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Abstract 

In this paper, we propose a stochastic version of a general pur- 

pose functional programming language as a method of mod- 

eling stochastic processes. The language contains random 

choices, conditional statements, structured values, defined 

functions, and recursion. By imagining an experiment in 

which the program is “run” and the random choices made by 

sampling, we can interpret a program in this language as en- 

coding a probability distribution over a (potentially infinite) 

set of objects. We provide an exact algorithm for comput- 

ing conditional probabilities of the form Pr(P(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Q(z)) 
where x is chosen randomly from this distribution. This 

algorithm terminates precisely when sampling x and com- 

puting P(X) and Q(x) t erminates in all possible stochastic 
executions (under lazy evaluation semantics, in which only 

values needed to compute the output of the program are eval- 

uated). We demonstrate the applicability of the language and 

the efficiency of the inference algorithm by encoding both 

Bayesian networks and stochastic context-free grammars in 

our language, and showing that our algorithm derives effi- 

cient inference algorithms for both. Our language easily sup- 

ports interesting and useful extensions to these formalisms 

(e.g., recursive Bayesian networks), to which our inference 

algorithm will automatically apply. 

Introduction 

Over the past few years, there has been a growing consensus 

within the AI community that, as the real world is a noisy and 

nondeterministic place, it is often useful to model it as such. 

Modeling uncertainty has shown up in a variety of AI tasks 

as diverse as diagnosis (Heckerman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1995), natural 

language processing (Charniak 1993), planning (Dean et al. 
1993), and more. The different requirements of these tasks 

have resulted in the use of different stochastic modeling 

languages, such as Bayesian networks (Pearl 1988) and dy- 

namic Bayesian networks (Dean and Kanazawa 1989), hid- 

den Markov models (Rabiner and Juang 1986), and stochas- 

tic context-free grammars (SCFGs) (Charniak 1993). 

In many respects, these formalisms appear quite different, 
and each of them has induced special-purpose probabilistic 

inference algorithms. Recently, however, there has been a 
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growing understanding that the formalisms have a common 

basis, primarily the use of probabilistic independence as 

the key to compact representations and efficient inference. 

As a consequence, there has been a recent effort to relate 

the different formalisms to each other (Smyth et al. 1996; 

Pynadath and Wellman 1996). 

In this paper, we utilize the same basic idea of prob- 

abilistic independence, but in the context of a very rich 

general-purpose stochastic modeling language. The lan- 

guage we propose subsumes all of these formalisms, but is 

significantly more expressive than any of them. As we will 

show, this additional expressive power does not prevent the 
formulation of an efficient inference algorithm. 

The key idea behind our language is the use of stochas- 

tic programs to model systems. Specifically, we define a 

stochastic version of a general-purpose functional program- 

ming language. The language contains random choices, 

conditional statements, structured values, defined functions, 

and recursion. A program in this language can be viewed as 

defining a distribution over a potentially infinite set of ob- 

jects. Intuitively, we can imagine an experiment in which the 

program is “run” and the random choices made by sampling 

(flipping random bits). This process defines a distribution 

over the various outputs that the program can produce. 

Typically, the problem with moving to such a rich lan- 

guage is that we lose the ability to execute inference effi- 

ciently. In a Turing-complete language such as this one, it 

is not even clear that we can execute inference at all. This is 

not the case for our language. We provide a probabilistic in- 

ference algorithm which computes the exact value of a con- 

ditional probability expression of the form Pr( P (z) 1 Q (2)) 

where x is chosen randomly from the distribution defined 

by the program, and where P and Q are any nonstochastic 

predicates defined in our language. We show that the al- 

gorithm terminates precisely when the stochastic program 
which samples a: and computes P(x) and Q(x) terminates 

in all possible stochastic executions. In both cases, termi- 

nation is with respect to lazy evaluation semantics, in which 

only values needed to compute the output of the program are 

evaluated. These semantics allows us to use our algorithm 

even when the program specifies a distribution over an in- 

finite set of objects (and even when the objects themselves 

are infinite). Thus, for example, we can evaluate a query 
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with respect to a distribution over infinitely many strings (as 

in a SCFG), if the answer to the query can be determined 

by a finite computation. In this case, we say that the query 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevidence Jinite. 

While termination is good, it is hardly enough. Our algo- 

rithm achieves efficient inference by utilizing the principles 

underlying efficient Bayesian network algorithms (Dechter 

1996) and SCFG algorithms (Lari and Young 1990). De- 

spite its generality, our algorithm is almost as efficient as 

these special-purpose algorithms. Thus, for example, when 

we run our algorithm on a stochastic program represent- 

ing a Bayesian network, its computational behavior is the 

same as that of standard variable elimination algorithms 

for Bayesian networks. Similarly, it is possible to encode a 

SCFG as a stochastic program so that our algorithm, applied 

to this program, behaves essentially the same as the inside 
algorithm (an inference algorithm tailored for SCFGs). 

An alternative approach in the literature to developing 

rich stochastic modeling languages is probabilistic logic 

programming (Haddawy 1994; Poole 1993). While these 

formalisms have opened the way towards exploring the is- 

sues we discuss, they do not deal with structured values, 

lazy evaluation, and evidence finite computation. In addi- 

tion, the algorithms that have been developed do not exploit 

the techniques we use to make our algorithm efficient. 

In this section we give the syntax and an informal semantics 

of a stochastic programming language. We start by giving 

a grammar for terms. 

e ..- ..- 2 1 c(el, . . ., en> I c2r1 (e) I c?(e) I 
if(el, e2, e3) I flip(a) I f(el, . . -, 4 

First we consider data structures. An expression of the 

formc(et, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , e,) denotes a data structure whose compo- 

nents are the values of et, . . . , e, respectively. The data 

structure denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(et , . . . , e,) also contains a type tag 

specifying that it was constructed by the constructor func- 

tion c. Symbolic constants, such as \ true, \ false, and 

\ foo are represented by data constructor functions of no 

arguments. In general, a data constructor function is rep- 

resented by a character string starting with the character I. 

For example, the expression \ cons ( \ f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo  , \ bar) denotes 

a “cons cell”, i.e., a data structure of type \ cons. All values 

in our language are either symbolic constants or data struc- 

tures whose fields contain (recursively) values. An expres- 

sion of the form cal (e) extracts the the ith field from data 

structures of type c. If the data structure is not of type c, it 

returns \ false. For example, if \ cons is a constructor that 

takes two arguments, the functions \ cons 1' and \ cons,' 

correspond to the Lisp functions car and cdr respectively. 

We use the latter as shorthand in some of our code. The 

expression c?(e) has value t true if e is a data structure of 

type c and value \ false otherwise. Note that we can use 

an expression of the form \ foe? (x) to check whether the 

value of the variable z is \ foo. We use x == \ f oo as a 

somewhat more natural notation. 

Theexpression if(el, e2, e3) is a conditional expression 
- if the value of ei is the constant \ true then the value 

of the expression is the value of e2, otherwise it is the value 

of es. Expressions of the form f lip( Ly) are stochastic. 

The expression f 1 ip (a) has value x true with probability 

cu and 1 false with probability 1 - cx (a must be a fixed 

constant in the open interval (0, 1)). An expression of the 

formf(et, . . . . e,) is a call to the user defined function f. 

In addition to terms, our programming language allows 

assignment statements of the form x = e where x is a vari- 

able and e is an expression as defined by the above grammar. 

Assignments are important for stochastic modeling because 

they introduce correlations due to “common causes”. Con- 

sider the following sequence of assignments . 

x = flip(S); y = ‘pair(r, z); 2 = ‘pair(Rip(.S), flip(S)); 

The variables y and z are assigned values independently. 

The components of z get independent values - there are 

four possible values of Z, each equally likely. However, 

the values of the components of y are not independent, and 

there are only two possible values of y. 

We now define a network to be a sequence of assignment 

statements of the form ~1 = et ; 22 = e2; . . . ; x, = en;.We 

require that each variable appearing in the network be as- 

signed at most once, and that all uses of a variable assigned 

in the network occur after its definition. Variables appear- 

ing in the network which are not defined in it will be called 

inputs. A network with no inputs will be called closed. 
A procedure dejinition is an expression of the form 

S(x1, .“7 x~) = {N} where N is a network with in- 

puts Xl, . . ., 2,. The last assignment in N is taken to define 

the output value of f. A program is a pair (D, N) of a set 

D of (user) definitions plus a network N which is closed 

and where every user function is defined in D. The value 
of a program (D, N) is the value of the last assignment in 

N. If the program diverges, it takes the value 1. 

A program is a stochastic model - it defines a proba- 

bility distribution over the value of the program. There are 

two standard ways of computing values - strict evaluation 

and lazy evaluation. Under strict evaluation, if ei diverges 

(fails to terminate) then c(et , . . . , e,) also diverges. Note 

that the divergent argument ei may not be needed by the 

remainder of the computation. Under lazy evaluation, if ei 

diverges then c(et, . . . , e,) still terminates. For example, 

consider the program 

digit0 = {output = if(flip(S), ‘one, ‘zero);} 

real0 = {output = ‘cons(digit(), real());} 

output = real(); 

Under strict semantics this program will diverge. However, 

any run of the program will generate an infinite list of digits, 

which we may wish to interpret as defining a real number 

uniformly distributed over the interval [0, 11. For example, 

we would like the value of 

x = real(); output = if(car(x) = ‘zero, ‘true, ‘false); 

to be \ true or \ false, each with probability l/2. A pro- 

gram like this, which only examines a finite fraction of an 

arbitrarily large stochastic value, is called evidencefinite. 
To illustrate how our language captures very different 

formalisms, we show how both Bayesian networks and 
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stochastic context-free grammars can easily be described. 

These examples only scratch the surface of the expressive 

power of the language, but they should give a taste of the 

possibilities. Lack of space precludes us from presenting 

more examples. 

A traditional Bayesian network (Pearl 1988) is a DAG in 

which each node is a random variable. Associated with each 

node is a conditional probability table defining the proba- 

bility of each possible value of a node given each possible 

assignment of values to its parents. Such a network can eas- 

ily be encoded in our language as a sequence of assignment 

statements, one for each node, making sure that parents are 

always assigned before their children. For example, a sim- 

ple burglar-alarm network could be written as 

earthquake = flip(0.01); burglary = flip(0.1); 

alarm = if(earthquake,if(burglary, flip(O.99), flip(0.2)), 

if(burglary, flip(O.98), flip(0.01))); 

The restriction of our language to defining distributions 

over the last node of the network can be made with- 

out loss of generality. If we are interested in the dis- 

tribution over x1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , x,, we can simply add a line 

output = ‘vlist(xl, . . . , x,) to the end of our pro- 

gram. If f is a function describing a stochastic model (e.g., 

a Bayesian network), we can answer any query of the form 

Pr(P 1 Q), where P and Q are observations about the func- 

tion output, using the simple program 

x = f(); output = if(Q(x), if(P(x), ‘q-and-p, ‘q-and-not-p), ‘not-q); 

The probability of the value ‘q-and-p equals Pr(P(x) A 

Q(x)) and similarly for the other values, so from \ q-and-p 

and ‘q-and-not-p we can compute Pr(P(x) 1 Q(x)). 

In traditional Bayesian networks, the conditional proba- 

bility tables contain an entry for every combination of values 

of a node and its parents. There has been much work on more 

compact representations of conditional probability tables, 

such as noisy-or models (Pearl 1988) and trees (Boutilier et 

al. 1996). The latter can be used to model situations where 

two variables are independent of each other given some val- 

ues of a third variable and not others. Our language easily 

expresses both these representations. 

Our language also supports significant and interesting 

extensions to the Bayesian network formalism. The basis 

is the observation that each node in a Bayesian network can 

be viewed as a stochastic function of its parents’ values.’ 

Thus, we can create a user-defined function representing a 

node. We can compose these functions, resulting in more 

complex functions that represent an entire network fragment 

with multiple inputs and multiple outputs. As we have 

recently shown (Koller and Pfeffer ), this capability provides 

the foundation for the definition of a hierarchical and even 

an object-oriented Bayesian network. For example, we 

can easily model fault diagnosis in component hierarchies 

(as in (Srinivas 1994)), where the inputs to a high-level 

component are passed to its subcomponents, which in turn 

return their output value. 

Our language can be used to extend the framework of 

‘This functional perspective is, in fact, the basis for Pearl’s 
recent work on the causal semantics of Bayesian networks (Pearl 
1994). 

Bayesian networks even further. For example, we can eas- 

ily model Bayesian networks where one function recursively 

calls another (or itself); our lazy semantics will provide se- 

mantics to such networks even when the recursi .on is infinite. 

A similar idea can be used to describe complex Markov pro- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cesses. In a dynamic belief network (Dean and Kanazawa 

1989), the state of the world at one instant in time is a 

stochastic function of the state at the previous instant. We 

can model this as a user-defined function that takes one state 

as an input and outputs the new state. 
The expressive power of our language is not restricted 

to extensions of Bayesian networks. For example, it easily 
models stochastic context-free grammars (SCFG), a for- 
malism which has been used in statistical natural language 
processing (Charniak 1993) and understanding biological 
structures (Sakakibara et al. 1995). A stochastic context- 
free grammar (SCFG) is the natural probabilistic extension 
of a context-free grammar. It contains sets of non-terminal 
and terminal symbols, where each non-terminal symbol is 
associated with a set of productions which transform it into 
strings of terminals and non-terminals. In a SCFG, we also 
have a probability distribution over the set of transitions as- 
sociated with each nonterminal. The following is a simple 
example of a SCFG: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S + AB (0.6) A + BA (0.3) B + AB (0.2) 

S + BA (0.4) A+C4 (O-7) B+b (O-8) 

A SCFG describes a stochastic model in which non-terminal 

symbols are successively replaced by the right-hand side of 

a production with the given probability, thus generating 

a probability distribution over strings. A SCFG can be 

represented in our language by using a defined function for 

each 

so 

non-terminal. For example, the program 

= {output = if(flip(0.6), ‘cons(A(), B()), ‘cons(B(), A()));} 

A() = (output = if(flip(0.3), ‘cons(B(), A()), ‘cons(‘a, ‘nil));) 

B() = {output = if(flip(0.2), ‘cons(A(), B()), ‘cons(‘b, ‘nil));} 

output = so; 

is a representation of the SCFG described above. 

This program defines a distribution over parse trees for 

the grammar, and induces a distribution over strings. For a 

given string s, represented as a list, we can check whether 

the parse tree t re resents a parse for s using the following 

checker function: Y 

match-suffix(t,s) = 

{output = if( ‘nil?(t), s, 

if( ‘nil?(s), ‘false, 

if( ‘cons?(t), match-help(t,s), 

if(t = last(s), butlast( ‘false))));} 

match-help(t,s) = 

{s’ = match-suffix(cdr(t), cdr(s)); 

output = if(s’ = ‘false, ‘false, 

match-suffix(car(t), ‘cons(car(s), s’))} 

The function match-suffix attempts to match t with a 

suffix of s. If it succeeds, it returns the prefix of s that was 

unmatched, otherwise it returns \ false. If t is a parse for 

the entire string s, match-suffix will return nil. 

*We assume that last and butlast have been given the 

appropriate definitions. Also, our language does not include tests 

for equality between arbitrary variables, but since s is a particular 

string it can easily be implemented for this example. 
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3 A Sampling Algorithm 

In this section, we give an algorithm for sampling values of 

a stochastic program. This sampling algorithm will serve 

as a precise operational semantics for our programming 

language. The algorithm also serves as the starting point 

for the development of our Bayesian inference algorithm. 

The first stage of the algorithm converts a network to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
shallow form. An assignment statement x = e is called 

shallow if there are no proper subexprexpressions of e other 

than variables. For example, z = if (y, Z, UJ) is shallow 

but x = if(flip(cr), Z, w) is not. Any network can be 

mechanically converted into one in which all assignments 

are shallow in time proportional to the size of the network. 

For example, the shallow version of the burglar-alarm net- 

work described above is: 

earthquake = flip(0.01); burglary = flip(O. 1); a-when-e-b = flip(0.99); 

a-when-e-nb = flip(0.2); a-when-ne-b = flip(0.98); 

a-when-ne-nb= flip(0.01); a-when-e = if(burglary, a-when-e-b, a-when-e-nb); 

a-when-ne = if(burglary, a-when-ne-b, a-when-ne-nb); 

alarm = if(earthquake, a-when-e, a-when-ne); 

Our sampling algorithm is formulated as a recursive func- 

tion SAMP which takes as input a network N and a vari- 

able x occuring in N and produces as output a new net- 

work N’ where N’ contains an assignment of the form 

x = c(y1, . . .) yn). More precisely, for any network 

N, variable 2, and “value expression” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(yl , . . . , yn) we 

define N[x = c(yl, . . ., yn)] to be the network that is 

identical to N except that the definition of x is replaced 

by x = c(yl, . . . , yn). It is important to note that SAMP 

does not sample a complete value of x. It only processes 

the network to the degree necessary to determine the top 

level constructor of x. The procedure SAMP is defined by 

the following conditions. 

ifz=c(yl, . . , 

ifz=c-’ 

yn) E N then SAMP(N, z) = N. 

(y) E N then to compute SAMP(N, z): 

let N’I be SAMP(N, y) 

if N’ contains y = ~(21, . , z,) 
then let N” be SAMP( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , z *) 
and return N”[z = U] where zt = w E N” 

else return N’[z:=‘false] 

if x = c?(y) E N then to compute SAMP(N, z): 

let N’ be SAMP( N, y) 

if N’ contains y = c(tt, . . . , .zn) 
then return N’[z=‘true] 

else return N’[z:=‘false] 

if x = flip(a) E N then 

SAMP(N, c) = N[x=‘true] with probability cy 

SAMP(N, x) = N[x=‘false] with probability 1 - cy 

if x = if(y, .z, W) E N then to computeSAMP(N, CC): 

let N’ be SAMP(N, y) 

let h be the variable t if y = ‘true E N’ and the variable w otherwise 

let N” be SAMP(N’, h) 

SAMP(N, z) = N”[x = ZJ] where h = ZJ E N” 

ifz = f(yt, . . . , yn) E N then to compute SAMP(N, xc): 

let M be the body of the definition off where the inputs 

have been renamed to y 1, . . . , y n and all other variables 

renamed to fresh variables. 

let N’ be N where I = f(yt , . . , yn) is replaced by M; x = Y 

where o = u is the output statement in M. 

return SAMP( N’ , x) 

To understand this program, consider its behavior when 

applied to a stochastic program corresponding to a standard 

Bayesian network. In this case, SAMP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N , XI will return a 

sequence of assignments where x, all of x’s parents, and the 

relevant intermediate variables, have been assigned concrete 

values. The values of these variables are chosen randomly, 

according to the distribution specified in the program. For 

example, in our burglar-alarm network, SAMP (N , alarm) 

may return (as one possible outcome): 

earthquake = ‘true; burglary = ‘false; a-when-e-b = flip(0.99); 

a-when-e-nb = ‘true; a-when-ne-b = flip(0.98); 

a-when-ne-nb= flip(0.01); a-when-e = ‘true; 

a-when-ne = if(burglary, a-when-ne-b, a-when-ne-nb); alarm = ‘true; 

As a more complex example, consider the function tree 

tree0 = { flp = flip(A); x = tree(); y = tree(); If = ‘leaf; pr = ‘pair(x, y); 

output = if(flp, lf, pr);} 

Let N be the network consisting of the single assign- 

ment output=tree ( ) and consider computing a value of 

SAMP(N, output). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe last case of the procedure applies 

and we continue by computing SAMP(N’, output) where 

N’ is the following network. 

flp = flip(.4); x = tree(); y = tree(); If = ‘leaf, pr = ‘pair(x, y); 

output = if(flp, lf, pr); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Now the conditional rule applies and we compute 

SAMP( N’, f lp). Depending on whether the flip yields 

‘true or \ false we either evaluate SAMP( N”, lf) or 

SAMP( N”, pr) where N” is a network with the corre- 

sponding value for f lp. In the case where f lp is \ true, 

the final network contains output = 'leaf. In the 

case where f lp is 'false, the final network contains 

output = \pair(x, y). In this example, the complete 

value may be infinite, but the lazy evaluation process only 

resolves values to the point where the top level constructor 

is known. 

This semantics, whereby only the top level constructor 

of the value of a program is determined, does not prevent 

us from formulating nontrivial queries. The following pro- 

gram, for example, uses the procedure has-depth which 

determines whether the depth of a given tree is 2 n:3 

has-depth(t, n) = { if( ‘leaf?(t), ‘true, 

if(zero?(n), ‘false, 

and(has-depth(left(t),pred(n)), 

has-depth(right(t), pred(n)))))} 

x = tree(); output=has-depth(x, 10); 

This network has the two possible values \ true and 

* false. But in order to determine the value, the sam- 

pling algorithm will have to “open up” the value of x, until 

it verifies whether its depth is more than 10 or not. 

Note that the sampling algorithm SAMP (N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) returns 

a network rather than a value for 2. This property allows 

us to sample multiple variables defined in the same pro- 

gram. To understand this issue, consider a network N of 

the form x = flip(a); NY; N,; NW; o = if(y, x, w) 

where NV,, is a network defining var. Assume that the 

variable x is used in each of the networks NY, N, and NW. 

Now, computing SAMP(N, y) can result in x being sampled 

and assigned a value. If SAMP( N, y) returned a value rather 

3We assume that zero ?,and,pred,left, and right have 

beengiven appropriatedefinitions. 
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than a network, then the sampled value for X, on which the 

value of y depended, would be lost. In this case, the com- 

putation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMP(N, z) could sample a different value for 

a: and the correlation between y and x due to the common 

input x would be lost. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputing Distributions 

We now modify the sampling algorithm so that it computes 

an exact probability distribution rather than a sample from 

that distribution. That is, we will define a procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIST, 

which returns a distribution over the outputs of the procedure 

SAMP. The distribution will be the same distribution that 

SAMP induces on its outputs. 

To characterize the conditions under which the distribu- 

tion can be computed we need the following definition: a 

pair (N, x) of a network N and variable x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterminates if it is 

not possible to select the value of flip expressions so as to 

cause the computation of SAMP( N, x) to diverge. Note that, 

due to the use of lazy evaluation, certain expressions, such 

as tree ( ) , terminate even though in some sense they have 

an infinite set of possible values. Lazy evaluation makes 

it possible to build terminating models with infinite value 

sets. For any terminating pair (N, x), the set of networks 

which can be returned by SAMP(N, x) is finite.4 

In this case, we can describe the output of DIST as a finite 

probability distribution. Such distributions will be written 

as “tables” of the form { (~1, CY~), . . . , (vn, cm)} where 

all zti must be distinct, all CY~ must be real numbers in the 

interval [0, 11, and the sum of all Q; must be 1. This table 

denotes the distribution where item zti has probability CQ. 

To understand DIST, it is important to recall that SAMP 

returns networks rather than values. Therefore, DIST will 

return distributions over objects that are, themselves, rep- 

resentations of other distributions. In order to eventually 

compute a single distribution, we have to combine these 

distributions into one. Therefore, we will often use a phrase 

of the form “the weighted sum over A4 from DIST(N, y) 

of DM,” where DM is some distribution defined by the 

network M. This phrase denotes the probability distri- 

bution defined by sampling A4 from the distribution (over 

networks) returned by DIST, and then sampling the distri- 

bution DM defined by M. The probability table defined by 

this phrase is computed by first (recursively) computing the 

table D for DIST (N, y) , and then for each item A4 which 

appears in this table with nonzero probability, a separate 

table DM is computed. The tables DM are then added to- 

gether, where each table D M 

of M under D.5 

is weighted by the probability 

The procedure for computing DIST(N, x) is identical 

to the procedure for computing SAMP( N, x) except that it 

4Suppose the set of networks which can be returned is infi- 
nite. The tree of possible computations has finite branching (each 
flip introduces a nondeterminstic branch in the computation). By 
Kijnig’s lemma, any finitely branching tree with an infinite num- 
ber of nodes must have an infinte path, i.e., a nonterminating 
computation. 

5As we will see below, in the context of Bayesian networks this 
operation corresponds to the multiplication of factors. 

computes a distribution rather than a sample. We show only 

a few of the cases; the others are analogous variants of the 

corresponding cases in the definition of-sA,MP (N, w) . 

ifx =c(y~, . . , yR) E NthenDIST(N,z)={(N, I)}. 

if 2 = c-’ (y) E N then DIST(N, z) is 

the wkighted sum over N’ from DIST( N, y) of 

if N’ containsy = ~(21, . . , zn) 
then the weighted sum over N” from DIST( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , .z z ) of 

{(N”[a: = v], 1)) wherez, = z1 E N” 

else (( N”[z = ‘false], 1)) 
if z = flip(a) E N then DIST(N, z) is 

{(N[z = ‘true], cr), (N[z = ‘false], 1 - cy)} 

ifa:=if(y,z,zu)E NthenDIST(N, z)is 

the weighted sum over N’ from DIST(N, y) of 

let h be z if y = ‘true E N’ and w otherwise in 

the weighted sum over N” from DIST(N’, h) of 

{(N”[z = a], 1)) whereh = w E N” 

For example, when applied to our burglar-alarm network, 

DIST(N, alarm) will start by evaluating the definition of 

alarm using the rule for evaluating if. The first step is the 

evaluation of DIST (N , earthquake) . This step gener- 

ates two networks with weights: one network Nt identical 

to N except that the earthquake is assigned ’ true, and 

one identical to Nf except that earthquake is assigned 

\ false; Nt has weight 0.01 and Nf weight 0.99. The al- 

gorithm proceeds to evaluate DIST (iVt , a-when-e) and 

DIST (Nf , a-when-ne) . The first of these results in a call 

to DIST (Nt, burglary) , which also returns in two net- 

works each with its own weight-O.1 and 0.9 respectively. 

The second of these results in a separate but analogous call to 

DIST(&, burglary) with similar output. These three 

distributions are then combined using the weighted sum 

operation to result in a distribution over four networks, cor- 

responding to the four possible assignments to the variables 

earthquake and burglary. 

As a result of the close parallel between the computations 

of DIST and of SAMP, we have the following theorem: 

Theorem: The computation of DIST(N, x) terminates 

exactly when the pair (N, x) terminates. 

The procedure DIST is very inefficient. To understand 

why, consider the expression has-depth( tree()) n) for a 

given value of n. DIST returns a distribution over the net- 

works returned by SAMP; SAMP gradually “unrolls” tree ( ) , 

opening up recursive calls, and assigning values to the vari- 

ables needed to determine the value of the computation. 

The networks returned contain variables for all the inter- 

mediate calculations used. The output networks always 

contain enough detail of the computation to determine the 

value of has-depth. The number of such verbose networks 

which are possible outputs of has-depth(tree(), n) is 

exponential in n. TherefOre, its analysis Using DIST takes 

exponential time and returns a distribution over an expo- 

nential number of networks. This is disappointing, since 

the distribution can actually be computed quite easily: for 

n > 0 the probability ,Bn that has-depth( tree(), n) is 

\ true is just Q + /3i_1 where CI is the probability that 

tree0 returns \ leaf and ,&-I is the probability that 

has-depth(tree(), n - 1) is ‘true. Hence, there ex- 

ists a method of computing a distribution over the value 

of has-depth(tree(), n) which runs in time linear in n. 
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In the next section we give a general method of computing 

distributions, which has the desired linear time performance 

when applied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas-depth(tree(), n). 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Final Procedure 

The problem with the procedure DIST is that it returns a 

distribution over very long and complicated networks. For 

example, as we saw above, DIST applied to a Bayesian 

network returns a distribution over networks that contain 

assignments to all intermediate variables, as well as to 

variables that were never used in the computation. More 

disturbingly, had burglary and earthquake relied on a 

common cause which does not directly affect alarm, the 

assignment to that variable would also have been part of the 

networks returned by DIST. 

If we produce simpler output networks, there would also 

be fewer of them, so that DIST would have to deal with 

smaller distributions. Network simplification is also crucial 

to efficient caching and reuse of computation, the other key 

to getting an efficient inference algorithm. We now show 

how to simplify both the networks provided as input to SAMP 

and the ones it returns as output (which are the ones over 

which DIST generates a distribution). 

We say that a variable x uses a variable y in network 

N if either y is x (every variable uses itself) or some vari- 

able on the right hand side of the assignment to x recur- 

sively uses y. For any network N and set of variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 
we define NIV to be the set of assignments in N to vari- 

ables used by variables in V. In the case of a Bayesian 

network, N/V includes the definitions of the variables in 

V and of their ancestors in the network. For example, if 

N is z = ‘a; y = lb; x = \f (y); then N]{,I is 

y = ‘b; x = ‘f(y); The restriction operation NIV 

is our tool for simplifying networks. 

For any basic networks N and A4 we let N[A4] be the 

network A4 (as a set of assignments) plus those assignments 

in N to variables unassigned in A4. For example, 

(x=flip(.4);y=flip(.l);z=‘cons(x,y);)[(x=‘~e;z=‘false}] 

isthenetwork{x=\true; y=flip(.l); z=‘false;}. 

One should think of N [A41 as a generalization of the notation 

N [x = V] used in the procedure SAMP. Intuitively, N [AT] is 
the network N modified by the more refined values in A4. 

Note that the computation of SAMP(N, x) only assigns 

values to variables used by x. Thus, the effect of the sam- 

pling is contained within the subnetwork N ]{ml. The func- 

tion SAMP satisfies the following equation? 

smp(N, 2) = N[s=p(Nl{,I, 41 
The above equation allows the input network N to be 

simplified to N I{$) before being passed as an argu- 

ment to SAMP. The top level network is then modi- 

fied to incorporate the result of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMP(N IiS), x). Note 

6This is an equation between expressions which sample dis- 
tributions. The intended meaning of the equation is that the two 
sampling expressions are equivalent - a given value has the same 
probability of being generated when a sample is drawn from ei- 
ther of the two expressions. Other equations between sampling 
expressions are given below with the same intended meaning. 

that we may have to incorporate variables that were not 

present before, i.e., those originating from unrolling a 

user-defined function. Thus, for example, we may have 

{y=g(); x=f() ;}[(x=c(z); z=hO;}], which is is de- 

finedtobe{y=g(); x=c(z); z=h();}. 

It is also possible to simplify output networks. The out- 

put networks are more complicated than necessary because 

they include all intermediate values, some of which may 

no longer be needed. However, we cannot consider just 

the output value of the network; after all, the whole rea- 

son for having SAMP return networks rather than values was 

that some variable assignments are relevant for other parts 

of the computation. The difficulty here is correlations in- 

duced by shared inputs. Consider two variables x and y 

which share a common stochastic input. We can sample 

pairs of values for x and 9 (in the network N) by computing 

SAMP(SAMP(N, x), y). W e are interested in simplifying 

the intermediate network SAMP( N, x) in a way that pre- 

serves the information needed about the shared input. 

The process of sampling x from N causes the variables 

above x in N to be assigned values. We must guarantee 

that y uses the same assignmentsfor those variables that it 
cares about. We define the set of variables seen by y above 

x (in network N), denoted SEENBY (y, x, N), as follows. 

If y is used by x then SEENBY (y, x, N) is { y}. If y is 

not used by x then SEENBY(Y, x, N) is the union over 

variables z other than x appearing in the right hand side 

of the definition of y of SEENBY ( Z, x, N). Informally, to 

compute SEENBY ( ZJ, x, N) we “crawl up” from y avoiding 

x until we reach a variable used by x. In a Bayesian network, 

SEENBY (y, x, N) consists of the variables that are in the 

“fringe” of the “cone” defining x (the cone consisting of 

x and its ancestors); more precisely, the minimal set of 

variables in x’s cone that d-separate the cone from y. We 

use SEENBY (V, x, N) to denote the union, over y E V, of 

the sets SEENBY(ZJ, X, N). 

In computing the value of y from the intermediate net- 

work SAMP( N, x) we need only be concerned with variables 

used by variables seen by y above x. We have the equation: 

s=+~p(N, 4, Y)II~, yj = SAWC Y)I+, yj 

where N’= N[sAMP(N(~,., x)lv] 

and V = {x}U SEENBY(Y, x, N). 

Note that the calculation of the intermediate network N’ in- 

volves simplifying both the input network N to N ]j51 and 

theoutputnetworksmP(N](,I, x) tosm~(NI{,}, X)/V. 

We now define PEVAL,( N, x, V) where N is a network, 

x is a variable in N, and V is a set of variables in N which 

contains x. Intuitively, like DIST, PEVAL returns a proba- 

bility distribution over networks; however, in this case the 

networks are simplified ones, not the verbose ones returned 

by SAMP. Essentially, PEVAL returns networks that define 

only the variables in V. For any probability distribution D 
over networks we define Dlv to be the probability distribu- 

tion induced by mapping every network N in D to N IV. The 

function PEVAL satisfies the invariant PEVAL( N, x, V) = 
DIST( N, x) IV. For example, if N is the burglar-alarm 

network, we have that PEVAL(N, alarm, {alarm}) is a 

probability distribution of the form {(alarm= \ true, a), 
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( alarm=‘false, 

some distributions 
1 - 41 
returned 

(as compared 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIST). 

to the cumber- 

Initially, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV contains only x. As the function is called 

recursively, V is increased to contain additional variables 

which are seen by other needed variables. At each point in 

the process, we maintain the invariant that x E V and that 

2 uses every element of V. 

The function PEVAL is defined recursively by the condi- 

tions given below. Note that PEVAL starts by simplifying 

the input network and passing the simplified network to the 

“helper” function PHELP. Again, we omit the cases for 

x=c?(y)andx=f(yr, . . . . yn). 

PEVAL(N, x, V)=PHELP(N]+), x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV) 

ifx=c(yt, . . . . yn) E NthenPHELP(N, x, V) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(NIV, I)} 

ifx=c -t(y) E N then PHELP(N, x, V) is 

the wkighted sum over M from PEVAL(N, y , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEENBY( v, y , N)) of 

let N’ be N[M] in 

if N’ containsy = ~(21, . . . , zn) 
then the weighted sum over M’ from 

PEVAL( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ , z,, SEEtNBY(V, zz, N)) of 

((N’lM’ll~ = ellv, 1)) wherez, = e E M’ 
else{(N’[x = ‘false]lv, 1)) 

ifx=fflip(cu)E Nthen 

PHELP(N, x, V) = {((r = ‘true), cu), ((x = ‘false), 1 - a)}. 

ifx = if(y, z, W) E NthenPHELP(N, x, V) is 

the weighted sum over M from PEVAL( N, y , 

let N’ be N[M] in 

SEENBY (V, y , N) ) of 

let h be z if y = ‘true E N’ and w otherwise in 

the weighted sum over M’ from PEVAL( N, h, SEENBY (V, h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ )) of 

{(N’lM’lF = ellv, 1)) whereh = e E M’. 

To understand this code, let us examine its behavior for 

a Bayesian network. 7 Consider evaluating if (y, z, w). 

Here PEVAL(N, y, SEENBY( V, y, IV)) is a distribu- 

tion over the possible assignments to the variables in 

SEENBY(V, y, N), i.e., a factor over these variables. These 

variables are the fringe of y’s cone, i.e., the variables in y’s 

cone that cannot be “summed out” (in a Bayesian network 

algorithm) since they are used by other variables in the net- 

work. Note that V contains x and therefore also z and 20. 

Thus, the assignments needed to maintain the correlations 

between y and Z, w are maintained in the factor. As in DIST, 

we now proceed to examine each network A4 in turn, ana- 

lyzing either x or w, as appropriate. In this case, however, 

M is first reintegrated into the network N, which contains 

the part of the network eliminated in the analysis for y. The 

resulting factors over x and w are then multiplied by the 

factor over y, in the weighted sum computation. 

The bulk of the computation is done over simplified net- 

works. In these networks, we eliminate a large part of the 

“trace” of the computation. Hence, many different compu- 

tations can result in the same simplified network. For exam- 

ple, in a more complicated burglar-alarm example, where 

there are additional assignments on which earthquake and 

burglary depend, all of these assignments are eliminated 

by the simplification process, so that PEVAL always returns 

a simple factor over this pair of variables. Therefore, we can 

71n this discussion, we utilize some standard terminology from 

Bayesian network inference. Space constraints prohibit us from 

providing a full explanation. We hope that the main ideas will be 

clear even to readers who are unfamiliar with these concepts. 

often obtain significant computational savings if we cache 

the results of PHELP applied to the various networks, and 

reuse it whenever a similar call is made. 

When applied to a Bayesian network, our algorithm es- 

sentially mimics a standard efficient inference algorithm 

for Bayesian networks, one based on variable elimination 

(e.g., (Dechter 1996)). It follows from our explanation of 

the algorithm above that PEVAL( N, x, V) returns a dis- 

tribution over networks that corresponds to the factor (a 

product of conditional probability tables) over V obtained 

by eliminating all other variables in x’s cone. The caching 

of these distributions (factors) guarantees that each one is 

only computed once. It can be shown that, applied to a 

Bayesian network, our algorithm mimics the standard vari- 

able elimination algorithm, using the elimination ordering 

implied by the lazy evaluation behavior of the algorithm. 

Unfortunately, this elimination algorithm might not be 

the optimal ordering for a given Bayesian network; a differ- 

ent ordering might result in smaller intermediate factors. In 

some cases, the predetermined elimination ordering does no 

harm. In particular, we can prove that PEVAI, achieves linear 

time performance (modulo a small overhead for caching) 

for polytree (singly connected) Bayesian networks. (See 

the full paper for details.) In general, the extent to which 

PEVAL’S elimination ordering is suboptimal cannot be de- 

termined theoretically. However, we believe that PEVAL can 

be modified to allow for more flexibility in the evaluation 

order, thereby circumventing this problem. We are in the 

process of investigating such an extension. 

On the other side, PEVAL is significantly more flexible 

than the standard Bayesian network inference algorithms. 

The algorithm automatically exploits both the causaZ inde- 

pendence induced by noisy-or interactions and the context-  

specific independence induced by tree-structured condi- 

tional probability tables, which have been shown to sup- 

port more efficient inference (Heckerman and Breese 1994; 

Boutilier et al. 1996). 

The algorithm PEVAL, augmented with caching, auto- 

matically induces efficient algorithms for many problems. 

For example, the calculation of PEVAL over the network 

has-depth(tree(), n) calls PHELP on a linear number of 

networks representing expressions of the form 

has-depth(left( ‘pair(tree(), tree())), n); 

and a similar number for expressions of the form 
has-depth(right( ‘pair(tree(), tree())), n). 

Each such call returns a distribution over two networks rep- 

resenting the values \ true and \ false. The total number 

of calls is linear in 72. 

As another example consider the match-suffix func- 

tion from Section 2. If t is a parse tree (generated 

by a SCFG) and s is a string of terminal symbols then 

match-suffix(t, s) returns ‘false if the fringe oft is 

not a suffix of s and otherwise returns the prefix of s that 

results from removing the fringe oft form the end of s. We 

can compute the probability that a given grammar generates 

the string s by evaluating 

if(match-suffix(S(),s) = ‘nil, ‘true, ‘false). 

This procedure does a case analysis on the tree t. In the 

746 PLANNING 



case where t is a tree with left and right subtrees E and r 

respectively the procedure evaluates networks which have 

essentially the following form. 

s’ = match-suffix(r, cdr(s)) 

s” = cons(car(s), s’) 

if(s’ == ‘false, ‘false, match-suffix& s”)) 

The inputs to this network are s, I and T. Here I and T will 

be nonterminals form the grammar. So for a fixed gram- 

mar there are only O(1) possible values of I and r. But 

there are 0(n2) possible values of s. Hence the total num- 

ber of networks of this form which need to be evaluated is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0(n2). The evaluation of the if expression at the bottom 

of the network will iterate over the values of s’, and for each 

value other than \ false, will then iterate over the values 

of match-suffix(l, s"). There are O(n) possible val- 

ues of s’ and for each of these O(n) possible values of the 

match-suffix(l, s"). So the number of operations in- 

volved in evaluating each of these networks is O(n2). This 

gives a total number of operations is O(n4). 

Alternatively, one could construct a procedure for test- 

ing whether the fringe of t equals the string s by iterating 

through the ways of splittings into two nonempty substrings 

st and s2 and recursively testing if the fringe of the left 

branch oft is si and the fringe of the right branch oft is ~2. 

This procedure is inefficient if t is a fixed tree. However, it 

produces the correct answer. Furthermore, it runs in 0 ( n3) 

operations when used to compute the probability that a the 

fringe of a parse tree generated by a given SCFG will be a 

given string. This computation is essentially the inside al- 

gorithm for SCFGs. It is interesting to note that the analysis 

remains polynomial time under a variety of implementions 

of tests fort having fringe s. 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACsnchsion 

We have presented a powerful language for representing 

stochastic processes, and an efficient Bayesian inference 

algorithm for models specified in this language. We have 

also shown that, via its use of independence and caching, 

our algorithm mimics several efficient inference algorithms 

for special-purpose representation languages. We can easily 

imagine the language being used to represent more complex 

models than the ones discussed in the paper. For example, 

it is easy to represent Bayesian networks with defined sub- 

networks that call each other recursively (Koller and Pfeffer 

1997). Our approach thus provides clear and coherent se- 

mantics for hierarchically structured Bayesian networks, as 

well as an effective inference algorithm that exploits the 

existence of repeated network fragments to speed up infer- 

ence. Our approach can also be used to encode stochas- 

tic versions of richer grammars, including context-sensitive 

grammars, and grammars in in which attributes are passed 

to non-terminal symbols via productions. We believe that 

our algorithm will transfer well to new models; and while 

it is unlikely to be the most efficient algorithm for all these 

model classes, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill provide a useful starting point for 

studying them. 
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