Effective Categoricity of Injection Structures

Douglas Cenzer, University of Florida, Valentina Harizanov and Jeffrey B. Remmel

June 13, 2012

The Incomputable

Doug Cenzer Injection Structures

ヘロト ヘヨト ヘヨト

.⊒...>

Outline

- Spectrum Questions
- 3 Decidability

Doug Cenzer Injection Structures

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

990

Outline

- 2 Spectrum Questions
 - B Decidability

Index Sets

Doug Cenzer Injection Structures

イロト イポト イヨト イヨト

DQC

э

Outline

- 2 Spectrum Questions
- 3 Decidability
- Index Sets
- **5** Σ_1^0 and Π⁰ Structures

Dac

Ð.

イロト イポト イヨト イヨト

Outline

- 2 Spectrum Questions
- Oecidability

Index Sets

- 5 Σ_1^0 and Π⁰ Structures
- 6 The Difference Hierarchy

æ

э

Sac

Outline

- 2 Spectrum Questions
- 3 Decidability
- Index Sets
- **5** Σ_1^0 and Π_1^0 Structures
- 6 The Difference Hierarchy

Sac

э

Outline

- 2 Spectrum Questions
- 3 Decidability
- Index Sets
- **5** Σ_1^0 and Π_1^0 Structures
- 6 The Difference Hierarchy

< 17 ▶

Sac

Collaborators

This is joint work with

Valentina Harizanov

and

Jeffrey B. Remmel

Doug Cenzer Injection Structures

→ E → < E →</p>

DQC

э

```
\begin{array}{ll} \mbox{Injection Structures} \\ \mbox{Spectrum Questions} \\ \mbox{Decidability} \\ \mbox{Index Sets} \\ \mbox{$\Sigma_1^0$ and $\Pi_1^0$ Structures} \\ \mbox{The Difference Hierarchy} \end{array}
```

Background

- A computable structure A is said to be *computably categorical* if any computable structure B which is isomorphic to A is computably isomorphic to A
- A computable structure A is said to be Δ⁰₂categorical if any computable structure B which is isomorphic to A is Δ⁰₂ isomorphic to A.
- The computable categoricity of many interesting structures has been studied.
- Computable categoricity of abelian groups by Goncharov (Algebra and Logic 1975)
- Computable categoricity of linear orderings (Proc AMS 1981) and of Boolean algebras (JSL 1981) by Remmel

Previous Work on Δ_2^0 Categoricity

- McCoy studied Boolean algebras and linear orderings (APAL 2003)
- Calvert, Cenzer, Harizanov and Morozov studied equivalence structures (APAL 2006) and Abelian groups (APAL 2009)

イロト イヨト イヨト イ

Sac

 $\begin{array}{c} \text{Injection Structures} \\ \text{Spectrum Questions} \\ \text{Decidability} \\ \text{Index Sets} \\ \Sigma_1^0 \text{ and } \Pi_1^0 \text{ Structures} \\ \text{The Difference Hierarchy} \end{array}$

Countable Injection Structures

• $\mathcal{A} = (A, f)$ where A is a set and $f : A \rightarrow A$ is an injection

The orbit of a is

$$\mathcal{O}_{f}(a) = \{b \in A : (\exists n \in \mathbb{N})(f^{n}(a) = b \lor f^{n}(b) = a)\}.$$

• The order of a is

$$|a|_f = card(Or_f(a))$$

• The *character* of \mathcal{A} is

 $\chi(\mathcal{A}) = \{(k, n) : \mathcal{A} \text{ has at least } n \text{ orbits of size } k\}.$

イロト (過) (ほ) (ほ)

= 990

 $\begin{array}{c} \mbox{Injection Structures} \\ \mbox{Spectrum Questions} \\ \mbox{Decidability} \\ \mbox{Index Sets} \\ \mbox{Σ_1^0 and Π_1^0 Structures} \\ \mbox{The Difference Hierarchy} \end{array}$

Infinite Orbits

- Injection structures (A, f) may have two types of infinite orbits
- Z-orbits are isomorphic to (Z, S) in which every element is in the range of f
- ω -orbits are isomorphic to (ω, S) and have the form $\mathcal{O}_f(a) = \{f^n(a) : n \in \mathbb{N}\}$ for some $a \notin Rng(f)$.
- Thus injection structures are characterized (up to isomorphism) by the character as well as the number of orbits of types Z and ω.

<ロ> <同> <同> <同> < 同> < 同>

Complexity of the Orbits and Character

- Let $\mathcal{A} = (\omega, f)$ be a computable injection structure
- Each infinite orbit is a Σ_1^0 set
- Lemma

(a)
$$\{(k, a) : a \in Rng(f^k)\}$$
 is a Σ_1^0 set,

(b)
$$\{(a, k) : card(\mathcal{O}_{f}(a)) \ge k\}$$
 is a Σ_{1}^{0} set,

(c)
$$\{a : \mathcal{O}_f(a) \text{ is infinite}\}\$$
 is a Π_1^0 set,

(d)
$$\{a: \mathcal{O}_f(a) \text{ has type } Z\}$$
 is a Π_2^0 set,

(e)
$$\{a : \mathcal{O}_f(a) \text{ has type } \omega\}$$
 is a $\Sigma_2^{\overline{0}}$ set, and

(f)
$$\chi(\mathcal{A})$$
 is a Σ_1^0 set.

イロト イポト イヨト イヨト

э

DQC

 $\begin{array}{c} \mbox{Injection Structures}\\ \mbox{Spectrum Questions}\\ \mbox{Decidability}\\ \mbox{Index Sets}\\ \mbox{Sp}_1^0 \mbox{ and } \Pi_1^0 \mbox{Structures}\\ \mbox{The Difference Hierarchy} \end{array}$

• **Proposition** For any Σ_1^0 character *K*, there is a computable injection structure \mathcal{A} such that

$$\bigcirc \chi(A) = K$$

- 2 Fin(A) is computable.
- A may have any specified countable number of orbits of types ω and Z.

ヘロト ヘヨト ヘヨト

Sac

 $\begin{array}{c} \mbox{Injection Structures} \\ \mbox{Spectrum Questions} \\ \mbox{Decidability} \\ \mbox{Index Sets} \\ \mbox{Σ_1^0 and Π_1^0 Structures} \\ \mbox{The Difference Hierarchy} \end{array}$

Categoricity

- Let \mathcal{A} be a computable structure.
 - A is computably categorical if, any computable structure which is isomorphic to A is computably isomorphic to A;
 - 2 \mathcal{A} is Δ^0_{α} -categorical if any computable \mathcal{B} isomorphic to \mathcal{A} is Δ^0_{α} isomorphic to \mathcal{A} ;
 - A is relatively *computably categorical* if, for any computable B which is isomorphic to A, there exists an isomorphism between A and B which is computable from B.
 - \mathcal{A} is relatively Δ^0_{α} -categorical if, any structure $\mathcal{B} \cong \mathcal{A}$, there is an isomorphism which is Δ^0_{α} -computable from \mathcal{B} .
- Relative categoricity implies categoricity but the converse does not hold in general

・ロト ・ 同ト ・ ヨト ・ ヨト

SQA

Computably Categorical Structures

- **Theorem 1** A is computably categorical if and only A has only finitely many infinite orbits.
- Sketch: The categoricity follows from the following fact: If \mathcal{A} has finitely many infinite orbits then both $Fin(\mathcal{A})$ and $Inf(\mathcal{A})$ are Σ_1^0 and hence both are computable.

The other direction is sketched below

ヘロア ヘヨア ヘヨア ヘ

 $\begin{array}{c} \mbox{Injection Structures} \\ \mbox{Spectrum Questions} \\ \mbox{Decidability} \\ \mbox{Index Sets} \\ \mbox{Σ_1^0 and Π_1^0 Structures} \\ \mbox{The Difference Hierarchy} \end{array}$

Scott Families

- A Scott family for a structure A is a countable family Φ of $L_{\omega_1\omega}$ formulas, possibly with finitely many fixed parameters from A, such that:
 - (i) Each finite tuple in \mathcal{A} satisfies some $\psi \in \Phi$;
 - (ii) If \vec{a} , \vec{b} are tuples in \mathcal{A} , of the same length, satisfying the same formula in Φ , then there is an automorphism of \mathcal{A} that maps \vec{a} to \vec{b} .
- **Theorem** Let A be a computable structure. Then the following are equivalent:
 - (a) \mathcal{A} is relatively Δ^0_{α} categorical;
 - (b) A has a c.e. Scott family consisting of computable Σ_{α} formulas.

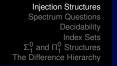
ヘロト ヘヨト ヘヨト ヘ

SQA

Relative Computable Categoricity

- **Theorem 2** A computable injection structure A is relatively computably categorical if and only A has finitely many infinite orbits.
- Sketch: For parameters take one element from each of the infinite orbits. The Scott formula for a sequence (a₁,..., a_m) of elements states whether a_j in one of those infinite orbits or has finite order and also for any i ∈ ω, whether fⁱ(a) = b for a and b taken from a₁,..., a_m plus the parameters.

< ロ > < 回 > < 回 > < 回 > < 回 >



The Other Direction

- If A infinitely many infinite orbits, then in fact A is not computably categorical. There are two cases.
- First suppose that A = (ω, f) has infinitely many orbits of type ω.

We may assume that Rng(f) is a computable set. Then we build $\mathcal{B} = (\omega, g)$ isomorphic to \mathcal{A} such that Rng(g) is not computable.

Next suppose that A has infinitely many orbits of type Z.
 We may assume that each orbit of A is computable.
 Then we build B isomorphic to A with a particular non-computable orbit.

Sac

 $\begin{array}{c} \mbox{Injection Structures}\\ \mbox{Spectrum Questions}\\ \mbox{Decidability}\\ \mbox{Index Sets}\\ \Sigma_1^0 \mbox{ and } \Pi_1^0 \mbox{Structures}\\ \mbox{The Difference Hierarchy} \end{array}$



• **Corollary** A computable injection structure A is relatively computably categorical iff A is computably categorical.

Doug Cenzer Injection Structures

イロト イポト イヨト イヨト

= 990

 $\begin{array}{c} \mbox{Injection Structures}\\ \mbox{Spectrum Questions}\\ \mbox{Decidability}\\ \mbox{Index Sets}\\ \mbox{Sp}_1^{0} \mbox{ and } \Pi_1^{0} \mbox{Structures}\\ \mbox{The Difference Hierarchy} \end{array}$

Δ_2^0 categorical structures

- Theorem 3 Suppose A either does not have infinitely many orbits of type ω or does not have infinitely many orbits of type Z. Then A is relatively Δ⁰₂ categorical.
- Sketch: Since *Fin*(*A*) is a c. e. set and each infinite orbit is also a c. e. set, there is a Δ₂⁰ partition of *A* into three sets: *Fin*(*A*), the orbits of type ω (*A*_ω), and the orbits of type Z (*A*_Z); similarly partition *B*.
- We can construct isomorphisms between the three parts of A and the corresponding parts of B.
- For the orbits of type ω, note that the set of beginning elements of orbits is simply ω \ Rng(f) and is therefore a Π⁰₁ set.

イロト (過) (ほ) (ほ)

Sac

Non- Δ_2^0 Categorical Structures

- **Theorem 4** If A has infinitely many orbits of type ω and infinitely many orbits of type \mathbb{Z} , then A is not Δ_2^0 categorical.
- Sketch: Consider structures with infinitely many orbits of type ω , infinitely many orbits of type \mathbb{Z} , and no finite orbits. There is a computable structure \mathcal{A} such that \mathcal{A}_{ω} and $\mathcal{A}_{\mathbb{Z}}$ are computable sets.

Build a computable structure \mathcal{B} such that \mathcal{B}_{ω} is *not* Δ_2^0 . Then \mathcal{A} and \mathcal{B} are not Δ_2^0 isomorphic.

< ロ > < 回 > < 回 > < 回 > < 回 >

 $\begin{array}{c} \mbox{Injection Structures}\\ \mbox{Spectrum Questions}\\ \mbox{Decidability}\\ \mbox{Index Sets}\\ \Sigma_1^0 \mbox{ and } \Pi_1^0 \mbox{Structures}\\ \mbox{The Difference Hierarchy} \end{array}$

The Construction

- Let *C* be an arbitrary Σ_2^0 set.
- We will define g such that $\mathcal{O}_g(2i+1)$ has type ω if and only if $i \in C$.
- The orbits of $\mathcal{B} = (B, g)$ will be exactly $\{\mathcal{O}_g(2i+1) : i \in \mathbb{N}\}$.
- There is a computable function ϕ such that $i \in C$ iff $W_{f(i)}$ is finite.

Every time a new element comes into $W_{f(i)}$ extend the orbit of 2i + 1 to the left.

ヘロア 人間 アメヨア 人口 ア

DQC

 $\begin{array}{c} \mbox{Injection Structures}\\ \mbox{Spectrum Questions}\\ \mbox{Decidability}\\ \mbox{Index Sets}\\ \Sigma_1^0 \mbox{ and } \Pi_1^0 \mbox{Structures}\\ \mbox{The Difference Hierarchy} \end{array}$



• **Corollary** A computable injection structure \mathcal{A} is relatively Δ_2^0 categorical iff \mathcal{A} is Δ_2^0 categorical.

Doug Cenzer Injection Structures

ヘロト ヘアト ヘヨト ヘ

∃▶ ∃ ∽९९

• **Theorem** Every computable injection structure is relatively Δ_3^0 categorical.

イロト イポト イヨト イヨト

= 990

Computably Enumerable Degrees

- The proof of Theorem 1 has the following corollaries.
- Corollary Let d be a c. e. degree.
 - If \mathcal{A} is a computable injection structure which has infinitely many orbits of type ω , then there is a computable injection structure $\mathcal{B} = (B, g)$ isomorphic to \mathcal{A} in which Rng(g) is a c. e. set of degree **d**.
 - 2 If \mathcal{A} is a computable injection structure which has infinitely many infinite orbits of type \mathbb{Z} , then there is a computable injection structure $\mathcal{B} = (B, g)$ isomorphic to \mathcal{A} in which $\mathcal{O}_g(1)$ is of type \mathbb{Z} and is a c. e. set of degree **d**.

< ロ > < 回 > < 回 > < 回 > < 回 >

The Complexity of Fin(A)

- Fin(A) is always a c.e. set but emphcannot be an arbitrary c.e. set
- If A has an infinite orbit, then this orbit will be an infinite c.e. set in the complement of *Fin*(A).
- Thus Fin(A) cannot be a simple c.e. set.
- There is a c.e. set which is not simple but is an orbit.

イロト イヨト イヨト イ

The Degree of $Fin(\mathcal{A})$

• Theorem Let c be a c. e. degree.

Let $\mathcal{A} = (A, f)$ be a computable injection structure such that $Fin(\mathcal{A})$ is infinite, \mathcal{A} has infinitely many orbits of size k for every $k \in \omega$, and \mathcal{A} has infinitely many infinite orbits. Then there is a computable injection structure $\mathcal{B} = (B, g)$ such that \mathcal{B} is isomorphic to \mathcal{A} and $Fin(\mathcal{B})$ is of degree **c**.

ヘロト ヘアト ヘヨト ヘ

Some Spectrum Results

- **Theorem** For any infiinite co-infinite c. e. set *C* and any c. e. character,
 - (i) There is a computable injection structure (\mathbb{N}, g) with Rng(g) = C consisting of infinitely many orbits of type ω .
 - (ii) If *C* is not simple, then there is a computable injection structure (\mathbb{N}, h) with character *K*, with $Rng(h) \equiv_T C$, and with an arbitrary number of orbits of type \mathbb{Z} .
- **Theorem** For any c. e. set *C* and any computable injection structure A with infinitely many infinite orbits, there is a computable injection structure B isomorphic to A such that *C* is 1 1 reducible to an orbit of *A*.

イロト イポト イヨト イヨト

SQA

Character versus Theory

- *Th*(*A*) is the first-order theory of *A*
- *FTh*(A) is the elementary diagram of A
 A is *decidable* if *FTh*(A) is computable.
- Proposition χ(A) is many-one reducible to Th(A).
 If Th(A) is decidable, then χ(A) is computable.

ヘロト ヘヨト ヘヨト

Sac

Computing $FTh(\mathcal{A})$

- For an injection structure $\mathcal{A} = (\mathcal{A}, f)$, let $\mathcal{R}^{\mathcal{A}}(n, a) \iff (\exists x) f^{n}(x) = a$
- **Theorem** *Fth*(*A* is computable from *R*^{*A*} together with *A*. Sketch: Use quantifier elimination as in the theory of successor.

First add the relations γ_n where $\gamma_n(a) \iff R^A(a, n)$.

Theorem For any B, there exists A isomorphic to B, such that A and R^A are computable from χ(A).

< ロ > < 回 > < 回 > < 回 > < 回 >

Decidability of $Th(\mathcal{A})$

- Theorem For any injection structure A, Th(A) and χ(A) have the same Turing degree.
 Thus Th(A) is decidable if and only if χ(A) is computable.
- **Theorem** If $\chi(\mathcal{B})$ is computable, then there is a decidable \mathcal{A} isomorphic to \mathcal{B} . (Hence $Th(\mathcal{B})$ is decidable.)
- **Corollary** If *A* has bounded character, then *Th*(*A*) is decidable.

<ロ> <同> <同> <同> < 同> < 同>

Dar

Decidability of Computably Categorical Structures

• **Proposition** There is a computably categorical injection structure A such that Th(A) is not decidable.

Sketch: Let *W* be a non-computable c.e. set and let A have character $\{(n, 1) : n \in W\}$ and no infinite orbits.

This contrasts with the result for equivalence structures.

Proposition For any computable character K, there is a decidable injection structure A with character K and with any number of orbits of types ω and Z. Furthermore, {a : O_f(a) is finite} is computable.

Sketch: There is a computable structure \mathcal{B} with character K and thus there is a decidable structure \mathcal{A} isomorphic to \mathcal{B} .

• Corollary If *B* has computable character and no infinite orbits, then *B* is decidable.

Sac

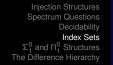
Being Injective

Theorem Inj = {e : A_e is an injection structure} and the set of indices of finitary injection structures are Π₂⁰ complete sets.

Doug Cenzer Injection Structures

イロト イポト イヨト イヨト

= 990



The Infinite Orbits

 Inj_m = {e : A_e structure with exactly *m* orbits of type ω}. Inj_{≤m} = {e : A_e structure with ≤ *m* orbits of type ω} and similarly define Inj_{<m}, Inj_{>m} and Inj_{≥m}.

 $Inj^n = \{e : A_e \text{ structure with exactly } n \text{ orbits of type } \mathbb{Z}\}$ and similarly define $Inj^{\leq n}$, $Inj^{< n}$, $Inj^{>n}$ and $Inj^{\geq n}$. Combine these to define for example Inj_m^n to be $\{e : A_e \text{ has } m \text{ orbits of type } \omega \text{ and } n \text{ orbits of type } \mathbb{Z}\}.$

• **Theorem** $Inj_{\leq m}$ is Π_2^0 complete, $Inj_{>m}$ is Σ_2^0 complete, and Inj_{m+1} is D_2^0 complete.

ヘロト 人間 とくほ とくほ とう

Proof Sketch

Sketch: First define *f* so A_{f(e)} has all finite orbits if e ∈ Inf and otherwise has one infinite orbit of type ω together with a finite number of finite orbits.
φ^s with domain {0,1,..., s - 1} having some finite orbits of sizes k₀, k₁,..., k_s, where s is the cardinality of W_{e,s}.
φ^s(x) = x + 1 except for φ^s(k₀ - 1) = 0 and, for i < s, φ^s(k₀ + k₁ + ··· + k_i - 1) = k₀ + k₁ + ··· + k_{i-1}. If a new element comes into W_{e,s+1}, let φ^{s+1}(s) = k₀ + k₁ + ··· + k_{s-1}, thus closing off the last orbit. Otherwise φ^{s+1}(s) = s + 1.

ヘロト 人間 ト 人 ヨト 人 ヨトー

= 990

Sketch Continued

- If W_e is finite and no new elements come in after stage s, then we have φ_{f(e)}(x) = x + 1 for all x > s, and thus exactly one infinite orbit, of type ω.
 If W_e is infinite, then all orbits are finite.
- Reduce the D_2^0 complete set

 $D = \{ \langle a, b \rangle : a \in Fin \& b \in Inf \}.$

Let *f* and *g* be as above so that $e \in Fin$ if and only if $\mathcal{A}_{f(e)}$ has exactly one infinite orbit of type ω and all other orbits finite, and $e \in Inf$ if and only if all orbits of \mathcal{A}_e are finite.

Let A_{g(e)} be two copies of A_{f(e)}. Now let A_{h(a,b)} consist of a copy of A_{f(a)} together with a copy of A_{g(b)}. It can be checked that A_{h(a,b)} has exactly one infinite orbit of type ω if and only if ⟨a, b⟩ ∈ D.

Orbits of Type $\ensuremath{\mathbb{Z}}$

- **Theorem** $Inj^{\leq n}$ is Π_3^0 complete, $Inj^{>n}$ is Σ_3^0 complete, and Inj^{n+1} is D_3^0 complete.
- Sketch: Reduce the Σ_3^0 complete set
 - $Cof = \{e : W_e \text{ is cofinite}\} \text{ to } Inj^1.$

Start to build ω chains going forward from each number 2m + 1 by mapping *x* to 2x.

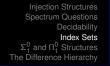
When some *m* comes into $W_{e,s+1}$, find the longest

sequence $k, k + 1, \ldots, m, m + 1, \ldots, n$ including m.

Put the chains from 2(m + 1) + 1 to 2n + 1 at the end of the 2m + 1 chain and fix them there.

If k < m, put the newly expanded 2m + 1 chain at the end of the 2k + 1 chain.

Add an element to the beginning of the 2k + 1 chain.



Sketch Continued

• If W_e is cofinite, there will be a least m such that every $n \ge m$ belongs to W_e . In that case, the orbit of 2m + 1 will be a \mathbb{Z} chain, all of the 2n + 1 chains for n > m will be included in this orbit, and there will be finitely many orbits of type ω for the numbers k < m.

イロト イヨト イヨト



Computable Categoricity

Theorem The property of computable categoricity is Σ⁰₃ complete (that is,

 $CCI = \{e : A_e \text{ has finitely many infinite orbits}\}$

is a Σ_3^0 complete set).

Sketch: Reduce the Σ_3^0 complete set

 $Cof = \{e : W_e \text{ is cofinite}\}.$

Define *f* such that for any *e*, $A_{f(e)}$ will have finitely many infinite orbits if and only if W_e is cofinite.

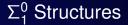
The orbits of $A_{f(e)}$ will be exactly the orbits O(2i + 1) for $i \in \omega$ and the even numbers will be used in order to fill out the orbits.

・ロト ・四ト ・ヨト ・ヨト

 Theorem The property of Δ⁰₂ categoricity is Σ⁰₄ complete. Sketch: Fix a Π⁰₄ set *C* and define a reduction *f* such that for any *e*, *A*_{f(e)} has only infinite orbits and has infinitely many orbits of type Z if and only if *e* ∈ *C*.

Doug Cenzer Injection Structures

ヘロト ヘヨト ヘヨト ヘ



• Injection structures (*A*, *f*) where *A* is c.e. and *f* is the restriction to *A* of a partial computable function.

Doug Cenzer Injection Structures

イロト イポト イヨト イヨト

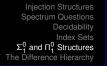
= 990

Complexity of the Orbits and Character

- Each infinite orbit is a Σ_1^0 set
- $\{(k, a) : a \in Rng(f^k)\}$ is a Σ_1^0 set
- $\{(a, k) : card(\mathcal{O}_f(a)) \ge k\}$ is a D_1^0 set, the intersection of a Π_1^0 set with A
- $\{a: \mathcal{O}_f(a) \text{ is infinite}\}\$ is a Π_1^0 set
- $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ is a Π_2^0 set
- {a : O_f(a) has type ω} is a Σ₂⁰ set
- $\chi(\mathcal{A})$ is a Σ_1^0 set
- It follows that any Σ⁰₁ injection structure is isomorphic to a computable structure

<ロト < 回 > < 注 > < 注 > .

SQA



Isomorphisms

- **Theorem** For any Σ_1^0 injection structure \mathcal{A} , there exists a computable injection structure \mathcal{B} and a computable isomorphism from \mathcal{B} onto \mathcal{A} .
- **Theorem** If \mathcal{A}_1 and \mathcal{A}_2 are isomorphic Σ_1^0 injection structures with finitely many infinite orbits, then there is an isomorphism $\psi : \mathcal{A}_1 \to \mathcal{A}_2$ such that both ψ and ψ^{-1} are partial computable.
- Theorem If A₁ and A₂ are isomorphic Σ₁⁰ injection structures with either finitely many orbits of type Z or finitely many orbits of type ω, then there is a Δ₂⁰ isomorphism ψ : A₁ → A₂.
- Theorem If A₁ and A₂ are isomorphic Σ⁰₁ injection structures, then there is a Δ⁰₃ isomorphism ψ₂: A₁ → A₂.

200

Injection Structures Spectrum Questions Decidability Index Sets Σ⁰ and Π⁰ Structures The Difference Hierarchy

$Inf(\mathcal{A})$

- Theorem For any d.c.e. set B, there is a Σ₁⁰ injection structure A such that B is 1 1 reducible to Inf(A).
- **Proof** Let B = C D, where C and D are c.e. sets and $D \subset C$. Let $A = \{2n + 1 : n \in C\} \cup \{2n : n \in \mathbb{N}\}.$
- For each *n*, we begin to define the orbit of 2n + 1 in A by setting f(2n + 1) = 2(2n + 1), f(2(2n + 1)) = 4(2n + 1) and so on, until we see that $n \in D$ at some stage s + 1. Then let $f(2^{s}(2n + 1)) = 2n + 1$ and for t > s, let $f(2^{t}(2n + 1)) = 2^{t+1}(2n + 1)$. It follows that for each $n, n \in B$ IFF $2n \in Inf(A, f)$.

イロト イポト イヨト イヨト

Complexity of Π_1^0 structures

- Each infinite orbit is a Σ⁰₁ set
- $\{(k, a) : a \in Rng(f^k)\}$ is a Σ_2^0 set
- {(a, k) : card(O_f(a)) ≥ k} is a Π⁰₁ set,
- {a: O_f(a) is finite} is a D₁⁰ set, the intersection of A with a c.e. set
- $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ is a Π_3^0 set
- $\{a: \mathcal{O}_f(a) \text{ has type } \omega\}$ is a Σ_3^0 set
- *χ*(*A*) is a Σ⁰₂ set

イロト イポト イヨト イヨト

- Proposition For any Σ₂⁰ character K, which is infinite and coinfinite, there is a computable injection structure A with χ(A) = K and with any specified countable number of orbits of types ω and Z.
- **Proposition** For any d.c.e. set *B*, there is a Π_1^0 injection structure \mathcal{A} such that *B* is 1 1 reducible to $Fin(\mathcal{A})$.

・ロト ・ 戸 ト ・ ヨ ト

 Theorem If A and B are isomorphic Π⁰₁ injection structures with only finitely many infinite orbits, then A and B are Δ⁰₂ isomorphic.

Doug Cenzer Injection Structures

ヘロト ヘヨト ヘヨト

DQC

Infinite Orbits: Case One

- Lemma For any Π⁰₁ injection structure A, the relation R(a, b), defined by R(a, b) if and only if a and b are in the same orbit, is a D⁰₂ set.
- **Theorem** If the Π_1^0 injection structure $\mathcal{A} = (A, f)$ has only finitely many orbits of type ω , then \mathcal{A} is Δ_2^0 isomorphic to a computable structure.
- **Corollary** If \mathcal{A} and \mathcal{B} are isomorphic Π_1^0 injection structures with only finitely many orbits of type ω , then \mathcal{A} and \mathcal{B} are Δ_2^0 isomorphic.

ヘロト ヘヨト ヘヨト ヘ

Infinite Orbits: Case Two

- **Proposition** For any infinite, co-infinite Σ_2^0 set *C*, there is a Π_1^0 injection structure $\mathcal{A} = (A, f)$ with all orbits of type ω such that $C \leq_T Ran(f)$.
- **Theorem** For any Σ_1^0 character K, there is a Π_1^0 injection structure \mathcal{B} with character K, with infinitely many orbits of type ω and with an arbitrary number of orbits of type Z, such that \mathcal{B} is not Δ_2^0 isomorphic to any Σ_1^0 injection structure.

ヘロト ヘヨト ヘヨト ヘ

Injection Structures in the Ershov Hierarchy

- $\mathcal{A} = (\mathcal{A}, f)$ where \mathcal{A} is an *n*-c.e. set and f is a computable function
- Each infinite orbit is a Σ_1^0 set
- $\{(k, a) : a \in Rng(f^k)\}$ is a Σ_2^0 set
- $\{(a,k): card(\mathcal{O}_f(a)) \ge k\}$ is an *n*-c.e. set,
- { $a : O_f(a)$ is infinite} is the intersection of A with a Π_1^0 set, so is *n*-c.e. if *n* is even and N + 1-c.e. if *n* is odd.
- $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ is a Π_3^0 set
- {a : O_f(a) has type ω} is a Σ₃⁰ set
- *χ*(*A*) is a Σ⁰₂ set

ヘロア 人間 アメヨア 人口 ア

SQA

Back to Π_1^0 structures

- Lemma For any n ∈ N and any infinite n-c.e. set B, there is a Π₁⁰ set A and a total computable 1 − 1 function φ mapping A onto B.
- **Proposition** For any *n*-c.e. injection structure \mathcal{A} , there exist a Π_1^0 structure \mathcal{B} and a computable injection $\phi : \mathbb{N} \to \mathbb{N}$ that maps \mathcal{B} onto \mathcal{A} .
- Corollary If A and B are isomorphic *n*-c.e. injection structures with only finitely many orbits of type ω, then A and B are Δ⁰₂ isomorphic.

ヘロト ヘヨト ヘヨト ヘ

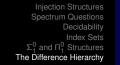
$\alpha\text{-c.e.}$ functions

- Let $g(x) = \lim_{s \to a} f(x, s)$, where *f* is a computable function.
 - (i) g is an *n-c.e.* function if for all $x \in \omega$, card({ $s: f(x, s) \neq f(x, s+1)$ }) < n.
 - (ii) g is an ω-c.e. function if there is a computable function g such that for all x ∈ ω,
 - $1 \leq card(\{s: f(x,s) \neq f(x,s+1)\}) \leq g(x).$
- Proposition For any nonempty Σ₂⁰ set A there is a 2-c.e. function whose range is A.
- A function *f* is *graph-α-c.e.* if the graph of *α* is an *α*-c.e. set.
- Proposition
 - (a) For every $n \in \omega$ there exists an (n+1)-c.e. function that is not graph-*n*-c.e.
 - (b) There is a graph-2-c.e. function that is not an ω-c.e. function.

2-c.e. Categoricity: Case One

- **Theorem** There exist computable injection structures, each consisting of infinitely many orbits of type ω , which is not 2-c.e. isomorphic.
- Sketch: For a strucure A = (ω, f), define the set E^A to be those elements of the form f²ⁿ(a) where a ∉ Ran(f). In the standard structure, E^A will be a computable set. We can build a computable copy in which E^A is *n*-c.e. or even ω-c.e. complete. Each orbit of A contains exactly one even number 2e and this orbit O(2e), will be used to defeat the eth ω-c.e. set C_e. That is, begin with 2e ∉ Ran(f) and whenever e goes into or out of C_e, add an element to the beginning of O(2e), so that 2e ∈ E^A IFF e ∉ C_e.

・回 ・ ・ ヨ ・ ・ ヨ ・



2-c.e. Categoricity: Case Two

- Theorem There exist computable injection structures, each consisting of infinitely many orbits of type Z, which is not ω-c.e. isomorphic.
- Sketch: Here we will diagonalize against the possible 2-c.e. isomorphisms h_e from the standard structure A to our structure B, by having a pair of elements a_e and b_e in different orbits in A but having h_e(a_e) in the same orbit with h_e(b_e) in B. We build B with infinitely many orbits of type Z by extending our finite orbits in both directions at each stage and by adding new orbits at each stage. When h_e(a_e) and h_e(b_e) are defined (or redefined) and we have them in different orbits, we simply combine those into one orbit.

```
Injection Structures
Spectrum Questions
Decidability
Index Sets
\Sigma_1^0 and \Pi_1^0 Structures
The Difference Hierarchy
```

2-c.e. Injections

- $\mathcal{A} = (\omega, f)$ where *f* is an *n*-c.e. function
- Each infinite orbit is a Δ⁰₂ set
- $\{(k, a) : a \in Rng(f^k)\}$ is a Σ_2^0 set
- {(a, k) : card(O_f(a)) ≥ k} is a Δ₂⁰ set,
- {*a* : O_f(*a*) is finite} is Σ⁰₂
- $\{a : \mathcal{O}_f(a) \text{ has type } Z\}$ is a Π_3^0 set
- {a : O_f(a) has type ω} is a Σ₃⁰ set
- $\chi(\mathcal{A})$ is a Σ_3^0 set
- So every 2-c.e. injection is isomorphic to a Π⁰₁ injection

イロト イポト イヨト イヨト

Existence

- **Theorem** Let *K* be a Σ_2^0 character.
 - There is a 2-c.e. injection *f* such that (ω, f) has character *K* and has infinite orbits.
 - 2 If K possesses an s_1 function, then there is a 2-c.e. injection f such that (ω, f) has character K and has no infinite orbits.
- Sketch: Let B = (ω, E) be a computable equivalence structure with character K (in the second case, B has infinitely many infinite orbits)
 Build f so that each equivalence class becomes an orbit
- **Question** Is the *s*₁ function necessary?

ヘロト ヘヨト ヘヨト ヘ

SQA

Future Work

- Structures (*A*, *f*) where *f* is finite-to-one.
- In particular 2 to 1 or \leq 2 to 1.
- These are much more complicated.

Doug Cenzer Injection Structures

ヘロト ヘヨト ヘヨト

Ð.

.⊒...>

DQC

THANK YOU

Doug Cenzer Injection Structures

<ロト < 回 > < 注 > < 注 > .