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Abstract: Generalized Born (GB) models provide, for many applications, an accurate and computationally facile
estimate of the electrostatic contribution to aqueous solvation. The GB models involve two main types of approxima-
tions relative to the Poisson equation (PE) theory on which they are based. First, the self-energy contributions of
individual atoms are estimated and expressed as “effective Born radii.” Next, the atom-pair contributions are estimated
by an analytical function f “® that depends upon the effective Born radii and interatomic distance of the atom pairs. Here,
the relative impacts of these approximations are investigated by calculating “perfect” effective Born radii from PE
theory, and enquiring as to how well the atom-pairwise energy terms from a GB model using these perfect radii in the
standard f “® function duplicate the equivalent terms from PE theory. In tests on several biological macromolecules, the
use of these perfect radii greatly increases the accuracy of the atom-pair terms; that is, the standard form of f “® performs
quite well. The remaining small error has a systematic and a random component. The latter cannot be removed without
significantly increasing the complexity of the GB model, but an alternative choice of f °® can reduce the systematic part.
A molecular dynamics simulation using a perfect-radii GB model compares favorably with simulations using conven-
tional GB, even though the radii remain fixed in the former. These results quantify, for the GB field, the importance of
getting the effective Born radii right; indeed, with perfect radii, the GB model gives a very good approximation to the

underlying PE theory for a variety of biomacromolecular types and conformations.
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Introduction

An accurate description of electrostatic interactions in aqueous
environments is essential for theoretical modeling of biomolecules.
The semicontinuum electrostatics model makes a fundamental
approximation by replacing discrete water molecules with a con-
tinuum medium with the dielectric properties of water. Within this
approximation the electrostatic potential can be found—with a
desired degree of accuracy— by numerical solution of the Poisson
equation (PE). If salt is present, the Poisson-Boltzmann equation
can be used, but the present focus is on the limit of zero salt
concentration. Such models have been successfully applied for
many years to calculate various macromolecular properties.'~*
The standard PE approach to the calculation of the electrostatic
component of solvation free energy AG., involves consideration of
charging processes in vacuum versus solvent, leading to the ex-
pression

1

AGcl = E E qi(d)sol(ri) - d’vac(ri)) (1)
1

= 5 2 qiqj(q)sol(ri’ rj) - (Dvac(ria r/)) (2)

)

In the more conventional first form, ¢, is the potential of the
solute atomic partial charges ¢, in an environment where the
region inside the molecular surface (as determined by the atomic
coordinates, radii, and probe sphere radius) has a dielectric con-
stant of 1.0, and the exterior region has the dielectric constant of
water ¢,,; ¢,,. is the potential of the same solute charges in an
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environment of uniform dielectric constant 1.0. (models with sol-
ute interior dielectric constants other than 1.0 are also commonly
used). The second form, eq. (2), which displays the full depen-
dence of AG,, on the solute charges, makes use of the Green
functions of the Poisson problems, ®(r;, r;). The Green function
of a Poisson problem is defined as the solution of PE for the
potential at r; with the charge distribution of the original Poisson
problem replaced by a single unit charge at r;. The Green function
is related to the actual potential of a particular charge distribution
by ¢(r) = X ,; q;®(r, ;). The Green function for the vacuum case
®,,. is simply the Coulombic Green function [r; — r;| ', while
®,, is much more complex due to the dielectric boundary—it
includes the Coulombic term, but also a reaction-field term.

For many applications, PE methods present practical problems
because of the computational cost of solving the PE and the
difficulty of obtaining energy gradients with respect to atomic
coordinates. Generalized Born (GB) models'~>~® offer an approx-
imation to PE theory that is computationally more convenient,
particularly in its pairwise analytic versions,”'® which are well
suited to molecular mechanics calculations. Insofar as the GB
models are fundamentally based on the same underlying approx-
imation as PE theory, that is continuum electrostatics, the PE (PB)
theory provides a natural reference point in the analysis of their
accuracy. The GB model approximates eq. (1) or (2) by an ana-
lytical formula’:

AG, = AGgg

>

2

qi 1 1 9.4 1

2R; (1 87) 2 .%.fGB(rij’ R;, R/) ! &y )
ij,i%] ’

where the R; are the effective Born radii of the atoms i and
£ =1[r; + RRexp(—rj/4RR)]"* @

Comparing the terms of eqgs. (2) and (3) we find that each of the
1/R; terms of eq. (3), which are just the traditional Born formu-
lae'! for the solvation free energy of isolated ions, corresponds to
a self-energy term from eq. (2), that is

1
E -~ (q)sol(r[’ r[) - q)vac(r[a r[)) (5)

In other words, R; should be that radius which, if inserted into the
Born formula, would give the same electrostatic solvation free
energy that PE theory would give for a hypothetical molecule
having the same dielectric boundary as the original, but having
only the single charge ¢, at position r;.

Usually, the effective Born radii are estimated by an expression
involving an integral of the energy density of a Coulomb field over
the molecular volume, and are evaluated by numerical integration®
or analytical approximations to such an integral.”'° Thus, the
conventional GB model can be seen as containing two levels of
approximation relative to the Poisson model on which it is based:
the assumption of the functional form, eqs. (3) and (4), and the
Coulomb and integration approximations used in determining the
effective Born radii. The method was originally developed® for

small compounds where it was found to reproduce solvation en-
ergies and individual charge-charge interactions quite well when
compared to solutions of PE. However, its performance on larger
molecules fell short of expectations, especially for molecules with
larger interior regions. Modifications have since been pro-
posed'?™!° that improved the model’s performance in various
ways, and similar work is in progress in a number of research
groups.

Here we ask to what extent could the GB model be improved
if “perfect” values for the effective Born radii could be used?
Numerical solutions of the PE for the potentials due to individual
charges, incorporating the full complex dielectric shape, are used
to determine R; values that make eq. (5) exact (to within the
accuracy of the numerical Poisson solver). The resulting “perfect
radii” are then used in eqgs. (3) and (4), and we enquire as to how
well this perfect-radii version of GB compares to a standard GB
(as implemented in AMBER), in terms of its ability to reproduce
the results of a full Poisson treatment of solvation [eq. (1)]. By
comparison with GB models using one of the standard estimates of
effective radii, we draw some conclusions about which approxi-
mations within the GB model cause the most serious problems and
where efforts at improvement ought to be focused. We also con-
sider the practicality of using computed perfect-radii in certain
classes of applications.

Methods and Data

We have carried out tests on macromolecules representing differ-
ent structural classes: native myoglobin (PDB ID 2MBS5), B-DNA
(10 base-pair duplex), and completely unfolded apomyoglobin.
The unfolded apomyoglobin structure is generated by molecular
dynamics simulations that model the conditions of acid-induced
unfolding.?* It has no tertiary structure and about 20% residual
secondary structure, and is similar to the experimentally observed
acid-unfolded state of myoglobin. The calculations reported in the
Appendix also include bacteriorhodopsin (PDB ID 1QHJ). For
each atom of each test structure, a Poisson problem is set up and
solved having the dielectric boundary shape of the full molecule
present, but keeping only the charge of that particular atom. The
van der Waals (vdW) radii of Bondi'® and a solvent-probe radius
of 1.4 A are used to define molecular surface,'” which is taken as
the dielectric boundary. The accumulation of these solutions gives
the necessary Green-function information for use in eq. (2) for the
full Poisson solvation energy, and in eq. (5) for the perfect effec-
tive Born radii. The computer program PEP, developed by P.
Beroza® and available via the Internet,” is used for the set-up and
solution of these Poisson problems. The finest grid spacing used in
all calculations is 0.07 A, decreasing from 4 A in eight steps of
focusing on the atom in question.

For the molecular dynamics test, the crystal structure of E. coli
thioredoxin (PDB ID 2TRX) is used as a starting point. A GB
model with specifiable fixed effective Born radii is incorporated
into the AMBER 6.0 molecular dynamics package.'>'® An all-
atom force field'® is employed. SHAKE is used to restrain hydro-
gen-heavy atom bond distances. The integration time-step is 2 fs,
with an essentially infinite (300 A) cut-off for long-range interac-
tions. The average temperature of the system is maintained at 300
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Table 1. Solvation Energy Components of Various Models.

1299

Structure: Myoglobin native DNA Myoglobin unfolded

Model Self ¢ Cross® Total Self Cross Total Self Cross Total
PE* —11843 8880 —2963 —8928 4253 —4675 —19053 15163 —3890
Perf. GB® —11843 8866 —2976 —8928 4217 —4711 —19053 15108 —3945
Stand. GB¢ —14949 11784 —3165 —9582 4998 —4586 —20671 16652 —4019

“Energy from eq. (1) or (2).

Generalized born model [egs. (3) and (4)] using “perfect” radii.

°GB model of ref. 10.
dSum of the ii terms in eq. (2) or ¢?/R; terms in eq. (3).

“Sum of the ij terms in eq. (2) or (3). All energies in kcal/mol.

K. The surface-area-based apolar solvation term with a surface
tension parameter set to 0.005 kcal/mol A? is also included in the
potential energy function.

Results

For macromolecules representing different structural classes, na-
tive myoglobin, B-DNA, and completely unfolded myoglobin, the
electrostatic contribution to the solvation free energy (AG.) is
calculated using the perfect-radius version of GB theory and
compared to PE calculations. Comparisons are also made to a
standard GB model, as implemented in AMBER 6.0.'° By “stan-
dard” or “conventional,” we mean an analytical GB model starting
with the same vdW radii used in the PE calculations and using the
analytical method of Hawkins et al.'® for the calculation of effec-
tive Born radii, and eq. (4) for f “B. This particular GB model has
been used for quite some time and provides a convenient point of
comparison with the perfect-radii GB model, although it is cer-
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tainly not the only currently used GB model. The perfect-radii GB
model gives a significantly better estimate of AG,, than the stan-
dard GB model (Table 1). By construction, the perfect-radii GB
model gives the same self-term contributions as Poisson theory.
What is striking is that the use of perfect radii also significantly
improves the agreement of the sum of the cross terms (i # j) of
the GB model with the equivalent part of the PE energy (Table 1).
The perfect-radii GB model gives a sum of cross terms well within
1% deviation from the PE results for all three structures, while for
the standard GB model, the corresponding deviation can be as high
as 30% (native myoglobin).

Having found that the sum of the cross terms is improved by
the use of perfect radii, we can enquire as to whether individual
cross terms are similarly improved. A scatter plot of GB versus PE
cross terms for native-state myoglobin shows that the use of
perfect radii does indeed improve the GB cross terms significantly
(Fig. 1). The RMSD from the PE cross terms for the perfect-radii
and standard GB models are 0.07 and 0.29 kcal/mol, respectively,
and unlike the standard model, the accuracy of the perfect-radii
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Figure 1. Comparison of individual cross terms in standard (A) or perfect-radii (B) GB models [ij terms
of eq. (3)] to cross terms from PE theory [ij terms of eq. (2)] for the native state of myoglobin. The line
x = y represents a perfect match between the GB and PE theories.
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Figure 2. The distribution of deviations of individual cross terms of GB models from the PE cross terms
for myoglobin (A) and B-DNA (B). The energy interval from —40 to +40 kcal/mol is divided into 500
bins of 0.16 kcal/mol each. The number of atom pairs whose cross-term deviation between GB and PE
falls within a given bin is plotted on the ordinate.

model is fairly uniform across the entire range of energies. Plots of
the distributions of cross-term errors for the two models for native
myoglobin and B-DNA (Fig. 2) show that the relative widths of the
distributions do not appear to be system specific. We conclude that
the approximation embodied in the choice of the functional forms,
egs. (3) and (4), is, by itself, a very reasonable one, and getting the
effective radii and hence the self energy right allows one to
estimate the pairwise charge-charge interactions quite accurately.

Given perfect radii, the origins of any remaining error in the
cross terms can be explored by comparing fGB(rl-_,-, R;, R)) to a
corresponding f value calculated by matching all the terms of PE
and GB theory. Setting equal each of the ij terms of eqs. (2) and
(3), with the new f replacing f® in the latter, one obtains an
expression for the new, “perfect” f values:

1 1
fEE == E (1 - ;)(q)sol(ria rj) - q)vac(ria rj )71 (6)

The performance of the standard f “® expression, eq. (4), is mea-
sured against these “perfect” values in Figure 3, where the error is
displayed as two-dimensional surfaces by taking advantage of the
fact that the standard expression can be written as a function of two
variables, the interatomic distance r,; and the harmonic average of
the effective radii, (R) = (R,R)) /2 The relative systematic errors
of the standard f°® are small: at most 15% at (R) ~ 6 A, r,; ~ 10
A for myoglobin, and only a few percent for the DNA, while the
random component of the error is larger, especially in the impor-
tant region of small r;;. Note that significantly smaller systematic
deviation in the DNA case does not correspond to a noticeably
smaller random error (see also the distributions in Fig. 2). An
effort to reduce the systematic component of the error is reported
in the Appendix.

The perfect-radii GB model is used in a 6 ns molecular dy-
namics simulation of thioredoxin in its native state at 300 K. The
potential energy function incorporates a GB solvation term [eq.
(3)] for which perfect-radii are supplied from a preliminary set of
Poisson equation solutions. These radii are kept fixed throughout
the simulation. The back-bone RMSD from the X-ray structure
remains reasonably small, staying below 1.5 A in the first 2 ns of
simulation and ranging from 1.6 to 1.8 A during the final 4 ns (Fig.
4). This contrasts favorably with recent experience with the use of
more conventional GB models in molecular dynamics simulations
of proteins, in which deviations from the native structure were
larger, even though the effective Born radii were updated at every
step of MD.'®>*> However, the RMSDs obtained in our simulations
using the perfect-radii GB model are not as small as in an equiv-
alent high-level explicit-solvent simulation (in a separate simula-
tion of thioredoxin'® that used explicit water and particle-mesh
Ewald, the RMSD was 1.2 Aatr =6 ns). The slight (~7%
relative to the starting structure) decrease in the over-all protein
volume that we observe in our perfect-radii simulation may be due
to the underestimation of charge-solvation forces in the fixed-radii
procedure: charged groups may shift towards the protein interior,
as the self-energy of a single charge would not increase if it moved
towards the interior regions.

The more usual way of incorporating GB models into MD is to
use an analytic estimate of the radii at each step, and to include
gradient terms due to the coordinate dependence of the radii in the
forces. The use of fixed effective Born radii here implies that the
“perfect” radii do not change very much during the simulation.
This is checked by comparing the perfect radii computed from the
native structure (and used in the simulation) with radii computed
from the final, # = 6 ns structure. The comparison shows that final
values cluster around the initial values, and that the bulk of the
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Figure 3. Deviations between “perfect” values of the effective interatomic interaction distance, as
calculated by eq. (6), and the usual functional form, eq. (4). Left panel: native myoglobin, right
panel: B-DNA. Vertical axis: relative systematic error ((f “®(ij) — f[)/f ) and standard relative

deviations from the mean [{((f}~ —

SINIFEHY? (random error) are calculated as averages

over sets of atom pairs {ij} belonging to square bins of 1 X 1 A2 in the (R), r;; plane ((R) =
(R,R j)” 2). The random error plot has the positive axis downward to ease visual comparison with the

systematic error. Distances are in A.

inverse radii are within 0.1 A™" of their initial values (Fig. 5a). It

is also instructive to see how different the self- and pair-interaction
energies (self and cross terms) are in the final structure computed
using the final set of perfect radii from the same energies computed
with the initial set of perfect radii (Fig. 5b). Note that for most of
the atoms, the differences in the self-energy are within 1 kcal/mol,
and the differences are smaller for the cross terms.

Discussion

For macromolecules, the origin of much of the error of the stan-
dard GB model comes from the fact that the approach tends to
underestimate the effective radii for buried atoms,'> mostly be-
cause the standard integration procedure treats the small vacuum-
filled crevices between the vdW spheres of protein atoms as being
filled with water, even for structures with little interior, such as
unfolded apomyoglobin (Fig. 6). Smaller R; values yield self-
energy terms that are too negative compared to the correct PE
values [see eq. (3)]. The trend is the same for cross terms involving
like charges, as smaller R,’s produce smaller values of f 9, via eq.

(4), making the factor, —g¢ ,.qj/fGB, too negative. By the same
token, however, the remaining interaction between the opposite
charges is too positive, and the net effect, as seen in Table 1, is a
cancellation of errors in the total solvation energy AGgg. Obvi-
ously, this is fortuitous. It is also somewhat fragile as it depends on
the predominance of opposite-charge over like-charge interactions,
which may not hold over a wide variety of macromolecules and
conformations.

In many applications of PE theory to macromolecules, such as the
calculation of pK, values, one is interested not in the total solvation
energy but in the values of individual terms that go into it, such as the
differences in self-energy terms between an ionizable group in protein
versus a model compound, or the energy of interaction between the
charged forms of two ionizable groups.”® Similarly, a theory of
solvation to be used in molecular mechanics must do well not only for
the total solvation energy of a native structure, but also for energy
differences pertaining to particular atomic motions that pick out
certain energy terms over others. Thus, the utility of GB as a replace-
ment for other higher-level theories of solvation in these and many
other contexts depends not only in its performance in predicting the
total AG,, but also on the accuracy of the individual terms.
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Figure 4. Back-bone RMSD from X-ray structure during a molecular
dynamics simulation of thioredoxin using the perfect-radii GB model.

The present results suggest that the most important way to
advance GB models is to get the effective Born radii right. If
these can be chosen in a way that gives correct self-energy
terms, the cross terms almost take care of themselves. The
mostly random character of the remaining error in the cross
terms suggests that the remaining problems have not so much to
do with the particular choice of the functional form, eq. (4), as
with the assumption that there can be a truly universal expres-
sion for the cross terms, simply as functions of the distance and
self energies (through the R) of the interacting atoms. The
results of our own efforts to improve the fS® function (see
Appendix) underscore this point.
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The calculation of effective Born radii in the standard GB
model involves two approximations. First, it is assumed that the
energy density of the electrostatic field of the molecule in solvent
can be approximated as the energy density of a Coulomb field, that
is, the contribution of the reaction field is neglected. Second,
approximations are introduced for the integration of this energy
density over the molecular region, typically in order to obtain an
expression involving only a sum over atom pairs.”'® We and
others'?~'*2!-22 have made efforts to improve the integration ap-
proximation, but it should be emphasized that the underlying
Coulomb field approximation already introduces significant error,
even if the integration can be carried out perfectly, as consider-
ations of some simple analytical cases have shown.®! Curiously,
the Coulomb approximation tends to overestimate the effective
Born radii, especially for the surface atoms, thereby partially
canceling the integration error, which tends to underestimate
them.'> The net effect is, however, an underestimation of the
effective Born radii, especially for the buried atoms, which are
expected to have large R, (Fig. 6).

The main motivation for the perfect-radii GB model was to
provide a standard of comparison, and a test of which approxima-
tions of the standard GB theory are the main sources of error. The
need to perform numerical solutions of the PE for every individual
atomic charge in the molecule makes this perfect-radii variant of
GB impractical for many applications. Nevertheless, it may have
practical applications in cases where many energy evaluations are
required, and effective radii are not expected to change much. The
present MD simulations were a test case in this spirit. The results
show that the deviations of the inverse radii from the beginning to
the end of the simulation were not insignificant. On the other hand,
the simulation was quite long, and the structure stayed fairly close
to the native structure. This contrasts favorably with recent expe-
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Figure 5. (a) The distribution of the difference between the inverse of the effective radii 1/R; at the
beginning and the end of the 6 ns MD simulation of thioredoxin. All 1654 atoms are considered. For
comparison, the average value of 1/R, att = 0 is 0.34 A~!. (b) The distribution of the differences in self-
and pair-interaction (cross-terms) energies in the final structure is computed in two different ways: either
using the initial (# = 0) set of perfect radii, or the final set (+ = 6 ns). For the self-term all 1654 atoms
are considered, and a set of randomly selected 1654 atom pairs is chosen in the computation of the
cross-terms. Note that for most of the atoms, the differences in the self-energy are within 1 kcal/mol, and

the differences are smaller for the cross-terms.



Effective Born Radii in the GB Approximation

" 300 native myoglobin
=
S h
o "
< 200 1 1
© R
S [
2 N
- A
£ I Vin ]
5 100 ¢ ‘u.
= f \

i

It

’ \

0 . . ‘
0 25 5 75

effective radius [A]

10

number of atoms

Figure 6. The distribution of effective radii for the native and acid unfolded myoglobin, showing
considerable underestimation of R,’s by the standard GB model (dashed line) compared to the PE (solid
line) one. The range of R; from 0 to 15 A is divided into 150 bins, and the number of atoms whose
effective radii fall within a bin is plotted on the ordinate.

rience in the use of more conventional GB models in molecular
dynamics simulations of proteins.
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Appendix

Here we attempt to find modifications to the standard f“® func-
tion, eq. (4), so that when used with perfect radii, its systematic
error (Fig. 3) is as small as possible, and the calculated solvation
free energy contributions are as close to PE theory as possible. One
clue as to how one might improve formula eq. (4) comes from an
observation that, unless salt is present, one does not expect any
exponentially decaying components in the cross terms, because the
electrostatic potential ultimately comes from a solution of the
Poisson, rather than the Poisson-Boltzmann, equation. With this in
mind, we have explored replacing exp(— r?,-/4Rl-R_,-) in eq. (4) with
more slowly varying functions of r;;, having polynomial or even
logarithmic behavior. For generality we also consider introducing
a longer-range term, Br;(R;R;) 172 The following set of functions
is examined:

fGB = [’,21 + Brrj(RiRj)l/z + RiRjSk]l/z @)
where S, can be one of
S.. = exp(—r;/4R.R) (8)
S, = ! 9
" (1 + r}{/4RR) ©)
1
Sin= (10)

—
V(I + ri/2RR))
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We test the performance of the functions above by computing
the total solvation energy for a set of structures. In agreement with
our physical intuition, the slowly varying functions of r;;, such as
eqgs. (10) and (11), give the closest agreement with the PE calcu-
lations (Table 2, where the 3 = 0, k = o row corresponds to the
standard function). As for the long-range term, we find that al-
though B ~ 0.1 and k = 1 [eq. (9)] result in a considerably smaller
systematic deviation between GB and PE for native myoglobin, at
least according to a plot similar to Figure 3 (not shown), the
calculated solvation energies are worse than those computed using
the standard function (Table 2). This shows the inherent difficulties
in finding an optimal f ©® for all structures, which are emphasized
further by Figure 7—clearly demonstrating that f f’jE is not even a
single-valued continuous function of R,, R;, and T The above
does not imply, however, that a more sophisticated form of f 5
would not work better in principle. Among the set of functions we
have discussed above, eqgs. (10) and (11) appear to be the optimum

Table 2. Comparison of the Total Electrostatic Solvation Energy
between the PE and the Perfect GB Models with Different f “®
Functions.

Absolute error (relative to PE) (kcal/mol)

Function Mb apoMb

[egs. (7-11)] (Native) DNA  (Unfolded) Bacteriorhodopsin
B=0k=o» -13 =36 =55 -22
B=0 k=1 -3 —13 -29 —10
B=0 k=1 +5 +3 ~11 -1
B=0,k=0 +5 +6 -9 0
B=01k=1 —131 —127 —289 —209

The first row corresponds to the standard f " of eq. (4).
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Figure 7. Comparison of the “ideal” f}* (discrete symbols) with the
standard f B function (solid line). Native myoglobin coordinate set is
used. Each discrete symbol of the plot corresponds to a pair of atoms
iandjsuchthat 6 A <R, < 6.1 Aand 6 A <R; < 6.1 A. The solid
line represents f°® (R, = 6.05 A, R, = 6.05 A, r;). Both the
atom-atom distance r;; and f;; are in A. Note that f} is not a
single-valued continuous function of R;, R;, and r;, but rather a
distribution of points for each r;;, with a small systematic shift towards

higher values compared to the standard f 5.

ones because they give best solvation energies for all structures
considered here. We emphasize however, that these new f°®
functions give closer agreement with the PE model when the
“perfect” radii are used, and may not be optimal with less-than-
perfect generalized Born radii. Furthermore, the difference in the
systematic part of the error in the two molecules shown in Figure
3 suggests that different functional forms may be the most optimal
for different macromolecular types.
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