
Effective Bayesian Inference for Stochastic Programs

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Daphne Koller
Stanford University

koller@cs.stanford.edu

avid McAllester
AT&T Research

dmac@research.att.com

Avi Pfeffer
Stanford University

avi @cs.stanford.edu

Abstract

In this paper, we propose a stochastic version of a general pur-

pose functional programming language as a method of mod-

eling stochastic processes. The language contains random

choices, conditional statements, structured values, defined

functions, and recursion. By imagining an experiment in

which the program is “run” and the random choices made by

sampling, we can interpret a program in this language as en-

coding a probability distribution over a (potentially infinite)

set of objects. We provide an exact algorithm for comput-

ing conditional probabilities of the form Pr(P(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Q(z))
where x is chosen randomly from this distribution. This

algorithm terminates precisely when sampling x and com-

puting P(X) and Q(x) t erminates in all possible stochastic
executions (under lazy evaluation semantics, in which only

values needed to compute the output of the program are eval-

uated). We demonstrate the applicability of the language and

the efficiency of the inference algorithm by encoding both

Bayesian networks and stochastic context-free grammars in

our language, and showing that our algorithm derives effi-

cient inference algorithms for both. Our language easily sup-

ports interesting and useful extensions to these formalisms

(e.g., recursive Bayesian networks), to which our inference

algorithm will automatically apply.

Introduction

Over the past few years, there has been a growing consensus

within the AI community that, as the real world is a noisy and

nondeterministic place, it is often useful to model it as such.

Modeling uncertainty has shown up in a variety of AI tasks

as diverse as diagnosis (Heckerman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1995), natural

language processing (Charniak 1993), planning (Dean et al.
1993), and more. The different requirements of these tasks

have resulted in the use of different stochastic modeling

languages, such as Bayesian networks (Pearl 1988) and dy-

namic Bayesian networks (Dean and Kanazawa 1989), hid-

den Markov models (Rabiner and Juang 1986), and stochas-

tic context-free grammars (SCFGs) (Charniak 1993).

In many respects, these formalisms appear quite different,
and each of them has induced special-purpose probabilistic

inference algorithms. Recently, however, there has been a

Copyright @ 1997, American Association for Arificial Intel-

ligence (www.aaai.org). All rights reserved.

growing understanding that the formalisms have a common

basis, primarily the use of probabilistic independence as

the key to compact representations and efficient inference.

As a consequence, there has been a recent effort to relate

the different formalisms to each other (Smyth et al. 1996;

Pynadath and Wellman 1996).

In this paper, we utilize the same basic idea of prob-

abilistic independence, but in the context of a very rich

general-purpose stochastic modeling language. The lan-

guage we propose subsumes all of these formalisms, but is

significantly more expressive than any of them. As we will

show, this additional expressive power does not prevent the
formulation of an efficient inference algorithm.

The key idea behind our language is the use of stochas-

tic programs to model systems. Specifically, we define a

stochastic version of a general-purpose functional program-

ming language. The language contains random choices,

conditional statements, structured values, defined functions,

and recursion. A program in this language can be viewed as

defining a distribution over a potentially infinite set of ob-

jects. Intuitively, we can imagine an experiment in which the

program is “run” and the random choices made by sampling

(flipping random bits). This process defines a distribution

over the various outputs that the program can produce.

Typically, the problem with moving to such a rich lan-

guage is that we lose the ability to execute inference effi-

ciently. In a Turing-complete language such as this one, it

is not even clear that we can execute inference at all. This is

not the case for our language. We provide a probabilistic in-

ference algorithm which computes the exact value of a con-

ditional probability expression of the form Pr(P (z) 1 Q (2))

where x is chosen randomly from the distribution defined

by the program, and where P and Q are any nonstochastic

predicates defined in our language. We show that the al-

gorithm terminates precisely when the stochastic program
which samples a: and computes P(x) and Q(x) terminates

in all possible stochastic executions. In both cases, termi-

nation is with respect to lazy evaluation semantics, in which

only values needed to compute the output of the program are

evaluated. These semantics allows us to use our algorithm

even when the program specifies a distribution over an in-

finite set of objects (and even when the objects themselves

are infinite). Thus, for example, we can evaluate a query

740 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPLANNING

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

with respect to a distribution over infinitely many strings (as

in a SCFG), if the answer to the query can be determined

by a finite computation. In this case, we say that the query
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevidence Jinite.

While termination is good, it is hardly enough. Our algo-

rithm achieves efficient inference by utilizing the principles

underlying efficient Bayesian network algorithms (Dechter

1996) and SCFG algorithms (Lari and Young 1990). De-

spite its generality, our algorithm is almost as efficient as

these special-purpose algorithms. Thus, for example, when

we run our algorithm on a stochastic program represent-

ing a Bayesian network, its computational behavior is the

same as that of standard variable elimination algorithms

for Bayesian networks. Similarly, it is possible to encode a

SCFG as a stochastic program so that our algorithm, applied

to this program, behaves essentially the same as the inside
algorithm (an inference algorithm tailored for SCFGs).

An alternative approach in the literature to developing

rich stochastic modeling languages is probabilistic logic

programming (Haddawy 1994; Poole 1993). While these

formalisms have opened the way towards exploring the is-

sues we discuss, they do not deal with structured values,

lazy evaluation, and evidence finite computation. In addi-

tion, the algorithms that have been developed do not exploit

the techniques we use to make our algorithm efficient.

In this section we give the syntax and an informal semantics

of a stochastic programming language. We start by giving

a grammar for terms.

e ..- ..- 2 1 c(el, . . ., en> I c2r1 (e) I c?(e) I
if(el, e2, e3) I flip(a) I f(el, . . -, 4

First we consider data structures. An expression of the

formc(et, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , e,) denotes a data structure whose compo-

nents are the values of et, . . . , e, respectively. The data

structure denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(et , . . . , e,) also contains a type tag

specifying that it was constructed by the constructor func-

tion c. Symbolic constants, such as \ true, \ false, and

\ foo are represented by data constructor functions of no

arguments. In general, a data constructor function is rep-

resented by a character string starting with the character I.

For example, the expression \ cons (\ f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo , \ bar) denotes

a “cons cell”, i.e., a data structure of type \ cons. All values

in our language are either symbolic constants or data struc-

tures whose fields contain (recursively) values. An expres-

sion of the form cal (e) extracts the the ith field from data

structures of type c. If the data structure is not of type c, it

returns \ false. For example, if \ cons is a constructor that

takes two arguments, the functions \ cons 1' and \ cons,'

correspond to the Lisp functions car and cdr respectively.

We use the latter as shorthand in some of our code. The

expression c?(e) has value t true if e is a data structure of

type c and value \ false otherwise. Note that we can use

an expression of the form \ foe? (x) to check whether the

value of the variable z is \ foo. We use x == \ f oo as a

somewhat more natural notation.

Theexpression if(el, e2, e3) is a conditional expression
- if the value of ei is the constant \ true then the value

of the expression is the value of e2, otherwise it is the value

of es. Expressions of the form f lip(Ly) are stochastic.

The expression f 1 ip (a) has value x true with probability

cu and 1 false with probability 1 - cx (a must be a fixed

constant in the open interval (0, 1)). An expression of the

formf(et, e,) is a call to the user defined function f.

In addition to terms, our programming language allows

assignment statements of the form x = e where x is a vari-

able and e is an expression as defined by the above grammar.

Assignments are important for stochastic modeling because

they introduce correlations due to “common causes”. Con-

sider the following sequence of assignments .

x = flip(S); y = ‘pair(r, z); 2 = ‘pair(Rip(.S), flip(S));

The variables y and z are assigned values independently.

The components of z get independent values - there are

four possible values of Z, each equally likely. However,

the values of the components of y are not independent, and

there are only two possible values of y.

We now define a network to be a sequence of assignment

statements of the form ~1 = et ; 22 = e2; . . . ; x, = en;.We

require that each variable appearing in the network be as-

signed at most once, and that all uses of a variable assigned

in the network occur after its definition. Variables appear-

ing in the network which are not defined in it will be called

inputs. A network with no inputs will be called closed.
A procedure dejinition is an expression of the form

S(x1, .“7 x~) = {N} where N is a network with in-

puts Xl, . . ., 2,. The last assignment in N is taken to define

the output value of f. A program is a pair (D, N) of a set

D of (user) definitions plus a network N which is closed

and where every user function is defined in D. The value
of a program (D, N) is the value of the last assignment in

N. If the program diverges, it takes the value 1.

A program is a stochastic model - it defines a proba-

bility distribution over the value of the program. There are

two standard ways of computing values - strict evaluation

and lazy evaluation. Under strict evaluation, if ei diverges

(fails to terminate) then c(et , . . . , e,) also diverges. Note

that the divergent argument ei may not be needed by the

remainder of the computation. Under lazy evaluation, if ei

diverges then c(et, . . . , e,) still terminates. For example,

consider the program

digit0 = {output = if(flip(S), ‘one, ‘zero);}

real0 = {output = ‘cons(digit(), real());}

output = real();

Under strict semantics this program will diverge. However,

any run of the program will generate an infinite list of digits,

which we may wish to interpret as defining a real number

uniformly distributed over the interval [0, 11. For example,

we would like the value of

x = real(); output = if(car(x) = ‘zero, ‘true, ‘false);

to be \ true or \ false, each with probability l/2. A pro-

gram like this, which only examines a finite fraction of an

arbitrarily large stochastic value, is called evidencefinite.
To illustrate how our language captures very different

formalisms, we show how both Bayesian networks and

PROBABILITY 741

stochastic context-free grammars can easily be described.

These examples only scratch the surface of the expressive

power of the language, but they should give a taste of the

possibilities. Lack of space precludes us from presenting

more examples.

A traditional Bayesian network (Pearl 1988) is a DAG in

which each node is a random variable. Associated with each

node is a conditional probability table defining the proba-

bility of each possible value of a node given each possible

assignment of values to its parents. Such a network can eas-

ily be encoded in our language as a sequence of assignment

statements, one for each node, making sure that parents are

always assigned before their children. For example, a sim-

ple burglar-alarm network could be written as

earthquake = flip(0.01); burglary = flip(0.1);

alarm = if(earthquake,if(burglary, flip(O.99), flip(0.2)),

if(burglary, flip(O.98), flip(0.01)));

The restriction of our language to defining distributions

over the last node of the network can be made with-

out loss of generality. If we are interested in the dis-

tribution over x1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , x,, we can simply add a line

output = ‘vlist(xl, . . . , x,) to the end of our pro-

gram. If f is a function describing a stochastic model (e.g.,

a Bayesian network), we can answer any query of the form

Pr(P 1 Q), where P and Q are observations about the func-

tion output, using the simple program

x = f(); output = if(Q(x), if(P(x), ‘q-and-p, ‘q-and-not-p), ‘not-q);

The probability of the value ‘q-and-p equals Pr(P(x) A

Q(x)) and similarly for the other values, so from \ q-and-p

and ‘q-and-not-p we can compute Pr(P(x) 1 Q(x)).

In traditional Bayesian networks, the conditional proba-

bility tables contain an entry for every combination of values

of a node and its parents. There has been much work on more

compact representations of conditional probability tables,

such as noisy-or models (Pearl 1988) and trees (Boutilier et

al. 1996). The latter can be used to model situations where

two variables are independent of each other given some val-

ues of a third variable and not others. Our language easily

expresses both these representations.

Our language also supports significant and interesting

extensions to the Bayesian network formalism. The basis

is the observation that each node in a Bayesian network can

be viewed as a stochastic function of its parents’ values.’

Thus, we can create a user-defined function representing a

node. We can compose these functions, resulting in more

complex functions that represent an entire network fragment

with multiple inputs and multiple outputs. As we have

recently shown (Koller and Pfeffer), this capability provides

the foundation for the definition of a hierarchical and even

an object-oriented Bayesian network. For example, we

can easily model fault diagnosis in component hierarchies

(as in (Srinivas 1994)), where the inputs to a high-level

component are passed to its subcomponents, which in turn

return their output value.

Our language can be used to extend the framework of

‘This functional perspective is, in fact, the basis for Pearl’s
recent work on the causal semantics of Bayesian networks (Pearl
1994).

Bayesian networks even further. For example, we can eas-

ily model Bayesian networks where one function recursively

calls another (or itself); our lazy semantics will provide se-

mantics to such networks even when the recursi .on is infinite.

A similar idea can be used to describe complex Markov pro- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cesses. In a dynamic belief network (Dean and Kanazawa

1989), the state of the world at one instant in time is a

stochastic function of the state at the previous instant. We

can model this as a user-defined function that takes one state

as an input and outputs the new state.
The expressive power of our language is not restricted

to extensions of Bayesian networks. For example, it easily
models stochastic context-free grammars (SCFG), a for-
malism which has been used in statistical natural language
processing (Charniak 1993) and understanding biological
structures (Sakakibara et al. 1995). A stochastic context-
free grammar (SCFG) is the natural probabilistic extension
of a context-free grammar. It contains sets of non-terminal
and terminal symbols, where each non-terminal symbol is
associated with a set of productions which transform it into
strings of terminals and non-terminals. In a SCFG, we also
have a probability distribution over the set of transitions as-
sociated with each nonterminal. The following is a simple
example of a SCFG: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S + AB (0.6) A + BA (0.3) B + AB (0.2)

S + BA (0.4) A+C4 (O-7) B+b (O-8)

A SCFG describes a stochastic model in which non-terminal

symbols are successively replaced by the right-hand side of

a production with the given probability, thus generating

a probability distribution over strings. A SCFG can be

represented in our language by using a defined function for

each

so

non-terminal. For example, the program

= {output = if(flip(0.6), ‘cons(A(), B()), ‘cons(B(), A()));}

A() = (output = if(flip(0.3), ‘cons(B(), A()), ‘cons(‘a, ‘nil));)

B() = {output = if(flip(0.2), ‘cons(A(), B()), ‘cons(‘b, ‘nil));}

output = so;

is a representation of the SCFG described above.

This program defines a distribution over parse trees for

the grammar, and induces a distribution over strings. For a

given string s, represented as a list, we can check whether

the parse tree t re resents a parse for s using the following

checker function: Y

match-suffix(t,s) =

{output = if(‘nil?(t), s,

if(‘nil?(s), ‘false,

if(‘cons?(t), match-help(t,s),

if(t = last(s), butlast(‘false))));}

match-help(t,s) =

{s’ = match-suffix(cdr(t), cdr(s));

output = if(s’ = ‘false, ‘false,

match-suffix(car(t), ‘cons(car(s), s’))}

The function match-suffix attempts to match t with a

suffix of s. If it succeeds, it returns the prefix of s that was

unmatched, otherwise it returns \ false. If t is a parse for

the entire string s, match-suffix will return nil.

*We assume that last and butlast have been given the

appropriate definitions. Also, our language does not include tests

for equality between arbitrary variables, but since s is a particular

string it can easily be implemented for this example.

742 PLANNING

3 A Sampling Algorithm

In this section, we give an algorithm for sampling values of

a stochastic program. This sampling algorithm will serve

as a precise operational semantics for our programming

language. The algorithm also serves as the starting point

for the development of our Bayesian inference algorithm.

The first stage of the algorithm converts a network to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
shallow form. An assignment statement x = e is called

shallow if there are no proper subexprexpressions of e other

than variables. For example, z = if (y, Z, UJ) is shallow

but x = if(flip(cr), Z, w) is not. Any network can be

mechanically converted into one in which all assignments

are shallow in time proportional to the size of the network.

For example, the shallow version of the burglar-alarm net-

work described above is:

earthquake = flip(0.01); burglary = flip(O. 1); a-when-e-b = flip(0.99);

a-when-e-nb = flip(0.2); a-when-ne-b = flip(0.98);

a-when-ne-nb= flip(0.01); a-when-e = if(burglary, a-when-e-b, a-when-e-nb);

a-when-ne = if(burglary, a-when-ne-b, a-when-ne-nb);

alarm = if(earthquake, a-when-e, a-when-ne);

Our sampling algorithm is formulated as a recursive func-

tion SAMP which takes as input a network N and a vari-

able x occuring in N and produces as output a new net-

work N’ where N’ contains an assignment of the form

x = c(y1, . . .) yn). More precisely, for any network

N, variable 2, and “value expression” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(yl , . . . , yn) we

define N[x = c(yl, . . ., yn)] to be the network that is

identical to N except that the definition of x is replaced

by x = c(yl, . . . , yn). It is important to note that SAMP

does not sample a complete value of x. It only processes

the network to the degree necessary to determine the top

level constructor of x. The procedure SAMP is defined by

the following conditions.

ifz=c(yl, . . ,

ifz=c-’

yn) E N then SAMP(N, z) = N.

(y) E N then to compute SAMP(N, z):

let N’I be SAMP(N, y)

if N’ contains y = ~(21, . , z,)
then let N” be SAMP(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , z *)
and return N”[z = U] where zt = w E N”

else return N’[z:=‘false]

if x = c?(y) E N then to compute SAMP(N, z):

let N’ be SAMP(N, y)

if N’ contains y = c(tt, . . . , .zn)
then return N’[z=‘true]

else return N’[z:=‘false]

if x = flip(a) E N then

SAMP(N, c) = N[x=‘true] with probability cy

SAMP(N, x) = N[x=‘false] with probability 1 - cy

if x = if(y, .z, W) E N then to computeSAMP(N, CC):

let N’ be SAMP(N, y)

let h be the variable t if y = ‘true E N’ and the variable w otherwise

let N” be SAMP(N’, h)

SAMP(N, z) = N”[x = ZJ] where h = ZJ E N”

ifz = f(yt, . . . , yn) E N then to compute SAMP(N, xc):

let M be the body of the definition off where the inputs

have been renamed to y 1, . . . , y n and all other variables

renamed to fresh variables.

let N’ be N where I = f(yt , . . , yn) is replaced by M; x = Y

where o = u is the output statement in M.

return SAMP(N’ , x)

To understand this program, consider its behavior when

applied to a stochastic program corresponding to a standard

Bayesian network. In this case, SAMP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N , XI will return a

sequence of assignments where x, all of x’s parents, and the

relevant intermediate variables, have been assigned concrete

values. The values of these variables are chosen randomly,

according to the distribution specified in the program. For

example, in our burglar-alarm network, SAMP (N , alarm)

may return (as one possible outcome):

earthquake = ‘true; burglary = ‘false; a-when-e-b = flip(0.99);

a-when-e-nb = ‘true; a-when-ne-b = flip(0.98);

a-when-ne-nb= flip(0.01); a-when-e = ‘true;

a-when-ne = if(burglary, a-when-ne-b, a-when-ne-nb); alarm = ‘true;

As a more complex example, consider the function tree

tree0 = { flp = flip(A); x = tree(); y = tree(); If = ‘leaf; pr = ‘pair(x, y);

output = if(flp, lf, pr);}

Let N be the network consisting of the single assign-

ment output=tree () and consider computing a value of

SAMP(N, output). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe last case of the procedure applies

and we continue by computing SAMP(N’, output) where

N’ is the following network.

flp = flip(.4); x = tree(); y = tree(); If = ‘leaf, pr = ‘pair(x, y);

output = if(flp, lf, pr); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Now the conditional rule applies and we compute

SAMP(N’, f lp). Depending on whether the flip yields

‘true or \ false we either evaluate SAMP(N”, lf) or

SAMP(N”, pr) where N” is a network with the corre-

sponding value for f lp. In the case where f lp is \ true,

the final network contains output = 'leaf. In the

case where f lp is 'false, the final network contains

output = \pair(x, y). In this example, the complete

value may be infinite, but the lazy evaluation process only

resolves values to the point where the top level constructor

is known.

This semantics, whereby only the top level constructor

of the value of a program is determined, does not prevent

us from formulating nontrivial queries. The following pro-

gram, for example, uses the procedure has-depth which

determines whether the depth of a given tree is 2 n:3

has-depth(t, n) = { if(‘leaf?(t), ‘true,

if(zero?(n), ‘false,

and(has-depth(left(t),pred(n)),

has-depth(right(t), pred(n)))))}

x = tree(); output=has-depth(x, 10);

This network has the two possible values \ true and

* false. But in order to determine the value, the sam-

pling algorithm will have to “open up” the value of x, until

it verifies whether its depth is more than 10 or not.

Note that the sampling algorithm SAMP (N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) returns

a network rather than a value for 2. This property allows

us to sample multiple variables defined in the same pro-

gram. To understand this issue, consider a network N of

the form x = flip(a); NY; N,; NW; o = if(y, x, w)

where NV,, is a network defining var. Assume that the

variable x is used in each of the networks NY, N, and NW.

Now, computing SAMP(N, y) can result in x being sampled

and assigned a value. If SAMP(N, y) returned a value rather

3We assume that zero ?,and,pred,left, and right have

beengiven appropriatedefinitions.

PROBABILITY 743

than a network, then the sampled value for X, on which the

value of y depended, would be lost. In this case, the com-

putation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMP(N, z) could sample a different value for

a: and the correlation between y and x due to the common

input x would be lost.

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputing Distributions

We now modify the sampling algorithm so that it computes

an exact probability distribution rather than a sample from

that distribution. That is, we will define a procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIST,

which returns a distribution over the outputs of the procedure

SAMP. The distribution will be the same distribution that

SAMP induces on its outputs.

To characterize the conditions under which the distribu-

tion can be computed we need the following definition: a

pair (N, x) of a network N and variable x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterminates if it is

not possible to select the value of flip expressions so as to

cause the computation of SAMP(N, x) to diverge. Note that,

due to the use of lazy evaluation, certain expressions, such

as tree () , terminate even though in some sense they have

an infinite set of possible values. Lazy evaluation makes

it possible to build terminating models with infinite value

sets. For any terminating pair (N, x), the set of networks

which can be returned by SAMP(N, x) is finite.4

In this case, we can describe the output of DIST as a finite

probability distribution. Such distributions will be written

as “tables” of the form { (~1, CY~), . . . , (vn, cm)} where

all zti must be distinct, all CY~ must be real numbers in the

interval [0, 11, and the sum of all Q; must be 1. This table

denotes the distribution where item zti has probability CQ.

To understand DIST, it is important to recall that SAMP

returns networks rather than values. Therefore, DIST will

return distributions over objects that are, themselves, rep-

resentations of other distributions. In order to eventually

compute a single distribution, we have to combine these

distributions into one. Therefore, we will often use a phrase

of the form “the weighted sum over A4 from DIST(N, y)

of DM,” where DM is some distribution defined by the

network M. This phrase denotes the probability distri-

bution defined by sampling A4 from the distribution (over

networks) returned by DIST, and then sampling the distri-

bution DM defined by M. The probability table defined by

this phrase is computed by first (recursively) computing the

table D for DIST (N, y) , and then for each item A4 which

appears in this table with nonzero probability, a separate

table DM is computed. The tables DM are then added to-

gether, where each table D M

of M under D.5

is weighted by the probability

The procedure for computing DIST(N, x) is identical

to the procedure for computing SAMP(N, x) except that it

4Suppose the set of networks which can be returned is infi-
nite. The tree of possible computations has finite branching (each
flip introduces a nondeterminstic branch in the computation). By
Kijnig’s lemma, any finitely branching tree with an infinite num-
ber of nodes must have an infinte path, i.e., a nonterminating
computation.

5As we will see below, in the context of Bayesian networks this
operation corresponds to the multiplication of factors.

computes a distribution rather than a sample. We show only

a few of the cases; the others are analogous variants of the

corresponding cases in the definition of-sA,MP (N, w) .

ifx =c(y~, . . , yR) E NthenDIST(N,z)={(N, I)}.

if 2 = c-’ (y) E N then DIST(N, z) is

the wkighted sum over N’ from DIST(N, y) of

if N’ containsy = ~(21, . . , zn)
then the weighted sum over N” from DIST(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , .z z) of

{(N”[a: = v], 1)) wherez, = z1 E N”

else ((N”[z = ‘false], 1))
if z = flip(a) E N then DIST(N, z) is

{(N[z = ‘true], cr), (N[z = ‘false], 1 - cy)}

ifa:=if(y,z,zu)E NthenDIST(N, z)is

the weighted sum over N’ from DIST(N, y) of

let h be z if y = ‘true E N’ and w otherwise in

the weighted sum over N” from DIST(N’, h) of

{(N”[z = a], 1)) whereh = w E N”

For example, when applied to our burglar-alarm network,

DIST(N, alarm) will start by evaluating the definition of

alarm using the rule for evaluating if. The first step is the

evaluation of DIST (N , earthquake) . This step gener-

ates two networks with weights: one network Nt identical

to N except that the earthquake is assigned ’ true, and

one identical to Nf except that earthquake is assigned

\ false; Nt has weight 0.01 and Nf weight 0.99. The al-

gorithm proceeds to evaluate DIST (iVt , a-when-e) and

DIST (Nf , a-when-ne) . The first of these results in a call

to DIST (Nt, burglary) , which also returns in two net-

works each with its own weight-O.1 and 0.9 respectively.

The second of these results in a separate but analogous call to

DIST(&, burglary) with similar output. These three

distributions are then combined using the weighted sum

operation to result in a distribution over four networks, cor-

responding to the four possible assignments to the variables

earthquake and burglary.

As a result of the close parallel between the computations

of DIST and of SAMP, we have the following theorem:

Theorem: The computation of DIST(N, x) terminates

exactly when the pair (N, x) terminates.

The procedure DIST is very inefficient. To understand

why, consider the expression has-depth(tree()) n) for a

given value of n. DIST returns a distribution over the net-

works returned by SAMP; SAMP gradually “unrolls” tree () ,

opening up recursive calls, and assigning values to the vari-

ables needed to determine the value of the computation.

The networks returned contain variables for all the inter-

mediate calculations used. The output networks always

contain enough detail of the computation to determine the

value of has-depth. The number of such verbose networks

which are possible outputs of has-depth(tree(), n) is

exponential in n. TherefOre, its analysis Using DIST takes

exponential time and returns a distribution over an expo-

nential number of networks. This is disappointing, since

the distribution can actually be computed quite easily: for

n > 0 the probability ,Bn that has-depth(tree(), n) is

\ true is just Q + /3i_1 where CI is the probability that

tree0 returns \ leaf and ,&-I is the probability that

has-depth(tree(), n - 1) is ‘true. Hence, there ex-

ists a method of computing a distribution over the value

of has-depth(tree(), n) which runs in time linear in n.

744 PLANNING

In the next section we give a general method of computing

distributions, which has the desired linear time performance

when applied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas-depth(tree(), n).

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Final Procedure

The problem with the procedure DIST is that it returns a

distribution over very long and complicated networks. For

example, as we saw above, DIST applied to a Bayesian

network returns a distribution over networks that contain

assignments to all intermediate variables, as well as to

variables that were never used in the computation. More

disturbingly, had burglary and earthquake relied on a

common cause which does not directly affect alarm, the

assignment to that variable would also have been part of the

networks returned by DIST.

If we produce simpler output networks, there would also

be fewer of them, so that DIST would have to deal with

smaller distributions. Network simplification is also crucial

to efficient caching and reuse of computation, the other key

to getting an efficient inference algorithm. We now show

how to simplify both the networks provided as input to SAMP

and the ones it returns as output (which are the ones over

which DIST generates a distribution).

We say that a variable x uses a variable y in network

N if either y is x (every variable uses itself) or some vari-

able on the right hand side of the assignment to x recur-

sively uses y. For any network N and set of variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV
we define NIV to be the set of assignments in N to vari-

ables used by variables in V. In the case of a Bayesian

network, N/V includes the definitions of the variables in

V and of their ancestors in the network. For example, if

N is z = ‘a; y = lb; x = \f (y); then N]{,I is

y = ‘b; x = ‘f(y); The restriction operation NIV

is our tool for simplifying networks.

For any basic networks N and A4 we let N[A4] be the

network A4 (as a set of assignments) plus those assignments

in N to variables unassigned in A4. For example,

(x=flip(.4);y=flip(.l);z=‘cons(x,y);)[(x=‘~e;z=‘false}]

isthenetwork{x=\true; y=flip(.l); z=‘false;}.

One should think of N [A41 as a generalization of the notation

N [x = V] used in the procedure SAMP. Intuitively, N [AT] is
the network N modified by the more refined values in A4.

Note that the computation of SAMP(N, x) only assigns

values to variables used by x. Thus, the effect of the sam-

pling is contained within the subnetwork N]{ml. The func-

tion SAMP satisfies the following equation?

smp(N, 2) = N[s=p(Nl{,I, 41
The above equation allows the input network N to be

simplified to N I{$) before being passed as an argu-

ment to SAMP. The top level network is then modi-

fied to incorporate the result of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMP(N IiS), x). Note

6This is an equation between expressions which sample dis-
tributions. The intended meaning of the equation is that the two
sampling expressions are equivalent - a given value has the same
probability of being generated when a sample is drawn from ei-
ther of the two expressions. Other equations between sampling
expressions are given below with the same intended meaning.

that we may have to incorporate variables that were not

present before, i.e., those originating from unrolling a

user-defined function. Thus, for example, we may have

{y=g(); x=f() ;}[(x=c(z); z=hO;}], which is is de-

finedtobe{y=g(); x=c(z); z=h();}.

It is also possible to simplify output networks. The out-

put networks are more complicated than necessary because

they include all intermediate values, some of which may

no longer be needed. However, we cannot consider just

the output value of the network; after all, the whole rea-

son for having SAMP return networks rather than values was

that some variable assignments are relevant for other parts

of the computation. The difficulty here is correlations in-

duced by shared inputs. Consider two variables x and y

which share a common stochastic input. We can sample

pairs of values for x and 9 (in the network N) by computing

SAMP(SAMP(N, x), y). W e are interested in simplifying

the intermediate network SAMP(N, x) in a way that pre-

serves the information needed about the shared input.

The process of sampling x from N causes the variables

above x in N to be assigned values. We must guarantee

that y uses the same assignmentsfor those variables that it
cares about. We define the set of variables seen by y above

x (in network N), denoted SEENBY (y, x, N), as follows.

If y is used by x then SEENBY (y, x, N) is { y}. If y is

not used by x then SEENBY(Y, x, N) is the union over

variables z other than x appearing in the right hand side

of the definition of y of SEENBY (Z, x, N). Informally, to

compute SEENBY (ZJ, x, N) we “crawl up” from y avoiding

x until we reach a variable used by x. In a Bayesian network,

SEENBY (y, x, N) consists of the variables that are in the

“fringe” of the “cone” defining x (the cone consisting of

x and its ancestors); more precisely, the minimal set of

variables in x’s cone that d-separate the cone from y. We

use SEENBY (V, x, N) to denote the union, over y E V, of

the sets SEENBY(ZJ, X, N).

In computing the value of y from the intermediate net-

work SAMP(N, x) we need only be concerned with variables

used by variables seen by y above x. We have the equation:

s=+~p(N, 4, Y)II~, yj = SAWC Y)I+, yj

where N’= N[sAMP(N(~,., x)lv]

and V = {x}U SEENBY(Y, x, N).

Note that the calculation of the intermediate network N’ in-

volves simplifying both the input network N to N]j51 and

theoutputnetworksmP(N](,I, x) tosm~(NI{,}, X)/V.

We now define PEVAL,(N, x, V) where N is a network,

x is a variable in N, and V is a set of variables in N which

contains x. Intuitively, like DIST, PEVAL returns a proba-

bility distribution over networks; however, in this case the

networks are simplified ones, not the verbose ones returned

by SAMP. Essentially, PEVAL returns networks that define

only the variables in V. For any probability distribution D
over networks we define Dlv to be the probability distribu-

tion induced by mapping every network N in D to N IV. The

function PEVAL satisfies the invariant PEVAL(N, x, V) =
DIST(N, x) IV. For example, if N is the burglar-alarm

network, we have that PEVAL(N, alarm, {alarm}) is a

probability distribution of the form {(alarm= \ true, a),

PROBABILITY 745

(alarm=‘false,

some distributions
1 - 41
returned

(as compared

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIST).

to the cumber-

Initially, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV contains only x. As the function is called

recursively, V is increased to contain additional variables

which are seen by other needed variables. At each point in

the process, we maintain the invariant that x E V and that

2 uses every element of V.

The function PEVAL is defined recursively by the condi-

tions given below. Note that PEVAL starts by simplifying

the input network and passing the simplified network to the

“helper” function PHELP. Again, we omit the cases for

x=c?(y)andx=f(yr, yn).

PEVAL(N, x, V)=PHELP(N]+), x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV)

ifx=c(yt, yn) E NthenPHELP(N, x, V) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(NIV, I)}

ifx=c -t(y) E N then PHELP(N, x, V) is

the wkighted sum over M from PEVAL(N, y , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEENBY(v, y , N)) of

let N’ be N[M] in

if N’ containsy = ~(21, . . . , zn)
then the weighted sum over M’ from

PEVAL(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , z,, SEEtNBY(V, zz, N)) of

((N’lM’ll~ = ellv, 1)) wherez, = e E M’
else{(N’[x = ‘false]lv, 1))

ifx=fflip(cu)E Nthen

PHELP(N, x, V) = {((r = ‘true), cu), ((x = ‘false), 1 - a)}.

ifx = if(y, z, W) E NthenPHELP(N, x, V) is

the weighted sum over M from PEVAL(N, y ,

let N’ be N[M] in

SEENBY (V, y , N)) of

let h be z if y = ‘true E N’ and w otherwise in

the weighted sum over M’ from PEVAL(N, h, SEENBY (V, h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’)) of

{(N’lM’lF = ellv, 1)) whereh = e E M’.

To understand this code, let us examine its behavior for

a Bayesian network. 7 Consider evaluating if (y, z, w).

Here PEVAL(N, y, SEENBY(V, y, IV)) is a distribu-

tion over the possible assignments to the variables in

SEENBY(V, y, N), i.e., a factor over these variables. These

variables are the fringe of y’s cone, i.e., the variables in y’s

cone that cannot be “summed out” (in a Bayesian network

algorithm) since they are used by other variables in the net-

work. Note that V contains x and therefore also z and 20.

Thus, the assignments needed to maintain the correlations

between y and Z, w are maintained in the factor. As in DIST,

we now proceed to examine each network A4 in turn, ana-

lyzing either x or w, as appropriate. In this case, however,

M is first reintegrated into the network N, which contains

the part of the network eliminated in the analysis for y. The

resulting factors over x and w are then multiplied by the

factor over y, in the weighted sum computation.

The bulk of the computation is done over simplified net-

works. In these networks, we eliminate a large part of the

“trace” of the computation. Hence, many different compu-

tations can result in the same simplified network. For exam-

ple, in a more complicated burglar-alarm example, where

there are additional assignments on which earthquake and

burglary depend, all of these assignments are eliminated

by the simplification process, so that PEVAL always returns

a simple factor over this pair of variables. Therefore, we can

71n this discussion, we utilize some standard terminology from

Bayesian network inference. Space constraints prohibit us from

providing a full explanation. We hope that the main ideas will be

clear even to readers who are unfamiliar with these concepts.

often obtain significant computational savings if we cache

the results of PHELP applied to the various networks, and

reuse it whenever a similar call is made.

When applied to a Bayesian network, our algorithm es-

sentially mimics a standard efficient inference algorithm

for Bayesian networks, one based on variable elimination

(e.g., (Dechter 1996)). It follows from our explanation of

the algorithm above that PEVAL(N, x, V) returns a dis-

tribution over networks that corresponds to the factor (a

product of conditional probability tables) over V obtained

by eliminating all other variables in x’s cone. The caching

of these distributions (factors) guarantees that each one is

only computed once. It can be shown that, applied to a

Bayesian network, our algorithm mimics the standard vari-

able elimination algorithm, using the elimination ordering

implied by the lazy evaluation behavior of the algorithm.

Unfortunately, this elimination algorithm might not be

the optimal ordering for a given Bayesian network; a differ-

ent ordering might result in smaller intermediate factors. In

some cases, the predetermined elimination ordering does no

harm. In particular, we can prove that PEVAI, achieves linear

time performance (modulo a small overhead for caching)

for polytree (singly connected) Bayesian networks. (See

the full paper for details.) In general, the extent to which

PEVAL’S elimination ordering is suboptimal cannot be de-

termined theoretically. However, we believe that PEVAL can

be modified to allow for more flexibility in the evaluation

order, thereby circumventing this problem. We are in the

process of investigating such an extension.

On the other side, PEVAL is significantly more flexible

than the standard Bayesian network inference algorithms.

The algorithm automatically exploits both the causaZ inde-

pendence induced by noisy-or interactions and the context-

specific independence induced by tree-structured condi-

tional probability tables, which have been shown to sup-

port more efficient inference (Heckerman and Breese 1994;

Boutilier et al. 1996).

The algorithm PEVAL, augmented with caching, auto-

matically induces efficient algorithms for many problems.

For example, the calculation of PEVAL over the network

has-depth(tree(), n) calls PHELP on a linear number of

networks representing expressions of the form

has-depth(left(‘pair(tree(), tree())), n);

and a similar number for expressions of the form
has-depth(right(‘pair(tree(), tree())), n).

Each such call returns a distribution over two networks rep-

resenting the values \ true and \ false. The total number

of calls is linear in 72.

As another example consider the match-suffix func-

tion from Section 2. If t is a parse tree (generated

by a SCFG) and s is a string of terminal symbols then

match-suffix(t, s) returns ‘false if the fringe oft is

not a suffix of s and otherwise returns the prefix of s that

results from removing the fringe oft form the end of s. We

can compute the probability that a given grammar generates

the string s by evaluating

if(match-suffix(S(),s) = ‘nil, ‘true, ‘false).

This procedure does a case analysis on the tree t. In the

746 PLANNING

case where t is a tree with left and right subtrees E and r

respectively the procedure evaluates networks which have

essentially the following form.

s’ = match-suffix(r, cdr(s))

s” = cons(car(s), s’)

if(s’ == ‘false, ‘false, match-suffix& s”))

The inputs to this network are s, I and T. Here I and T will

be nonterminals form the grammar. So for a fixed gram-

mar there are only O(1) possible values of I and r. But

there are 0(n2) possible values of s. Hence the total num-

ber of networks of this form which need to be evaluated is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0(n2). The evaluation of the if expression at the bottom

of the network will iterate over the values of s’, and for each

value other than \ false, will then iterate over the values

of match-suffix(l, s"). There are O(n) possible val-

ues of s’ and for each of these O(n) possible values of the

match-suffix(l, s"). So the number of operations in-

volved in evaluating each of these networks is O(n2). This

gives a total number of operations is O(n4).

Alternatively, one could construct a procedure for test-

ing whether the fringe of t equals the string s by iterating

through the ways of splittings into two nonempty substrings

st and s2 and recursively testing if the fringe of the left

branch oft is si and the fringe of the right branch oft is ~2.

This procedure is inefficient if t is a fixed tree. However, it

produces the correct answer. Furthermore, it runs in 0 (n3)

operations when used to compute the probability that a the

fringe of a parse tree generated by a given SCFG will be a

given string. This computation is essentially the inside al-

gorithm for SCFGs. It is interesting to note that the analysis

remains polynomial time under a variety of implementions

of tests fort having fringe s.

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACsnchsion

We have presented a powerful language for representing

stochastic processes, and an efficient Bayesian inference

algorithm for models specified in this language. We have

also shown that, via its use of independence and caching,

our algorithm mimics several efficient inference algorithms

for special-purpose representation languages. We can easily

imagine the language being used to represent more complex

models than the ones discussed in the paper. For example,

it is easy to represent Bayesian networks with defined sub-

networks that call each other recursively (Koller and Pfeffer

1997). Our approach thus provides clear and coherent se-

mantics for hierarchically structured Bayesian networks, as

well as an effective inference algorithm that exploits the

existence of repeated network fragments to speed up infer-

ence. Our approach can also be used to encode stochas-

tic versions of richer grammars, including context-sensitive

grammars, and grammars in in which attributes are passed

to non-terminal symbols via productions. We believe that

our algorithm will transfer well to new models; and while

it is unlikely to be the most efficient algorithm for all these

model classes, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill provide a useful starting point for

studying them.

Acknowledgements We thank Fernando Pereira and

Lewis Stiller for useful discussions. Some of this work was

done while Daphne Koller and Avi Pfeffer were visiting

AT&T. This work was also supported through the generos-

ity of the Powell foundation, by ONR grant NOOO14-96-1-

0718, and by DARPA contract DACA76-93-C-0025, under

subcontract to Information Extraction and Transport, Inc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

eferences

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.

Context-specific independence in Bayesian networks. In

UAI, 1996.

E. Charniak. Statistical Language Learning. MIT Press,

1993.

T. Dean and K. Kanazawa. A model for reasoning about

persistence and causation. Computational Intelligence,
5(3): 142-150, 1989.

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson.

Planning with deadlines in stochastic domains. In AAAI,

1993.

R. Dechter. Bucket elimination: A unifying framework

for probabilistic inference. In UAI, 1996.

P. Haddawy. Generating bayesian networks from proba-

bility logic knowledge bases. In UAI, 1994.

D. Heckerman and J. S. Breese. A new look at causal

independence. In UAI, 1994.

D. Heckerman, J. Breese, and K. Rommelse. Decision-

theoretic troubleshooting. CACM, 38(3):49-57, 1995.

D. Koller’and A. Pfeffer. Object-oriented bayesian net-

works. Submitted for publication, UAI 1997.

K. Lari and S. J. Young. The estimation of stochastic

context-free grammars using the inside-outside algorithm.

Computer Speech and Language, 4135-56, 1990.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

J. Pearl. A probabilistic calculus of actions. In UAI, 1994.

D. Poole. Probabilistic horn abduction and bayesian net-

works. ArtiJciaZ Intelligence, 64(l), November 1993.

D. V. Pynadath and M. P. Wellman. Generalized queries

in probabilistic context-free grammars. In AAAI, 1996.

L. R. Rabiner and B. H. Juang. An introduction to hidden

markov models. IEEE ASSP Magazine, January 1986.

Y. Sakakibara, M. Brown, R. C. Underwood, I. S. Mian,

and D. Haussler. Stochastic context-free grammars for

modeling RNA. In Proceedings of the 27th Hawaii Inter-
national Conference on System Sciences, 1995.

l? Smyth, D. Heckerman, and M. Jordan. Probabilistic in-

dependence networks for hidden Markov probability mod-

els. MSR-TR-96-03, Microsoft Research, 1996.

S. Srinivas. A probabilistic approach to hierarchical model-

based diagnosis. In UAZ, 1994.

PROBABILITY 747

