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Abstract. Kollár’s effective base point free theorem for kawamata log terminal pairs
is very important and was used in Hacon-McKernan’s proof of pl flips. In this paper, we
generalize Kollár’s theorem for log canonical pairs.

1. Introduction. The main purpose of this paper is to show the power of the new
cohomological technique introduced in [A]. The following theorem is the main theorem of
this short note. It is a generalization of [K, 1.1 Theorem]. Kollár proved it only for kawamata
log terminal pairs.

THEOREM 1.1 (Effective base point free theorem). Let (X,∆) be a projective log
canonical pair with dim X = n. Note that ∆ is an effective Q-divisor on X. Let L be a
nef Cartier divisor on X. Assume that aL − (KX + ∆) is nef and log big for some a ≥ 0.
Then there exists a positive integer m = m(n, a), which only depends on n and a, such that
|mL| is base point free.

For the relative statement, see Theorem 2.2.4 below.

REMARK 1.2. We can take m(n, a) = 2n+1(n + 1)!(�a� + n) in Theorem 1.1.

By the results in [A], we can apply a modified version of X-method to log canonical
pairs. More precisely, generalizations of Kollár’s vanishing and torsion-free theorems to the
context of embedded simple normal crossing pairs replace the Kawamata-Viehweg vanishing
theorem in the world of log canonical pairs. For the details, see [F2]. Here, we generalize
Kollár’s arguments in [K] for log canonical pairs. This further illustrates the usefulness of our
new cohomological package. For the benefit of the reader, we will explain the new vanishing
and torsion-free theorems in the appendix (see Section 3). The starting point of our main
theorem is the next theorem (see [A, Theorem 7.2]). For the proof, see [F2, Theorem 4.4].
Ambro’s original statement is much more general than Theorem 1.3. Unfortunately, he gave
no proofs in [A].

THEOREM 1.3 (Base point free theorem for log canonical pairs). Let (X,∆) be a log
canonical pair and L a π-nef Cartier divisor on X, where π : X → V is a projective
morphism. Assume that aL− (KX +∆) is π-nef and π-log big for some positive real number
a. Then OX(mL) is π-generated for all m � 0.
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The paper [F4] may help the reader to understand Theorem 1.3. In [F4], Theorem 1.3 is
proved under the assumption that V is a point and aL − (KX + ∆) is ample.

We summarize the contents of this paper. In Section 2, we prove Theorem 1.1. In Sub-
section 2.1, we give a slight generalization of Kollár’s modified base point freeness method.
We change Kollár’s formulation so that we can apply our new cohomological technique. In
Subsection 2.2, we use the modified base point freeness method to obtain Theorem 1.1. Here,
we need Theorem 1.3. Section 3 is an appendix, where we quickly review our new vanishing
and torsion-free theorems for the reader’s convenience. The reader can find Angehrn-Siu type
effective base point freeness and point separation for log canonical pairs in [F1].

NOTATION. We will work over the complex number field C throughout this paper.
Let r be a real number. The integral part �r� is the largest integer at most r and the

fractional part {r} is defined by r − �r�. We put �r� = −�−r� and call it the round-up of r .
Let X be a normal variety and B an effective Q-divisor such that KX + B is Q-Cartier.

Then we can define the discrepancy a(E,X,B) ∈ Q for every prime divisor E over X. If
a(E,X,B) ≥ −1 (resp. > −1) for every E, then (X,B) is called log canonical (resp. kawa-
mata log terminal). We sometimes abbreviate log canonical to lc.

Assume that (X,B) is log canonical. If E is a prime divisor over X such that a(E,X,B)

= −1, then cX(E) is called a log canonical center (lc center, for short) of (X,B), where
cX(E) is the closure of the image of E on X. A Q-Cartier Q-divisor L on X is called nef
and log big if L is nef and big and L|W is big for every lc center W of (X,B). The relative
version of nef and log bigness can be defined similarly.

For a Q-divisor D = ∑r
i=1 diDi , where Di is a prime divisor for every i and Di �= Dj

for i �= j , we call D a boundary Q-divisor if 0 ≤ di ≤ 1 for every i. We denote by ∼Q the
Q-linear equivalence of Q-Cartier Q-divisors.

We write Bs|D| the base locus of the linear system |D|.

2. Effective base point free theorem.
2.1. Modified base point freeness method after Kollár. In this subsection, we slightly

generalize Kollár’s method in [K].
2.1.1. Let (X,∆) be a log canonical pair and N a Cartier divisor on X. Let g : X → S

be a proper surjective morphism onto a normal variety S with connected fibers. Let M be a
semi-ample Q-Cartier Q-divisor on X. Assume that

(1) N ∼Q KX + ∆ + B + M ,

where B is an effective Q-Cartier Q-divisor on X such that SuppB contains no lc centers of
(X,∆) and that B = g∗(BS), where BS is an effective ample Q-Cartier Q-divisor on S. Let
X \W be the largest open set such that (X,∆+B) is lc. Assume that W �= ∅, and let Z be an
irreducible component of W such that dim g(Z) is maximal. We note that g(W) is not equal
to S since B = g∗(BS). Take a resolution f : Y → X such that the exceptional locus Exc(f )
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is a simple normal crossing divisor on Y , and put h = g ◦ f : Y → S. We can write

(2) KY = f ∗(KX + ∆) +
∑

eiEi with ei ≥ −1 ,

and

(3) f ∗B =
∑

biEi .

We can assume that Supp(f −1∗ B ∪ f −1∗ ∆ ∪ ∑
Ei ∪ h−1(g(Z))) and Supp(h−1(g(Z))) are

simple normal crossing divisors. Let c be the largest real number such that KX + ∆ + cB is
lc over the generic point of g(Z). We note that

(4) KY = f ∗(KX + ∆ + cB) +
∑

(ei − cbi)Ei .

By the assumptions, we know 0 < c < 1 and c ∈ Q. If cbi −ei < 0, then Ei is f -exceptional.
If cbi − ei ≥ 1 and g(Z) is a proper subset of h(Ei), then cbi − ei = 1. We can write

(5) f ∗N ∼Q KY + f ∗M + (1 − c)f ∗B +
∑

(cbi − ei)Ei

and

(6)
∑

�cbi − ei�Ei = F + G1 + G2 − H ,

where F , G1, G2, H are effective and without common irreducible components such that
• the h-image of every irreducible component of F is g(Z),
• the h-image of every irreducible component of G1 does not contain g(Z),
• the h-image of every irreducible component of G2 contains g(Z) but does not coincide with

g(Z), and
• H is f -exceptional.
Note that G2 = �G2� is a reduced simple normal crossing divisor on Y and that no lc cen-
ter C of (Y,G2) satisfies h(C) ⊂ g(Z). Here, we used the fact that Supp(h−1(g(Z))) and
Supp(h−1(g(Z))∪G2) are simple normal crossing divisors on Y . We put N ′ = f ∗N+H−G1

and consider the short exact sequence

(7) 0 → OY (N ′ − F) → OY (N ′) → OF (N ′) → 0 .

Note that

N ′ − F ∼Q KY + f ∗M + (1 − c)f ∗B +
∑

{cbi − ei}Ei + G2 .

So, the connecting homomorphism

(8) h∗OF (N ′) → R1h∗OY (N ′ − F)

is a zero map since h(F ) = g(Z) is a proper subset of S and every non-zero local section of
R1h∗OY (N ′ − F) contains h(C) in its support, where C is some stratum of (Y,G2). For the
details, see Theorem 3.2, (a). Thus, we know that

(9) 0 → h∗OY (N ′ − F) → h∗OY (N ′) → h∗OF (N ′) → 0

is exact. Moreover, by the vanishing theorem (see Theorem 3.2, (b)), we have

(10) H 1(S, h∗OY (N ′ − F)) = 0 .
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Therefore,

(11) H 0(S, h∗OY (N ′)) → H 0(S, h∗OF (N ′))

is surjective. It is easy to see that F is a reduced simple normal crossing divisor on Y . We
note that no irreducible components of F appear in

∑{cbi − ei}Ei and that

(12) N ′|F ∼Q KF + (f ∗M + (1 − c)f ∗B)|F +
∑

{cbi − ei}Ei|F + G2|F .

Thus, hi(S, h∗OF (N ′)) = 0 for all i > 0 by the vanishing theorem (see Theorem 3.2, (b)).
Thus, we obtain

(13) h0(F,OF (N ′)) = χ(S, h∗OF (N ′)) .

2.1.2. In our application, M will be a variable divisor of the form Mj = M0 + jL,
where M0 is a semi-ample Q-Cartier Q-divisor and L = g∗LS with an ample Cartier divisor
LS on S. Then we get that

(14) h0(F,OF (N ′
0 + jf ∗L)) = χ(S, h∗OF (N ′

0) ⊗ OS(jLS))

is a polynomial in j for j ≥ 0, where

(15) N ′
0 = f ∗N0 + H − G1

and

(16) N0 ∼Q KX + ∆ + B + M0 .

2.1.3. Assume that we establish h0(F,OF (N ′)) �= 0. By the above surjectivity (11),
we can lift sections to H 0(Y,OY (f ∗N + H − G1)). Since F �⊂ SuppG1, we get a section
s ∈ H 0(Y,OY (f ∗N+H)) which is not identically zero along F . We know H 0(Y,OY (f ∗N+
H)) � H 0(X,OX(N)) because H is f -exceptional. Thus s descends to a section of OX(N)

which does not vanish along Z = f (F ).
2.2. Proof of the main theorem. The following lemma, which is the crucial technical

result needed for Theorem 1.1, is essentially the same as [K, 2.2. Lemma].

LEMMA 2.2.1. Let g : X → S be a proper surjective morphism with connected fibers.
Assume that X is projective, S is normal and (X,∆) is lc for some effective Q-divisor ∆. Let
D0

S be an ample Cartier divisor on S and let DS ∼ mD0
S for some m > 0. We put D0 = g∗D0

S

and D = g∗DS . Assume that aD0 − (KX + ∆) is nef and log big for some a ≥ 0. Assume
that |DS | �= ∅ and that Bs|D| contains no lc centers of (X,∆), and let ZS ⊂ Bs|DS | be an
irreducible component with minimal k = codimSZS . Then, with at most dim ZS exceptions,
ZS is not contained in Bs|kDS + (j + �2a� + 1)D0

S | for j ≥ 0.

PROOF. Pick general Bi ∈ |D| and let

(17) B = 1

2m
B0 + B1 + · · · + Bk .

Then B ∼Q (1/2)D0 + kD, (X,∆ + B) is lc outside Bs|D| and (X,∆ + B) is not lc at the
generic points of g−1(ZS). For the proof, see [K, (2.1.1) Claim]. We will apply the method
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in 2.1 with

(18) Nj = kD + (j + �2a� + 1)D0

(19) M0 = �2a�D0 − (KX + ∆) + 1

2
D0 , and

(20) Mj = M0 + jD0 .

We note that Mj is semi-ample for every j ≥ 0 by Theorem 1.3 since Mj is nef and Mj −
(KX + ∆) is nef and log big. The crucial point is to show that

(21) h0(F,OF (N ′
j )) = χ(S, h∗OF (N ′

j ))

is not identically zero, where

(22) N ′
j = f ∗Nj + H − G1

for every j . Let C ⊂ F be a general fiber of F → h(F ) = ZS . Then

(23) N ′
0|C = (h∗(kDS + (�2a� + 1)D0

S) + H − G1)|C = H |C .

Hence h∗OF (N ′
0) is not the zero sheaf, and

(24) H 0(F,OF (N ′
j )) = H 0(S, h∗OF (N ′

0) ⊗ OS(jD0
S)) �= 0

for j � 1. Therefore, h0(F,OF (N ′
j )) is a non-zero polynomial of degree dim ZS in j for

j ≥ 0. Thus it can vanish for at most dim ZS different values of j . This implies that

(25) f (F ) �⊂ Bs|kD + (j + �2a� + 1)D0| = g−1Bs|kDS + (j + �2a� + 1)D0
S |

by 2.1.3, with at most dim ZS exceptions. Therefore, ZS = h(F ) �⊂ Bs|kDS + (j + �2a� +
1)D0

S |. This is what we wanted. �

The next corollary is obvious by Lemma 2.2.1. For the proof, see [K, 2.3 Corollary].

COROLLARY 2.2.2. Assume in addition that m ≥ 2a + dim S and set k =
codimSBs|DS |. Then

(26) dim Bs|(2k + 2)DS | < dim Bs|DS | .
LEMMA 2.2.3. We use the same notation as in Theorem 1.1. Then we can find an

effective divisor D ∈ |2(�a� + n)L| such that D contains no lc centers of (X,∆).

PROOF. Let C be an arbitrary lc center of (X,∆). When (X,∆) is kawamata log ter-
minal, we put C = X. We consider the short exact sequence

(27) 0 → IC ⊗ OX(jL) → OX(jL) → OC(jL) → 0 ,

where IC is the defining ideal sheaf of C. By the vanishing theorem, Hi(X,IC ⊗OX(jL)) =
Hi(X,OX(jL)) = 0 for all i ≥ 1 and j ≥ a (see Theorem 3.3). Therefore, we have
Hi(C,OC(jL)) = 0 for all i ≥ 1 and j ≥ a. Thus h0(C,OC(jL)) = χ(C,OC(jL)) is a



480 O. FUJINO

non-zero polynomial in j since |mL| is base point free for m � 0 (see Theorem 1.3). On the
other hand, the map

(28) H 0(X,OX(jL)) → H 0(C,OC(jL))

is surjective for j ≥ a since H 1(X,IC ⊗ OX(jL)) = 0 for j ≥ a by the vanishing theorem
(see Theorem 3.3). Thus, with at most dim C exceptions, C �⊂ Bs|(�a� + j)L| for j ≥ 0.
Therefore, we can find an effective divisor D ∈ |2(�a� + n)L| such that D contains no lc
centers. �

PROOF OF THEOREM 1.1. By the base point free theorem for log canonical pairs (see
Theorem 1.3), there exists a positive integer l such that g = Φ|lL| : X → S is a proper
surjective morphism onto a normal variety with connected fibers such that L ∼ g∗L′ for some
ample Cartier divisor L′ on S. By Lemma 2.2.3, we can find D ∈ |2(�a� + n)L| such that D

contains no lc centers. Then Corollary 2.2.2 can be used repeatedly to lower the dimension of
Bs|mL|. This way we obtain that |2n+1(n + 1)!(�a� + n)L| is base point free. �

We close this section with the following theorem, which is the relative version of Theo-
rem 1.1. We leave the proof for the reader’s exercise. Of course, we need the relative version
of Theorem 3.3 to check Theorem 2.2.4. See [A, Theorem 4.4] and [F2, Theorem 3.39].

THEOREM 2.2.4. Let (X,∆) be a log canonical pair with dim X = n and π : X → V

a projective surjective morphism. Note that ∆ is an effective Q-divisor on X. Let L be a π-
nef Cartier divisor on X. Assume that aL− (KX +∆) is π-nef and π-log big for some a ≥ 0.
Then there exists a positive integer m = m(n, a), which only depends on n and a, such that
OX(mL) is π-generated.

3. Appendix: New cohomological package. In this appendix, we quickly review
Ambro’s formulation of Kollár’s torsion-free and vanishing theorems.

3.1. Let Y be a simple normal crossing divisor on a smooth variety M , and let D be
a boundary Q-divisor on M such that Supp(D + Y ) is simple normal crossing and D and
Y have no common irreducible components. We put B = D|Y and consider the pair (Y, B).
Let ν : Y ν → Y be the normalization. We put KYν + Θ = ν∗(KY + B). A stratum of
(Y, B) is an irreducible component of Y or the image of some lc center of (Y ν,Θ). When Y

is smooth and B is a boundary Q-divisor on Y such that SuppB is simple normal crossing,
we put M = Y × A1 and D = B × A1. Then (Y, B) � (Y × {0}, B × {0}) satisfies the above
conditions.

The following theorem is a special case of [A, Theorem 3.2].

THEOREM 3.2. Let (Y, B) be as above. Let f : Y → X be a proper morphism and L

a Cartier divisor on Y .
(a) Assume that H ∼Q L − (KY + B) is f -semi-ample. Then every non-zero local

section of Rqf∗OY (L) contains in its support the f -image of some strata of (Y, B).
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(b) Let π : X → S be a proper morphism, and assume that H ∼Q f ∗H ′ for
some π-ample Q-Cartier Q-divisor H ′ on X. Then, Rqf∗OY (L) is π∗-acyclic, that is,
Rpπ∗Rqf∗OY (L) = 0 for all p > 0.

For the proof of Theorem 3.2, see [F2, Chapter 2]. By the above theorem, we can easily
obtain the following theorem. For the details, see [A, Theorem 4.4] and [F2, Theorem 3.39].

THEOREM 3.3. Let (X,B) be an lc pair. Let C be an lc center of (X,B). We consider
the short exact sequence

0 → IC → OX → OC → 0 ,

where IC is the defining ideal sheaf of C on X. Assume that X is projective. Let L be a line
bundle on X such that L− (KX +B) is ample. Then Hq(X,L) = 0 and Hq(X,IC ⊗L) = 0
for all q > 0. In particular, the restriction map H 0(X,L) → H 0(C,L|C) is surjective.

A simple proof of Theorem 3.3 can be found in [F3] (cf. [F3, Theorem 4.1]). For a
systematic treatment on this topic, we recommend the reader to see [F2]. See also [F5] and
[F6].

Acknowledgment. I was partially supported by the Grant-in-Aid for Young Scientists (A)

�20684001 from JSPS. I was also supported by the Inamori Foundation. I thank the referee for use-

ful comments.

REFERENCES

[A] F. AMBRO, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno
Porozhdennye Algebry, 220–239; translation in Proc. Steklov Inst. Math. 2003, no. 1 (240), 214–233.

[F1] O. FUJINO, Effective base point free theorem for log canonical pairs II—Angehrn-Siu type theorems—, to
appear in Michigan Math. J.

[F2] O. FUJINO, Introduction to the log minimal model program for log canonical pairs, preprint (2009).
[F3] O. FUJINO, On injectivity, vanishing and torsion-free theorems for algebraic varieties, Proc. Japan Ser. A

Math. Sci. 85 (2009), 95–100.
[F4] O. FUJINO, Non-vanishing theorem for log canonical pairs, preprint (2009).
[F5] O. FUJINO, Introduction to the theory of quasi-log varieties, preprint (2007).
[F6] O. FUJINO, Fundamental theorems for the log minimal model program, preprint (2009).
[K] J. KOLLÁR, Effective base point freeness, Math. Ann. 296 (1993), 595–605.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

KYOTO UNIVERSITY

KYOTO 606–8502
JAPAN

E-mail address: fujino@math.kyoto-u.ac.jp


