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Effective Bandwidths with Priorities
Arthur W. Berger,Senior Member, IEEE, and Ward Whitt,Associate Member, IEEE

Abstract—The notion of effective bandwidths has provided a
useful practical framework for connection admission control and
capacity planning in high-speed communication networks. The
associated admissible set with a single linear boundary makes
it possible to apply stochastic-loss-network (generalized-Erlang)
models for capacity planning. In this paper we consider the
case of network nodes that use a priority-service discipline to
support multiple classes of service, and we wish to determine
an appropriate notion of effective bandwidths. Just as was done
previously for the first-in first-out (FIFO) discipline, we use large-
buffer asymptotics (large deviations principles) for workload tail
probabilities as a theoretical basis. We let each priority class
have its own buffer and its own constraint on the probability of
buffer overflow. Unfortunately, however, this leads to a constraint
for each priority class. Moreover, the large-buffer asymptotic
theory with priority classes does not produce an admissible
set with linear boundaries, but we show that it nearly does
and that a natural bound on the admissible set does have
this property. We propose it as an approximation for priority
classes; then there is one linear constraint for each priority
class. This linear-admissible-set structure implies a new notion of
effective bandwidths, where a given connection is associated with
multiple effective bandwidths:one for the priority level of the given
connection and one for each lower priority level.This structure can
be used regardless of whether the individual effective bandwidths
are determined by large-buffer asymptotics or by some other
method.

Index Terms—Asynchronous transfer mode, communication
system control, communication system performance, communi-
cation system planning, communication system traffic, Laplace
transforms, queueing analysis.

I. INTRODUCTION

T HE DESIRE to provide different quality-of-service (QoS)
guarantees to different classes of customers using emerg-

ing communication networks is leading to the use of pri-
orities in the allocation of network resources. In particular,
asynchronous transfer mode (ATM) switches are being built
with the capability of supporting multiple priority classes.
Also, priority queueing can be used in Internet protocol (IP)
routers to support real-time services along with best-effort
service. Thus, it is natural to consider admission control and
dimensioning procedures that take account of the priority
structure. In this paper we discuss extensions of the effective-
bandwidth concept when there are priority classes, allowing
any number of priority classes. For accounts of previous work
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on effective (or equivalent) bandwidth (or capacity) with the
first-in first-out (FIFO) discipline, see Chang and Thomas
[8], de Veciana, Kesidis, and Walrand [17], Guerin, Ahmadi,
and Naghshineh [23], Kelly [26], Whitt [36], and references
therein.

Researchers have begun to examine the impact of non-FIFO
queueing on bandwidth allocation and admission control in
high-speed networks. First, Elwalid and Mitra [18] analyzed
a loss-priority model where each ATM connection has some
cells designated high priority and others designated low pri-
ority, and all cells are buffered in a single FIFO queue, with
lower priority cells being discarded when the queue length
exceeds a threshold. A generalization of this model with two or
more loss priorities per connection was analyzed by Kulkarni,
Gun, and Chimento [28].

Zhang [37] and Elwalid and Mitra [20] considered models
with Markov-modulated rate process (MMRP) sources,
each belonging to a priority class with its own buffer. In
particular, Zhang [37] considered an MMRP model where
the state of the underlying Markov chain determines the
rate of two or more MMRP sources. Zhang found the exact
solution for the joint distribution of the amount of fluid in
each queue. Elwalid and Mitra [20] provided an approximate
solution to the important special case of Zhang’s model in
which independent Markov chains determine the arrival rates
to two delay-priority queues. With their approximation, they
could apply their previous MMRP algorithms to calculate
the (approximate) admissible set.

Here we focus on developing an appropriate notion of
effective bandwidths for the same model (where each priority
class has its own queue and buffer), allowing more general
sources (not necessarily MMRP’s). Our main conclusion is
that the notion of effective bandwidths needs to be modified.
With priorities, the admissible set should be determined by a
constraint for each priority class, because there is a separate
(typically quite different) performance constraint for each pri-
ority class. Under appropriate assumptions or approximations,
these constraints can be regarded as linear. Then there is one
linear constraint for each priority class, which implies a new
notion of effective bandwidths—a given connection should
havemultiple effective bandwidths, one for the priority level
of the given connection and one for each lower level.

The linear-admissible-set structure is important for apply-
ing stochastic-loss-network models to do capacity planning.
For capacity planning, it is natural to specify the blocking
probabilities for each type of connection request instead of
the resource capacities and to solve the loss network model
to determine the required network capacities. An example
of the loss-network-model approach to capacity planning is
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the design tool developed for the FIFO discipline by Mitra,
Morrison, and Ramakrishnan [30]. Our analysis provides a
basis for extending such tools to priority classes.

With priorities, the loss network model can be solved
using numerical transform inversion, as in Choudhury, Leung,
and Whitt [10]–[12]. The loss network model can be solved
repeatedly using a search procedure as in [12] to determine
appropriate resource capacities. As indicated in [11] and [12],
it is also possible to consider alternative sharing schemes
besides the complete sharing. Upper limit and guaranteed
minimum constraints are proposed as a way to provide mul-
tiple grades of service and protect one type of source from
overloads from other types of sources. These constraints are
appealing because with them it is still possible to calculate the
blocking probabilities using the numerical transform inversion
algorithm [11], [12].

Our contribution is to show how an admissible set with a
linear constraint for each priority class can be derived and to
point out the implications for effective bandwidths. To do so,
we start by applying large-deviations theory to derive the exact
admissible set associated with priority classes using large-
buffer asymptotics. However, that is only the first step because
unlike for FIFO queues, the exact large-buffer asymptotic
admissible set with priorities doesnot have linear boundaries.
We show that natural approximations and bounds for that
admissible set do have linear boundaries. We also examine
numerical examples to see how these approximations perform.

We establish the exact large-buffer-asymptotic admissible
set for priorities in a companion paper [4]. In support of that
work we have derived new large deviation principles (LDP’s)
for departure processes from a FIFO queue in [32], extending
earlier work by de Veciana, Courcoubetis, and Walrand [15],
Chang [7], and Chang and Zajic [9]. Those authors found that
an LDP for the departure process could be obtained from a
stronger sample-path LDP for the input process. However, the
sample-path LDP for the input processes used applies only
to discrete-time processes whose increments have moment-
generating functions that are finite everywhere, which naturally
occurs if the input increments are bounded. This requirement
is not too restrictive from an engineering perspective, but
it is from the modeling perspective because many natural
models do not have this property. We obtain a more general
LDP for departure processes in [32] by requiring that the
input process satisfy a sample-path LDP in the function space

of right-continuous real-valued functions with left limits,
with an appropriate nonuniform topology, which allows the
rate functions to be finite on sample paths with jumps. This
extension is needed even to establish an LDP for the departure
process from the elementary M/D/1 and M/M/1 fluid queues.
The new work shows that the same large-deviation behavior
for departure processes originally established in [15] holds
more generally [see (2.12)]. We show the application to the
low-priority workload in Section II.

Important related work includes LDP’s for priorities estab-
lished by Kulkarni and Gautam [27] and Zhang [38] in papers
that appeared after this paper and [4] were submitted. Kulkarni
and Gautam [27] obtain the same exact asymptotic admissible
set obtained here, but extra conditions as provided in [32]

are needed in their supporting LDP for departure processes.
Zhang [38] establishes an LDP for the two-queue generalized
processor sharing (GPS) discipline, which contains the two-
priority model as a special case. Zhang’s LDP is based on the
same sample-path LDP for departure processes used in [7],
[9], and [15], and so it too does not apply to the examples
considered here. Additional LDP’s for GPS are contained in
Paschalidis [31] and Bertsimas, Paschalidis, and Tsitsiklis [6].

We consider two priority classes, because the key points
can be made with just two. However, the results extend
immediately to any number of priority classes because for
any priority class under consideration, all higher classes can
be lumped together and all lower classes can be ignored. Since
the large-buffer asymptotics with priorities typically produce
an admissible set with nonlinear boundaries, we develop two
approximations for the low-priority steady-state workload.
These approximations cause the nonlinear admissible set (i.e.,
with nonlinear boundaries) to be replaced by a linear ad-
missible set (i.e., with linear boundaries), thereby making it
possible to define the new notion of effective bandwidths. The
two approximations produce upper and lower bounds on the
admissible set. The lower bound is appealing because it is
conservative and because it tends to be close to the admissible
set based on large-buffer asymptotics. The two approximations
both reduce the low-priority steady-state workload to an ap-
propriate FIFO workload. Since the two approximations are
general, they also can be used to approximate the full low-
priority workload probability distribution and to produce other
notions of effective bandwidths besides the notion based on
large-buffer asymptotics, e.g., see Kelly [26].

Others have also proposed our lower-bound approximating
admissible set with linear boundaries. First, a lower bound
for the GPS large-buffer-asymptotic admissible set established
by de Veciana and Kesidis [16] reduces to our proposed
admissible set when the GPS discipline is specialized to the
two-priority case. Kulkarni and Gautam [27] also introduce
this approximating admissible set. However, none of these
other papers on large-buffer asymptotics for priorities explore
the implications for effective bandwidths. Also, none discuss
other methods besides large-buffer asymptotics.

Unfortunately, the effective-bandwidth approach based
completely on large-buffer asymptotics is often not a very
accurate approximation, e.g., see [13]. Moreover, it can be
difficult to find tractable source traffic models that accurately
fit traffic data. Nevertheless, we believe that our results
can be very useful because they identify an appropriate
structure for the admissible set. Once we decide to use an
admissible set with linear boundaries, which corresponds to
multiple effective bandwidths for each priority class, the actual
effective bandwidths used can be defined in various ways.
We illustrate by specifying alternative measurement-based
procedures for obtaining appropriate effective bandwidths,
which are based on the linear structure and which are easy for
practitioners to apply. We provide an informal development
of effective bandwidths with priorities not based on large-
buffer asymptotics in [5]. A related brief informal discussion
appears in Ahmadiet al. [3, p. 609] and in Kelly [26, Sec. III].
Additional support for our conclusions is provided by Elwalid
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and Mitra [20], who found for the case of two priorities that
the approximate admissible sets that they calculated often had
this linear structure.

Here is how the rest of this paper is organized. In Section
II we develop the large-buffer asymptotics for priorities and
present the two bounds on the admissible set, referring to
[4] and [32] for technical details. In Section III we give the
asymptotic-decay-rate functions for standard input processes.
There we relate the MMRP to conventional queueing input
processes. Choudhury, Mandelbaum, Reiman, and Whitt [14]
showed that any MMRP can be represented as a limit of
Markov-modulated Poisson processes (MMPP’s); here we
show that this limit applies to the asymptotic-decay-rate func-
tions.

Sections IV and V are devoted to numerical examples
evaluating the performance of the effective-bandwidth ap-
proach with priorities, using the large-buffer asymptotics to
generate the effective bandwidths. In Section VI we present
alternative ways to generate effective bandwidths, not based
on large-buffer asymptotics, that exploit the linear-admissible-
set structure. In Section VII we give an example illustrating
how the priority structure might be applied in practice. Finally,
in Section VIII we draw conclusions based on both the theory
and our numerical examples.

II. L ARGE-BUFFER ASYMPTOTICS

With two priority classes, let class 1 be the high-priority
class. Our model has input from multiple sources from each
of the two priority classes. Let denote the input of work
in the interval from a type- source of priority . Let there
be source types of priority. We let be a
general stationary process. It could be an MMRP, but it could
also be more general. We assume that the processes
are mutually independent. We assume that work is processed
continuously at a constant ratewhenever work is present.
As in previous work on effective bandwidths with the FIFO
discipline, e.g., [36], in our mathematical analysis we assume
that there is an infinite buffer. The tail probability thus serves
as an approximation for the overflow probability.

The notion of effective bandwidth is based on performance
criteria on the tail probability of the priority-steady-state
workload for , namely

(2.1)

and on the exponential approximation

(2.2)

which is asymptotically correct as under regularity
conditions, i.e., the large-buffer asymptotics. (We refer to
[4] and [36] for more details, including technical conditions
needed for the results below.)

Note that, with priorities, the steady-state low-priority delay
is different from the steady-state low-priority workload. The
low-priority delay can be much bigger than the low-priority
workload, because it may be necessary for low-priority work to
wait for high-priority work that arrives after the low-priority

work. We use workload here to focus on loss criteria. We
intend to treat delay criteria in subsequent work.

The effective bandwidth of a type-source at priority- is
defined to be

where (2.3)

and is the asymptotic-decay-rate function for a type-
source at priority

(2.4)

and is the input of work of a type-source at priority-
during the interval .

Assuming that the system starts with initial workload
for class at time 0, theworkload for class at time can
be defined by

(2.5)

where

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

with for all . The processes in
(2.8) and (2.9) are theserver-availability processes, i.e.,
is the total potential processing that can be done for class

in the interval . The maximum server processing rate
is the capacity or available bandwidth. Clearly, (2.8) holds
for the high-priority class. The processes are
the departure (output) processes, i.e., the output in completed
work during the interval . The output is clearly
the input over , plus the initial work, minus what is
present at time, as indicated in (2.10). For , the server-
availability process can clearly be defined in terms of the
departure process of the high-priority class by (2.9). Finally,
the process in (2.7) is thenet input processfor
class , in terms of which the workload process is defined by
the usual one-dimensionalreflection mapin (2.5).

In this context the tail-probability asymptotic decay rate
in (2.2) is determined as the rootof the equation

(2.11)

where and are defined as in (2.4); see [36, Th. 10].
Under extra regularity conditions, the high-priority departure-
process asymptotic-decay-rate function is

(2.12)

where is determined by the equation ; see [7],
[9], [15], [32].
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Using the effective-bandwidth approximation, the set of
connections that satisfy the performance criteria (2.1), called
the admissible set, is the set of for which

(2.13)

where is the number of type- priority- sources and
is the “effective capacity,” which depends on the server

availability process for priority. For priority 1, the effective
capacity is simply the speed of the server, but for priority
2, the effective capacity depends on the departure process of
the aggregate of priority-1 connections.

For the desired simplicity in network planning models, we
make further approximations so that the priority-2 constraint
in (2.13) is a linear combination of the priority-1 and priority-
2 sources. A natural choice would be an admissible set of the
form

(2.14)

(2.15)

However, we claim that (2.15) is needlessly conservative and
significant improvement is obtained if (2.15) is replaced with

(2.16)

where is the effective bandwidth of a type-priority-
source as seen by priority 2

(2.17)

Equations (2.14), (2.16), and (2.17) immediately generalize to
an arbitrary number of priorities:

for (2.18)

where

(2.19)

To obtain the desired linear structure in (2.16), two ap-
proximations are suggested: theempty-buffer approximation
provides a lower bound on the true admissible set, while the
reduced-service-rate(RSR) approximationprovides an upper
bound. (The bounding properties are intuitive; see [4] for
proofs.) The empty-buffer approximation for priority class 2
makes the simplifying assumption that the amount of priority-
1 work that queues in the buffer is negligible and, thus, the
priority-1 departure process is approximated by its arrival
process. In particular, the empty buffer approximation makes

so that and
is approximated by the total workload .

In terms of asymptotic-decay-rate functions the empty-buffer
approximation implies that in (2.12), which

is correct if (which is often the case), and
. Applying the effective bandwidth approximation

to the empty-buffer system yields the empty-buffer effective-
bandwidth (EBEB) admissible set (2.14), (2.16), and (2.17). As
mentioned earlier, the EBEB approximation is also developed
as an approximation to the exact large-buffer-asymptotic ad-
missible set by Kulkarni and Gautam [27, p. 87, eq. (17)]. The
lower bound on the GPS large-buffer-asymptotic admissible
set derived by de Veciana and Kesidis [16] when specialized
to priorities also reduces to the EBEB approximation. Note,
however, that our empty-buffer bound applies much more
generally (beyond large-buffer asymptotics).

The RSR approximation assumes that the server is continu-
ously available to the lower priority class but at a reduced rate,
where the reduction is the long-run average usage of the high-
priority class. In particular, the RSR approximation makes

and . Applying the
effective bandwidth approximation to the RSR system yields
the RSR-effective-bandwidth admissible set (2.14) and (2.16)
with

(2.20)

where is the occupancy of a type-priority-1 source.
Although both (2.17) and (2.20) are useful to bound the

admissible set, for a single estimate of , we recommend
(2.17) because the empty buffer approximation yields the exact
effective capacity (2.13) for a relevant range of and is
conservative while the RSR approximation is not.

III. COMPUTING DECAY-RATE FUNCTIONS

In [36] and other papers explicit formulas are given for
arrival-process asymptotic-decay-rate functions for many spe-
cific models, which can be used to generate effective band-
widths based on large-buffer asymptotics, as in (2.3) and
(2.17). For example, a very general arrival counting process for
queueing models is theMarkovian arrival process(MAP); e.g.,
see Lucantoni [29]. For a MAP, the arrival-process asymptotic-
decay-rate function is

(3.1)

where and are square submatrices of the specially
structured MAP infinitesimal generator matrix and is the
Perron–Frobenius eigenvalue; see [36, Sec. VI]. The Per-
ron–Frobenius eigenvalue of a square matrixwith this
structure is a real eigenvalue greater than the real part of
any other eigenvalue; see Seneta [33, p. 46, Th. 2.6]. The
Perron–Frobenius eigenvalue of the matrixcan be calculated
by solving the characteristic equation and
finding the root with maximum real part.

An MMPP is the special case of a MAP in which
and , where is the infinitesimal generator

of the Markovian environment process andis the associated
diagonal matrix of Poisson arrival rates in the environment
states. Hence, for an MMPP characterized by the pair ,
(3.1) becomes

(3.2)
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Given that we are focusing on workloads, in a queueing
model we should consider the total input in required service
time. If we consider the total input stemming from an arrival
counting process with asymptotic-decay-rate function
bringing i.i.d. service requirements, with a generic service
requirement , where

(3.3)

then the overall arrival process is

(3.4)

and the overall arrival-process asymptotic-decay-rate function
becomes

(3.5)

e.g., see [36, Th. 5].
Alternatively, it is natural to consider MMRP input, as

in Elwalid and Mitra [19]. If the infinitesimal generator of
the Markovian environment process is , and is the
associated diagonal matrix of deterministic arrival rates in the
environment states, then the arrival-process asymptotic-decay-
rate function is

(3.6)

We now show how to relate the MMPP and MMRP decay
rate functions in (3.2) and (3.6). Choudhury, Mandelbaum,
Reiman, and Whitt [14] showed that any MMRP can be
represented as a limit of MMPP’s. Consider a common Mar-
kovian environment process with infinitesimal generator.
Let be the diagonal rate matrix for the MMRP, where
all entries are positive (not representing flow out). Then the
asymptotic-decay-rate function is (3.6). We can obtain (3.6)
by considering a limit of MMPP inputs. For each ,
we define an MMPP arrival process model. For each, let
the Markovian environment infinitesimal generator be, the
arrival rate matrix be the diagonal matrix , the service
times be deterministic of size, and the processing rate be.
Then, by (3.2) and (3.5), the asymptotic-decay-rate function
of the MMPP/D/1 input process is

(3.7)

If we expand the exponential, letting in
(3.7), then we see that (3.7) approaches (3.6) as .

IV. EXAMPLES WITH M/M/1 INPUTS

In this section we consider examples in which the source
arrival processes are batch Poisson processes. If is a
compound Poisson process with Poisson rateand component
i.i.d. jumps having moment generating functions , then
the asymptotic-decay-rate function is

(4.1)

If the jumps are size 1, then and
. In this section we shall consider the special case

in which the jumps are exponential with mean , as in
the M/M/1 workload process, then and

.
Now suppose that all sources are M/M/1 workload sources

with mean service times for class . Thus, the model is
equivalent to the M/M/1 two-priority queue. The goal is to
determine the feasible arrival rates and or, equivalently,
the feasible offered loads and where .
The M/M/1 model nicely illustrates the results since many
quantities of interest can be determined analytically. One can
view the model as representing (not necessarily accurately)
the traffic on an ATM network as Poisson arrivals of bursts
of cells.

We compare six cases for the admissible set associated with
the M/M/1 two-priority queue:

1) exact admissible set;
2) admissible set given the RSR approximation;
3) admissible set given the empty-buffer approximation;

and, paired with each of the above, the corresponding effective
bandwidth approximations:

4) admissible set (2.13) with the exact calculation for the
effective capacity of ;

5) admissible set (2.14), (2.16), and (2.20), based on the
effective-bandwidth approximation and the RSR approx-
imation;

6) admissible set (2.14), (2.16), and (2.17), based on the
effective-bandwidth approximation and the empty-buffer
approximation.

We computed the exact admissible set by numerically
inverting the Laplace transform of the class-2 steady-state
workload, using the transform inversion algorithm in [1]. For
the M/G/1 priority queue, this transform is given in Kella [25]

(4.2)

where is the priority- steady-state workload,
, and is the Laplace–Stieltjes transform

(LST) of the priority- service-time distribution (i.e., distri-
bution of work added by a priority-arrival),

, and is the LST of the priority-1 busy-
period distribution, which is given by the Kendall functional
equation . Values of the transform

can be calculated iteratively; see [2].
The corresponding effective-bandwidth approximation has

a simple closed form when the batches are exponentially
distributed. Then the asymptotic-decay-rate function for the
priority-1 departure process is

(4.3)
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where , by (2.12). Thus, the admissible set
based on effective bandwidths is

(4.4)

(4.5)

The empty-buffer approximation (2.16) and (2.17) will
coincide with (4.5) when the maximum admissible is less
than or, equivalently, , which
holds when is at least twice . This typically would be
the case, as, for example, when the priority-2 thresholdis
at least twice priority 1’s , and .

With the RSR approximation (and M/M/1 input), the class-
2 steady-state workload is distributed as the workload in
an associated standard M/M/1 queue, if we rescale time so
that the processing rate is one. For the high-priority class,
the workload with parameters is equivalent to the
workload in a model with parameters , which
corresponds to a standard M/M/1 model. (We do not scale
the service requirements, which are not time, but work.) Thus

(4.6)

For the low-priority class, the RSR approximation yields
M/M/1 input with parameters . The steady-
state workload is the same as for the parameter triple

. Thus

(4.7)

Thus, for the RSR approximation with M/M/1 input, the
admissible set is given by

(4.8)

(4.9)

where is the value of that solves

(4.10)

The effective bandwidths with M/M/1 input are

(4.11)

and the RSR effective-bandwidth admissible set [(2.14),
(2.16), and (2.20)] becomes

(4.12)

(4.13)

where . Expressed in terms of and , the
admissible set is

(4.14)

(4.15)

Even when equals the maximum admissible value in
(4.8) or in (4.14), the maximum admissible value
of , in (4.9) or (4.15), respectively, is still positive. Hence,
the admissible set is convex.

In the general M/G/1 setting, with the empty-buffer approx-
imation, the priority-2 steady-state workload is distributed
as the waiting time in an M/G/1 FIFO queue with arrival rate

and service distribution ,
where is the batch-size distribution of priority. When
the distributions are exponential with the same mean for
both priorities, the aggregate workload is that in a model with
M/M/1 input having parameters . The workload
is the same as for the parameter triple and

(4.16)

The rate here is smaller
than the RSR rate in
(4.7). The admissible set is

(4.17)

(4.18)

where and are the same as in the RSR approxima-
tion (4.10). If and , which is the meaningful
case, then , and the admissible set is convex.

Note that the empty-buffer admissible set (4.17) and (4.18)
is a subset of the RSR admissible set (4.8) and (4.9) and that
they approach each other as . The upper limit is
close to one when the priority-2 performance criterion is loose,
i.e., and are relatively large and, hence, is small.

If the two batch-size distributions are exponential with
different means and , then the aggregate input is an

queue. The effective bandwidths are given by (4.11)
and the effective bandwidth of priority 1 as seen by priority
2 is . The admissible set [(2.14),
(2.16), and (2.17)] becomes

(4.19)

(4.20)

where and . In terms of and
, the admissible set is

(4.21)

(4.22)

Note that criterion (4.21) is more stringent than ,
while criterion (4.22) is more stringent than .
Also note that the criterion in (4.22) is more stringent than
the low-priority constraint with the RSR effective-bandwidth
approximation in (4.15).

When and, thus, priority 1 is at its
maximum admissible load (4.19), then (4.20) becomes

(4.23)
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TABLE I
M/M/1 EXAMPLE. PERFORMANCE CRITERION

PARAMETERS: b1 = 20, b2 = 200, p1 = p2 = 10
�6

Provided that , which is the usual case, we can always
admit some priority-2 work after priority 1 has reached its
capacity. Consequently, the admissible set is convex.

However, if , then the admissible set isnot convex.
If any priority-2 input is present, then the priority-2 constraint
is binding, but if no priority-2 input is present, then only the
priority-1 constraint is relevant and more priority-1 input is
allowed.

For a numerical example, consider the case where both
classes have Poisson arrivals and exponential batch sizes with
mean 1. The performance criterion parameters are ,

, and . Hence, is 0.691 and is ten
times bigger than . Here in (4.10) is 0.36, which is 16%
bigger than the maximum admissible given the effective-
bandwidth approximation . This illustrates
the well-known conservatism that occurs with effective band-
widths, apart from any priorities [13]. However, for class
2 (which has a loose performance criterion), the maximum
admissible given the effective-bandwidth approximation
matches to three significant figures, 0.931. Table I shows
some sample points on the frontier of the six admissible sets.
The six cases listed earlier are presented in the order: 6, 4,
5, 3, 1, 2. In Table I emp. stands for empty buffer; emp.
with (without) effective bandwidths corresponds to (4.21) and
(4.22) [(4.17) and (4.18)]. The exact values with (without)
effective bandwidths are based on (4.4) and (4.5) [(4.2) with
numerical inversion]. The RSR values with (without) effective
bandwidths are based on (4.14) and (4.15) [(4.8) and (4.9)].

Since is less than in (4.3) even for equal to
, the empty-buffer effective-bandwidth and the effective-

bandwidth admissible sets coincide. Although the empty-
buffer admissible set does not equal the exact admissible
set, they coincide to three significant figures over the range
of feasible given the effective-bandwidth approximation
for priority 1. However, if we had not used the effective
bandwidth of priority 1as seen by priority 2 , but
rather had used the (unadjusted) priority-1 effective bandwidth

in (4.22), then when , we would have
thought the maximum admissible would be 0.027, which
is 23 times smaller than the correct value of 0.631.

Similar results occur for other parameter values as long as
, which is the most meaningful case. The condition
along with the feasibility condition on , ,

ensures that is relatively small. This increases the region

where the exact effective-bandwidth constraint for priority
2 (4.5) is linear in and also helps to reduce the
conservatism of the empty-buffer effective-bandwidth approx-
imation for the priority-2 constraint (4.22). If is also
small, then thepriority-1 effective-bandwidth constraint is less
conservative. For instance, supposein the previous example
is increased from 20 to 150 and, thus, is decreased to

. Now the maximum admissible given the
effective bandwidth approximation matches to three significant
figures the true maximum in (4.10), which is now 0.908.
Note that changing changes and , but for a given
feasible , the maximum feasible does not change for
the exact calculation nor for the approximations including the
effective bandwidths.

V. EXAMPLES WITH MMPP INPUTS

We now consider more realistic traffic models. As in Section
IV, we consider only two priority classes. Now at least
one class has MMPP input. With this more complex input,
we no longer calculate the exact admissible set, but we
numerically calculate the exact admissible sets associated with
the RSR and empty-buffer approximations. To illustrate a
range of behavior, we present three examples. In the first
example the RSR and empty-buffer approximations and their
associated effective bandwidths all yield essentially the same
admissible set. Since the approximations serve as upper and
lower bounds for the true system, we thus indirectly calculate
the exact admissible set. In the second example the RSR
and empty-buffer approximations yield common admissible
sets, but the associated effective-bandwidth approximations
(though comparable to each other) are qualitatively more
conservative, as can occur in nonpriority FIFO queues [13].
The third example considers a larger number of connections.
All three examples are inspired from ATM networks. An
arrival represents a cell and adds one unit of work. The
processing rate equals one cell/cell-time.

For the first example, suppose that the priority-1 connections
support a constant-bit-rate service and have equally spaced
cells. Their superposition is conservatively modeled as a
Poisson process. A priority-2 connection represents more
bursty traffic and is the popular two-state MMPP where one
state isON while the other state isOFF, and, hence, the process
is equivalent to an interrupted Poisson process (IPP). The
MMPP has rate matrix

and infinitesimal generator

The parameters are determined as follows. Let the
mean arrival rate of a class-2 connection be

cells/cell-time, let the fraction of time the connection
is in the ON state be , and let the mean
number of arrivals during anON period be ,
corresponding to roughly 1 kbyte. Let the performance-criteria
parameter values be , , , and
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. These performance parameters correspond to the
ATM context where the priority-1 queue length should be kept
relatively short to satisfy a QoS commitment on cell delay
variation and where the priority-2 connections have access to
a nonnegligible “moderate” buffer space. For these parameters,

. The effective bandwidth of the priority-1
Poisson arrival process is

(5.1)

which is only 10% bigger than the class-1 effective bandwidth
as seen by priority 2 (2.14)

(5.2)

Thus, when priority 1 is at its maximum admissible value,
there is relatively little spare capacity for priority-2 connec-
tions. From (3.2), the effective bandwidth of a priority-2
connection is

(5.3)

where . For the given parameter
values, , which is only 30% greater than the mean
rate of 0.02. Note that the priority-2 performance criterion is
relatively loose—the threshold is 50 times the mean burst
size of 20 cells. This is a regime where effective bandwidths
based on (2.2) are more likely to be accurate. The maximum
admissible based on the effective bandwidth approximation
(5.1) is 0.899 96, which almost equals the exact value from the
M/D/1 model of 0.900 27. Likewise, the maximum admissible
number of priority-2 connections, based on the effective-
bandwidth approximation (5.3), is ,
whereas the exact value is 39, obtained from computing the
workload distribution of the MMP /D/1 queue. As in
[13], this computation is done by numerically inverting the
LST of the virtual waiting time distribution of the MAP/G/1
queue, given by

(5.4)

where and are the infinitesimal rate matrices of the
MAP, is the LST of the service-time distribution ,

is a column vector of all 1’s, is traffic intensity (overall
arrival rate times mean service time), and the row vectoris
the solution to , , where the matrix is given by

(5.5)

The priority-2 admissible-set constraint for the RSR effec-
tive bandwidth approximation (2.16) with (2.20) is

(5.6)

which is almost the same as the corresponding empty-buffer
effective-bandwidth constraint (2.16) with (2.17)

(5.7)

The admissible sets for the (noneffective-bandwidth) RSR and
empty-buffer approximations are computed numerically [13].

TABLE II
FIRST MMPP EXAMPLE: PRIORITY-1 IS POISSON, PRIORITY-2

CONNECTIONS ARE TWO-STATE MMPPS,��
1
= 15��

2
= 0:207

Table II shows the admissible sets of the four cases. The
effective bandwidths are slightly conservative compared to the
“exact” RSR and empty-buffer approximations, but the four
regions are essentially the same. Since effective-bandwidth
approximations do not always work so well, it is heartening
to note that the present example does mirror a relevant
case in ATM—we can think of the higher priority queue
carrying constant-bit-rate connections, whose superposition
can be conservatively modeled by the relatively nice Poisson
or batch-Poisson process, while the second-priority queue has
buffer space on the order of 1000–10 000 cells, allowing
to be relatively small.

In the second example the connections of both priority
classes are two-stateON/OFFMMPP’s. A priority-1 connection
has a mean arrival rate of 0.02 cells/cell-time, the fraction of
time ON is 0.1, and the mean number of arrivals during anON

period is ten. For a priority-2 connection the parameters are,
respectively, 0.04 cells/cell-time, 0.1, and 50. The performance
criterion parameter values are , , ,

, and, hence, . The effective
bandwidth of a priority-1 connection is 0.133 and is about
five times bigger than the effective bandwidth as seen by
class 2, . Thus, if one were to use (2.15) for the
admissible set, then one would significantly overestimate the
class-1 effective bandwidth as seen by class 2 (in the priority-2
constraint).

According to the effective-bandwidth approximation, the
maximum number of priority-1 connections is

, while the true value is 13, obtained from numerically
computing the workload distribution in the MMPP /D/1
queue. This is an example of the well-known phenomenon
that in nonpriority FIFO queues effective bandwidths based
on (2.2) can be very conservative [13], particularly when
the performance parameters are relatively tight for
the arrival processes. Our approximations for priorities are
still subject to the accuracy of the effective bandwidths in
FIFO queues, which is evident on the axes of the admis-
sible set where only one class is present. Herein we use
effective bandwidths based on (2.2) to have the desired lin-
earity property in (2.16). One could apply our approximations
for priorities to alternative concepts of effective bandwidths;
see Section VI.
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TABLE III
SECOND MMPP EXAMPLE: PRIORITY-1 AND PRIORITY-2

CONNECTIONS ARETWO-STATE MMPPS��
1
= 7:5��

2
= 0:207

Table III shows the admissible sets for this second example.
(See the next paragraph for an explanation of the last col-
umn “int.eb,” which stands for intercept effective bandwidth.)
The main point of the table is that the approximations for
the priority queueing have added little additional inaccuracy
beyond what was inherent from effective bandwidths based
on (2.2). That is, the exact admissible set, which has not been
computed, is closely bounded by the RSR and empty-buffer
approximations, and the admissible set based on effective
bandwidths with the exact effective capacity (2.13) (also
not computed) is closely bounded by the RSR and empty-
buffer effective-bandwidth approximations. For the empty-
buffer effective bandwidths, if we had not used the effective
bandwidth of class 1 as seen by priority 2, but rather had
kept the effective bandwidth as in the priority-2 constraint,
then instead of the vector (6, 5, 5, 5, 5, 5, 5, 4) of admissible
priority-2 connections, we would have obtained the needlessly
conservative vector (6, 5, 4, 3, 2, 2, 1, 0).

This second example also illustrates the usefulness of an-
other approximation, given that one wanted to avoid the con-
servatism of the effective bandwidths based on (2.2) but still
retain the linearity of (2.16). Define the effective bandwidth
to be the reciprocal of the number of admissible connections
given each priority alone, including the case of priority-1
connections subject to the priority-2 performance criterion
(the latter corresponds to the empty-buffer priority-2 constraint

, where only priority-1 connections
are present). For the present example , ,
and , where 39 is the maximum number of admis-
sible priority-1 connections given the priority-2 performance
criterion. We call this approximation “intercept effective band-
widths,” and the last column of Table III shows the resulting
admissible set. Although, for this example, the admissible
set from the intercept effective bandwidth approximation is a
subset of that from the empty-buffer approximation and, thus,
is conservative relative to the true admissible set, this need
not hold in general.

Note that the intercept-effective-bandwidth overcomes the
conservatism of the effective-bandwidths based on (2.2), but

Fig. 1. Admissible sets. Third MMPP example. Performance criteria param-
etersb1 = 500; b2 = 5000; p1 = p2 = 1 � e�6.

at the expense of greater computational complexity. Unlike
the RSR and empty-buffer effective bandwidths, the com-
putational complexity of the intercept-effective bandwidths
increases with the number of connections, but not as quickly
as the (exact) empty-buffer approximation. For example, the
number of states in the Markov process for the superposition
of homogeneous two-state MMPP’s is

[13]. Thus, if one can numerically solve systems
of 100 states, then the empty-buffer approximation can be
used for systems with about ten connections in each priority,
whereas the intercept-effective-bandwidth approximation can
be used in systems with 100 connections since only one
priority is considered at a time. In the special case where
the per-connection arrival process of work (ATM cells) is
the same for both priorities, the numerical computation of
the empty-buffer approximation simplifies and the approxi-
mation becomes identical to the intercept-effective-bandwidth
approximation.

In the third example we consider a larger number of
connections. Suppose that the connections of both priorities
are ON/OFF MMPP’s with the same parameter values: mean
rate 0.01, fraction of timeON 0.1, and mean burst size 20.
Let , , and . Here

, and is 1.7 times the mean rate
while and are only 5% greater than the mean rate. The
admissible sets are given in Fig. 1. The effective bandwidth
approximations again give a low estimate for the number
of admissible priority-1 connections, 57, whereas the correct
value is 66. Otherwise, the approximations are rather tight.
Also shown is the case of effective bandwidths where FIFO
service is used and all connections are subject to the class-
1 criterion; here since the connections of each class are
stochastically equivalent, the upper edge of the admissible
set is a line with slope minus one. Last, Fig. 1 shows the
case where the unadjusted priority-1 effective bandwidthis
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used in the priority-2 constraint, as in (2.15), as opposed to
(2.16). Note that half of the potential gain (measured in terms
of area of the admissible set) from using priorities instead of
FIFO is not realized if (2.15) is used.

VI. A LTERNATIVE APPROACHES

The results in this paper can be used without invoking large-
buffer asymptotics. First, any notion of effective bandwidth
previously developed for the FIFO discipline can be directly
applied together with the empty-buffer or RSR approximation
because those approximations reduce the problem to the FIFO
case. The most important conclusion in this paper is the
appropriate new structure for effective bandwidths with pri-
orities, i.e., that there should be multiple effective bandwidths
associated with a connection. We now specify two practical
engineering methods for the FIFO discipline and show how
they can be extended to priorities, exploiting the linearity of
the admissible set.

A. A Boundary-Point Method

The first method is based on measurements at boundary
points of the admissible set. In particular, suppose that the
FIFO service method is based on determining the maximum
number of admissible connections of a given type when no
other connection types are present, using measurements from a
simulation testbed network or an actual network. To determine

, consider only priority- type- connections for one fixed
. Find the upper limit for each connection type alone to

obtain parameter specification

(6.1)

which corresponds to the constraint

(6.2)

(In using (6.1) we ignore integrality constraints, i.e., the
requirement that the number of connections must be some
integer. Assuming that the capacityis relatively large, this
effect should be minor.)

So far we have determined the effective bandwidthsfor
. Now we determine for . First fix and

with . We consider a feasible number of priority-type-
connections established on the link, say. This number

might be the maximum number admissible given the priority-
criterion or it might be a lower value that corresponds to a

designed engineering point. Given , we then see how many
priority- type- connections can be admitted for any fixed,
considering the priority- performance criterion. Suppose that
this number is . We then let

(6.3)

Equation (6.3) corresponds to the constraint

(6.4)

In (6.4) we first determine a value for , . Then, with
that value in place, we determine the upper limit on

. Since the inequality (6.4) should be an equality at the

upper limit (again ignoring integrality problems) and since
has previously been determined, we can solve for the single
missing parameter , obtaining (6.3).

In the case where is chosen to be the maximum number
admissible , then is a natural measure of the benefit
from using per-priority effective bandwidths, since would
be zero with effective bandwidths based on FIFO service.
Moreover, when equals , (6.3) can be expressed as

(6.5)

In (6.5) equals times a factor that is between zero and
one. The larger the value of , the smaller is the value of

relative to . Thus, another measure of the benefit of
per-priority effective bandwidths is how much smaller is
relative to . In cases when is close to , the complexity
of using distinct effective bandwidths probably outweighs the
potential efficiency gains.

From (6.1) and (6.3), we obtain all of the effective-
bandwidth parameters with . We have obtained these
parameters by exploiting the linearity of the constraint set.
Given this linearity, it suffices to consider only priority-type-

connections when we determine the effective-bandwidth
parameters via (6.1). Similarly, for , it suffices
to consider only priority- type- connections and priority-
type- connections for any when we determine the effective-
bandwidth parameters via (6.3). A significant point is that
we need consider only two connection types in this calculation.
To determine , we consider priority- type- connections
and priority- type- connections for some (any).

Since the linear admissible set is only an approximation, we
might not actually want to fit the parameters by considering
connections at their upper and lower limits. Instead, we might
want to exploit knowledge of the typical operating region
and determine a linear approximation to a more accurate
admissible set by constructing a linear hyperplane tangent to
the boundary for each priority class. This observation applies
to the determination of both and for . For
example, the more accurate admissible set might be determined
by simulation, perhaps using source traces, or by system
measurements.

B. A Traffic-Descriptor Method

A second practical measurement-based approach can be
based on a standardized traffic descriptor. Consider variable-
bit-rate (VBR) ATM connections for which the sustainable-
cell-rate (SCR) traffic descriptor is specified [21]. The SCR
constitutes an upper bound on the mean rate of the connection.
Suppose that in the FIFO context the effective bandwidth
for these connections is chosen to be some factor times the
connection’s SCR. Thus, for this subsection, letrepresent
the effective bandwidth of theth connection established on
the link and let denote the SCR for this connection.
Then

(6.6)
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and, given that there are connections established on the
link, the FIFO admissible set would now have the form

(6.7)

Note that in this case connections are not grouped into “types.”
A theoretical determination of the parameter in (6.6)

and (6.7) would depend on many factors, including addi-
tional characteristics of individual connections besides the
SCR. However, a more heuristic approach could be based on
historical measurements of realized connections and network
performance. In fact, for some years now, various network
operators have been using this approach for frame relay
networks, wherein the committed information rate (CIR) is
analogous to the SCR. A conservative value formight be
picked initially and then subsequently reduced as long as the
performance commitment for the connections continues to be
met. From a conservative worst-case perspective, since the
realized mean rate could be as big as the SCR (or CIR),

would need to be greater than one. However, in frame
relay networks, measurements have shown the mean rate to
be significantly less than the CIR, and values ofof 1/2
or even 1/4 have been used. Of course, the service provider
should gather measurements on an ongoing basis to track
changes in overall load and connection characteristics during
network busy periods. For example, as frame relay networks
include switched connections as well as semipermanent ones,
and as the applications using the frame relay networks begin
to include voice and video, we expect that the value ofwill
need to be increased.

To extend the traffic-descriptor method to account for pri-
orities, multiple factors are determined. Again for this
subsection, let represent the effective bandwidth of the

connection established at priority, as seen by priority ,
where

(6.8)

for chosen factors , with . Likewise, given that
connections are established on the link at priority, the

admissible set has the form

(6.9)

It is more difficult to select the multiple correction factors
needed in (6.8) and (6.9) than it is to select the single

correction factor needed in (6.7). The large-buffer asymp-
totics and the EBEB approximation could be used to generate
candidate relative values ; then we can set for a
single parameter and adjust the single parameterbased on
experience. It is important to recognize that more work needs
to be done to develop a complete engineering solution, but we
have identified an appropriate framework with (6.8) and (6.9).

VII. EXAMPLE ENGINEERING APPLICATION

In this section we apply the general principles of the pre-
vious sections to a particular engineering example. Consider
an ATM network that is being designed as an infrastructure
to support the services of a network operator. Suppose the
network nodes have four priorities. In the highest priority are
placed the ATM connections that support circuit emulation.
In the second priority are connections carrying VBR speech,
i.e., speech where silence has been eliminated. In the third
priority are VBR nonreal-time connections supporting frame
relay, and in the lowest priority are unspecified-bit-rate (UBR)
connections, supporting best-effort elastic data traffic. As part
of the network design, suppose the network operator is using
effective bandwidths for dimensioning link capacities via loss-
network models. (When effective bandwidths are used for
dimensioning, as opposed to connection admission control,
rougher approximations are appropriate, consistent with the
uncertainty of the future traffic demands.)

We wish to specialize (2.18) to the present example of
four priorities . For brevity in this section, the phrase
“circuit-emulation connection” means an ATM connection
that supports circuit emulation, and likewise for the other
services. Since circuit-emulation connections encounter cell-
scale congestion within the highest priority queue, one should
use an effective bandwidth somewhat higher than the peak cell
rate in order to meet a tight cell-delay-variation commitment.
This then gives some potential to use a lower effective
bandwidth for these connections in the lower priority con-
straints. However, as illustrated in the first example of Section
V, the potential gain is modest and, thus, for simplicity,
we will use the same effective bandwidth in all of the
priority constraints. As a consequence, the priority-1 constraint
is subsumed within the other constraints and thus can be
ignored. Also for simplicity, we use peak cell rate without
a multiplicative factor as the effective bandwidth. We can
group the circuit-emulation connections into types, based on
the rate, which is appropriate if we wish to apply loss-network
models. Thus, for priority 1, we have equal to the peak cell
rate for connections of bandwidth category, independent of

.
For the VBR speech connections, we assume the traf-

fic entering the operator’s network is non-ATM pulse-code-
modulation 64-kb/s circuits, and the operator has chosen an
encoding algorithm that eliminates the silences, and packages
the resulting bit stream into ATM cells. We can use a stochastic
model for the characteristics of this VBR flow and estimate
the number of such connections that can be supported for a
given bandwidth; e.g., see Sriram and Whitt [35] and Heffes
and Lucantoni [24]. Thus, we can use the boundary-point
method of Section VI-A to obtain effective bandwidths for
these connections at priority 2. Note that here we have a
dependency that frequently occurs where the effective band-
width depends on the capacity which, in turn, is the object
to be determined. Thus, in principle, an iteration is necessary;
though, for given a range of interest, the effective bandwidth
for the VBR speech connections may vary only slightly and
to further simplify the calculation a constant value could be
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used. For example, if the speech encoding algorithm is 32
kb/s adaptive differential pulse-code modulation with silence
elimination, if ATM adaptation layer 2 is used, and if the
bandwidth for the noncircuit-emulation connections will be
at least the speed of a , 1.5 Mb/s, then from Sriram,
Lyons, and Wang [34] one can assume an effective bandwidth
of 21.9 kb/s.

For the effective bandwidths of the VBR speech connections
as seen by the third-priority frame-relay connections, the
large-buffer asymptotic-decay-rate approximation of Section II
should be appropriate, given a relatively large buffer threshold
in the performance criteria for the frame-relay connections.
Likewise, for the effective bandwidth of the VBR speech
connections as seen by the fourth-priority UBR connections,
where there is a very loose, if any, performance criterion,
the large-buffer asymptotic approximation would again be
appropriate and, moreover, the asymptotic approximation may
be close enough to the mean rate that the mean rate itself can
be used as the effective bandwidth; see the third example in
Section V. In summary, for the priority-2 speech connections,
there is just one category, thus no dependence on subscript
, and , where or both and could be

the mean rate.
For the effective bandwidth of the frame-relay connec-

tions, it would be reasonable to use the standardized-traffic-
descriptor method of Section VI-B, as this is already being
used in existing frame-relay networks. As with the rates
for circuit-emulation connections, the sustainable cell rates
(SCR’s) can be grouped into categories. To reduce complexity,
the multiplicative factor (see Section VI-B) could be picked
to be the same for all SCR’s; alternatively, it could be different
for different rate categories or be dependent on whether
the connection is switched or semipermanent, as one could
expect the former to have a higher occupancy than the latter.
(More work should be done to determine good choices.) As
for the effective bandwidth of the frame-relay connections
as seen by the fourth-priority UBR connections, one could
again use the standardized traffic descriptors with a reduced
value of or, as we will choose here, one might simply
use the historical measured mean rate. Thus, for the frame-
relay connections, would be greater than , where the
type could depend on a rate category and/or switched-
versus-semipermanent connection, and whereis given by
the traffic descriptor method and , for simplicity, is the
historical mean rate.

For the fourth priority, UBR connections with no minimum
rate guarantee, the simplest policy would be to assign an
effective bandwidth of zero, in which case the fourth-priority
constraint would be subsumed into the third. However, given
that the network operator wishes to engineer some capacity
for the fourth-priority connections, a simple policy would
be to dimension a given amount of bandwidth, or a given
fraction, say , of the total capacity for the aggregate of all
fourth-priority connections.

In summary, for this example of dimensioning an ATM
infrastructure to support four different services, (2.18) would

specialize to

(7.1)

(7.2)

(7.3)

where the effective bandwidths are determined by the
methods discussed above.

VIII. C ONCLUSIONS

We have considered the problems of connection admission
control and dimensioning when there are priority classes and
the performance criteria are expressed in terms of buffer over-
flow probabilities, which translate into steady-state workload
tail probabilities in an infinite-buffer model, i.e.,

as in (2.1). For all priority classes except the highest, the
steady-state workload is different from the steady-state delay.
The steady-state workload is the appropriate quantity when the
concern is buffer overflow. We have focused on the special
case of two priority classes, but our analysis extends directly
to any number of priority classes.

An important general observation about effective band-
widths with priorities is that there needs to be a constraint
in the admissible set for each priority class. In the constraint
for priority class , all higher priority classes play a role (but no
lower priority classes). This implies that a connection at pri-
ority level is associated withmultiple effective bandwidths,
one for the priority level of the given connection and one for
each lower priority level. For two priority classes, this means
that there are two effective bandwidths for priority class 1:
one as seen by priority 1 and another as seen by priority
2, i.e., and . It is important that be used in the
constraint associated with priority class 2 instead of. Often

is significantly larger than , so that using instead
of produces a serious error, significantly underestimating
the capacity available to priority 2.

If large-buffer asymptotics are used to compute indi-
vidual effective bandwidths, then we propose the empty-
buffer effective-bandwidth (EBEB) approximation (2.17),
(2.19)—where the effective bandwidth of a type-source
of priority seen by class , where , is

—as a relatively simple approximation for
the admissible set with priorities. The effective-bandwidth
approximations considered in Sections II–V are based on large-
buffer asymptotics, under assumptions yielding exponential
tail probabilities. The complex structure found in many traffic
measurements on existing communication networks indicates
that the suitability of these assumptions needs to be carefully
checked in applications. Thus, alternative heuristic ways to
define effective bandwidths were described in Section VI.
They make strong use of the linear-admissible-set structure.
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With large-buffer asymptotics, we propose the EBEB ap-
proximation instead of the exact effective-bandwidth approx-
imation primarily because the EBEB approximation produces
a linear admissible set, i.e., an admissible set constructed
from linear constraints, whereas the exact effective-bandwidth
approximation does not. The reduced-service-rate (RSR) ef-
fective bandwidth approximation (2.14), (2.16), (2.20) also
produces a linear admissible set, but it tends to be less accurate
as well as not conservative. A linear admissible set greatly
helps for doing capacity planning using loss network models.

We have noted that the EBEB approximation is a con-
servative approximation to the exact effective-bandwidth ap-
proximation. Hence, when the exact effective-bandwidth ap-
proximation is conservative (which is usually, but not always
the case [13]), the overall EBEB approximation is itself
conservative. Our experience with numerical examples is that
the EBEB approximation is often very close to the exact
effective-bandwidth approximation. The most likely source
of error, if there is significant error, is the gap between the
exact effective-bandwidth approximation based on large-buffer
asymptotics, and the exact admissible set.

The effective-bandwidth analysis also dramatically shows
when it makes good engineering sense to introduce priority
classes. (There can also be other reasons to introduce pri-
orities.) Consistent with intuition, it is appropriate to make
class 2 a low-priority class when the performance requirements
for class 2 are much less stringent than the performance
requirements for class 1. The effective-bandwidth analysis
characterizes the performance requirements via the effective
performance criteria in (2.3), associated with
the constraint . Hence, when , it
makes sense for class 2 to be the low-priority class.

The class- effective performance criterion
is clearly more strongly affected by the buffer sizethan the
overflow probability because of the logarithm. Thus, the
strong ordering is likely to occur when .
In turn, the ordering is likely to occur, not so much
because buffer sizes are different, but becauseis kept small
in order to meet more stringent delay requirements for the
high-priority class. (The steady-state delay and workload are
identical for the high-priority class.) For parameter values that
we deemed reasonable, it often seemed appropriate to have

. For ratios in this range, we found the two-priority
structure to be effective.

In addition to providing the EBEB approximation we have
provided ways to check its accuracy. The empty-buffer and
RSR approximations produce convenient upper and lower
bounds on both the exact effective-bandwidth approximation
and the full low-priority steady-state workload tail probabili-
ties. When the admissible sets based on the empty-buffer and
RSR effective-bandwidth approximations are close, we can
conclude that the EBEB approximation must be close to the
exact effective-bandwidth approximation. It is our experience
in examples with that the EBEB approximation could
essentially be identified with the exact effective-bandwidth
approximation.

The most difficult challenge is validating the effective-
bandwidth approximation or producing a more accurate ad-

missible set, if necessary. The empty-buffer and RSR ap-
proximations reduce the exact calculation of the steady-state
low-priority workload tail probability to an exact calculation
with the FIFO discipline. When the four approximations—all
combinations of empty-buffer and RSR, effective bandwidth
and exact—are close, then we know that the EBEB approxi-
mation is accurate. Indeed, since the admissible sets tend to be
ordered, it suffices to compare only the EBEB approximation
to the RSR exact calculation.

A partial check on the accuracy of the effective-bandwidth
approximation is provided by considering each priority class
alone and computing the maximum admissible number of con-
nections for the FIFO case. This determines the disparity on the
axes of the admissible set in the priority case. Sometimes one
can get a useful bound without doing this computation—the
maximum admissible number of connections is upper bounded
by the link rate divided by the mean rate of a connection,
and sometimes the empty-buffer effective bandwidth is not
much bigger than the mean rate. Indeed, for some relevant
cases the effective bandwidths and were within 20%
of the mean rate, and the effective-bandwidth constraint for the
lower-priority class could be shown to be very accurate. As a
consequence, the effective-bandwidth approximations tended
to work better for the lower priority class than for the higher
priority class. A natural approach, then, is to use the EBEB
approximation only for the lower priority constraint and to
use a more refined analysis to generate the higher priority
constraint(s).

To numerically calculate empty-buffer and RSR exact ad-
missible sets with MMPP input, we used the numerical trans-
form inversion algorithm in [13]. As indicated in [13], that
algorithm is only effective for up to about 100 environment
states. That means we can treat 100 identical sources of one
type but only ten sources each of two types. Thus, the inversion
algorithm is far from being able to treat examples with many
sources of many types.

A promising approximation strategy—intercept effective
bandwidth—is to characterize the admissible set only on the
axes and connect the points by lines. On each axis, only one
of the classes is present, so that the model is simplified. Our
examples based on large-buffer asymptotics indicate that the
empty-buffer exact and overall exact admissible sets tend to
be slightly concave, so that the intercept-effective-bandwidth
approximation is not necessarily conservative, but it is often
quite close to the full empty-buffer exact admissible set.

Finally, the RSR and empty-buffer approximations for the
low-priority workload process open the way for other ap-
proaches to determine an appropriate admissible set, includ-
ing approaches that are not based on large-buffer exponen-
tial asymptotics. Promising practical measurement-based ap-
proaches that exploit the linear admissible-set structure were
presented in Section VI.
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