finite-Difference Time-Domain Method, Third
Edition. Artech House Publishers, 2005.

[28] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In Proceedings of PLDI ’91, pages 30–44, 1991.

[29] M. Wolfe. More iteration space tiling. In Proceedings of
Supercomputing ’89, pages 655–664, 1989.

244

