
 Open access Proceedings Article DOI:10.1145/2556195.2556263

Effective co-betweenness centrality computation — Source link

Mostafa Haghir Chehreghani

Institutions: University of Copenhagen Faculty of Science

Published on: 24 Feb 2014 - Web Search and Data Mining

Topics: Betweenness centrality, Katz centrality, Random walk closeness centrality, Centrality and Network theory

Related papers:

 Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches

 Fast algorithm for successive computation of group betweenness centrality.

 Betweenness Centrality of Sets of Vertices in Graphs: which Vertices to Associate

 A Faster Algorithm to Update Betweenness Centrality After Node Alteration

 Betweenness Centrality of Some Total Graphs

Share this paper:

View more about this paper here: https://typeset.io/papers/effective-co-betweenness-centrality-computation-
3q9dyb7ptl

https://typeset.io/
https://www.doi.org/10.1145/2556195.2556263
https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl
https://typeset.io/authors/mostafa-haghir-chehreghani-18bekgwuh7
https://typeset.io/institutions/university-of-copenhagen-faculty-of-science-1hdxdiqj
https://typeset.io/conferences/web-search-and-data-mining-luwrznbp
https://typeset.io/topics/betweenness-centrality-1kne7rb8
https://typeset.io/topics/katz-centrality-3l1d1it8
https://typeset.io/topics/random-walk-closeness-centrality-2l8bmwi3
https://typeset.io/topics/centrality-3f0cfcyh
https://typeset.io/topics/network-theory-178362c3
https://typeset.io/papers/almost-linear-time-algorithms-for-adaptive-betweenness-2h5q0plg51
https://typeset.io/papers/fast-algorithm-for-successive-computation-of-group-3q5t2qouhn
https://typeset.io/papers/betweenness-centrality-of-sets-of-vertices-in-graphs-which-4rl9m4hfxw
https://typeset.io/papers/a-faster-algorithm-to-update-betweenness-centrality-after-4irjuttg77
https://typeset.io/papers/betweenness-centrality-of-some-total-graphs-2er3noezyx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl
https://twitter.com/intent/tweet?text=Effective%20co-betweenness%20centrality%20computation&url=https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl
https://typeset.io/papers/effective-co-betweenness-centrality-computation-3q9dyb7ptl

Effective Co-betweenness Centrality Computation

Mostafa Haghir Chehreghani
Department of Computer Science, KU Leuven

Celestijnenlaan 200a - box 2402
3001 Leuven, Belgium

Mostafa.HaghirChehreghani@cs.kuleuven.be

ABSTRACT

Betweenness centrality of vertices is essential in the analysis of so-
cial and information networks, and co-betweenness centrality is
one of two natural ways to extend it to sets of vertices. Existing
algorithms for co-betweenness centrality computation suffer from
at least one of the following problems: i) their applicability is lim-
ited to special cases like sequences, sets of size two, and ii) they
are not efficient in terms of time complexity. In this paper, we
present efficient algorithms for co-betweenness centrality computa-
tion of any set or sequence of vertices in weighted and unweighted
networks. We also develop effective methods for co-betweenness
centrality computation of sets and sequences of edges. Results of
this paper, provide a clear and extensive view about the complexity
of co-betweenness centrality computation for vertices and edges in
weighted and unweighted networks. Finally, we perform extensive
experiments on real-world networks from different domains includ-
ing social and information, to show the empirical efficiency of the
proposed method.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms,

Path and circuit problems; E.1 [Data]: Data structures—Graphs

and networks

General Terms

Theory

Keywords

Social networks, network analysis, centrality, betweenness central-
ity, co-betweenness centrality, algorithm, complexity.

1. INTRODUCTION
Centrality is a structural property of vertices in a network which

determines the importance of a vertex (or a set of vertices) within
the network [14]. Betweenness centrality of a vertex, introduced
by Linton Freeman [13], is defined as the number of shortest paths

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM’14, February 24–28, 2014, New York, New York, USA.

Copyright 2014 ACM 978-1-4503-2351-2/14/02 ...$15.00.

http://dx.doi.org/10.1145/2556195.2556263.

(geodesic paths) from all vertices to all others that pass through
that vertex. He used it as a measure for quantifying the control of
a human on the communication between other humans in a social
network [13].

There are several applications which benefit from a definition
of centrality used for sets of vertices rather than individual vertices
[12]. Betweenness centrality of vertices is extended to betweenness
centrality of sets of vertices in two ways:

• group betweenness centrality of a set [12], which is defined
as the number of shortest paths that pass through at least one
of the vertices in the set, and

• co-betweenness centrality of a set [20], which is defined as
the number of shortest paths that pass through all vertices in
the set.

It has been shown that these two notions are intimately related
[20]. The focus of this paper is co-betweenness centrality. In
[20], the authors illustrated the utilization of co-betweenness cen-
trality of sets of vertices in different social and communication net-
works and showed its interesting features in different real world
networks. They also showed that co-betweenness centrality allows
one to identify certain vertices which act as important actors in the
relaying and destinating information in the network.

The following computation problems are defined for co-betweenness
centrality.

PROBLEM 1. Vertex co-betweenness centrality computation: given

an unweighted graph (network) G and a set K ⊆ V (G), compute

co-betweenness centrality of K.

Parameters of Problem 1 are n, m and |K|, where n and m are
the number of vertices and the number of edges of the network,
respectively.

PROBLEM 2. Edge co-betweenness centrality computation: given

an unweighted graph (network) G and a set W ⊆ E(G), compute

co-betweenness centrality of W .

Similar to Problem 1, parameters of Problem 2 are n, m and |W |.
The problems can be defined similarly, for sequences (where the
order in which vertices in K (or edges in W) must be met by short-
est paths is fixed), as well as for sets and sequences in weighted
(valued) graphs.

Recently, a number of complexity results have been reported for
co-betweenness centrality computation. For example,

• In [20], the authors presented an algorithm for vertex co-
betweenness centrality computation. However, their method
works only for sets of size 2 and its worst case time complex-
ity is a O(n3).

423

• The authors of [32], as a part of their algorithm for comput-
ing successive group betweenness centrality of sets of ver-
tices, showed that co-betweenness centrality of a sequence
consisting of two vertices is computable in O(mn) time.

• In [11], the authors introduced the Routing Betweenness Cen-
trality (RBC) index, which is a generalization of between-
ness centrality. In this work, they studied complexity of RBC
computation of sequences.

However, several problems like co-betweenness centrality com-
putation of vertices, co-betweenness centrality computation of edges
and co-betweenness centrality computation in weighted graphs, ei-
ther have not been studied yet, or complexity of proposed algo-
rithms is too high. In this paper 1:

• We present an O(nm−|K|m+n|K| log|K|−|K|2 log|K|)
time algorithm for co-betweenness centrality computation of
a set K of vertices in unweighted graphs. We show that it
is possible to compute co-betweenness centrality of K in
weighted graphs in O(nm−|K|m+n2 log n−|K|n log n)
time.

• We show that co-betweenness centrality of a sequence K of
vertices is computable in O(nm−|K|m) time in unweighted
graphs and in O(nm−|K|m+n2 log n−|K|n log n) time
in weighted graphs.

• We present an O(nm + n|W | log|W |) time algorithm for
co-betweenness centrality computation of a set W of edges
in unweighted graphs. We show that it is possible to com-
pute co-betweenness centrality of W in weighted graphs in
O(nm+ n2 log n) time.

• We show that co-betweenness centrality of a sequence W of
edges is computable in O(nm) time in unweighted graphs
and in O(nm+ n2 log n) time in weighted graphs.

• We perform extensive experiments on real-world networks
from different domains including social, information, and
collaboration, and show the empirical efficiency of the pro-
posed method.

We show that both vertex co-betweenness centrality computa-
tion and edge co-betweenness centrality computation can reduce to
betweenness centrality computation of a single vertex. As a result,
increasing the size of the set does not necessarily increase complex-
ity of co-betweenness centrality computation, and for sequences,
computation of co-betweenness centrality for larger sequences is
always easier than smaller ones.

A shortcoming of our proposed algorithms is that unlike the Bran-
des algorithm [7] which can calculate betweenness centrality of all
vertices simultaneously, they need the set of vertices/edges as an
input. However, we think this shortcoming is not important since
checking all sets of vertices is usually needed when someone wants
to find the minimum set of vertices with the highest betweenness
centrality. While finding such a prominent set is crucial for group
betweenness centrality [32], it is not of high importance for co-
betweenness centrality. The reason is that as the size of the set
increases, co-betweenness centrality decreases so that betweenness

1The definition of betweenness centrality and as a result co-
betweenness centrality considered here is slightly different from
the definition considered in [20] and [32]. While similar to [21] and
[31], we define co-betweenness centrality as the number of shortest
paths passing through a given set, in [20] and [32] it is defined as
the ratio of shortest paths passing through a given set.

centrality of single vertices is always higher than co-betweenness
centrality of their super-sets. In practice, rather than consider-
ing all sets of vertices, it might be more desirable to compute co-
betweenness centrality of only a few sets, like core vertices of com-
munities in social/information networks, or hubs in communication
networks.

The rest of this paper is organized as follows. In Section 2, pre-
liminaries and definitions related to co-betweenness centrality com-
putation are given. In Section 3, we present an efficient algorithm
for computing co-betweenness centrality of a set (or a sequence)
of vertices in unweighted and weighted graphs. In Section 4, we
investigate complexity of edge co-betweenness centrality computa-
tion for sets and sequences in weighted and unweighted networks.
We empirically study the proposed methods in Section 5. In Sec-
tion 6, we have a brief overview on related work. Finally, in Section
7, the paper is concluded.

2. PRELIMINARIES
In this section, we present definitions and notations widely used

in the paper. We assume that the reader is familiar with basic con-
cepts in graph theory. Throughout the paper, G refers to a graph
(network). For simplicity, we assume that G is a connected graph
without multi-edges. In Sections 3-3.1, G points to an unweighted
graph and in Section 3.2, it points to a weighted graph with posi-
tive weights. V (G) and E(G) refer to the set of vertices and the
set of edges of G, respectively. Throughout the paper, n points to
|V (G)| and m points to |E(G)|. For an edge e = (u, v) ∈ E(G),
u and v are two end-points of e. A graph G′ is a subgraph of G if
V (G′) ⊆ V (G) and E(G′) ⊆ E(G). G′ is an induced subgraph

of G, if V (G′) ⊆ V (G) and E(G′) contains all edges of E(G)
which have both end-points in V (G′).

A shortest path (also called a geodesic path) between two ver-
tices u, v ∈ V (G) is a path whose size is minimum, among all
paths between u and v. For two vertices u, v ∈ V (G), we use
dG(u, v), to denote the size (the number of edges) of a short-
est path connecting u and v. By definition, dG(u, u) = 0 and
dG(u, v) = dG(v, u). For s, t ∈ V (G), σst denotes the num-
ber of shortest paths between s and t. σst(v) denotes the num-
ber of shortest paths between s and t that also pass through v.
σst(K), K ⊆ V (G), denotes the number of shortest paths be-
tween s and t that also pass through all vertices in K. We have
σs(v) =

∑
t∈V (G)\{s,v} σst(v) and σs(K) =

∑
t∈V (G)\{s}\K σst(K).

Betweenness centrality of a vertex v is defined as:

B(v) =
∑

s,t∈V (G)\{v}

σst(v) (1)

Co-Betweenness centrality of a set K ⊂ V (G) is defined as:

CB(K) =
∑

s,t∈V (G)\K

σst(K) (2)

We note that the number of shortest paths passing through a set of
vertices can be exponential in terms of n.

A notion which is widely used for counting the number of short-
est paths in a graph is the directed acyclic graph (DAG) containing
all shortest paths starting from a vertex s (see e.g. [7]). In this
paper, we refer to it as the shortest-path-DAG, or SPD for short,
rooted at s. For every vertex s in a graph G, the SPD rooted at s
is unique, and it can be computed in O(m) time for unweighted
graphs and in O(m+n log n) time for weighted graphs [7]. In the
SPD D rooted at s, the depth of v ∈ V (D) , denoted depD(v), is
defined as dD(s, v).

424

In [7], the authors introduced the notion of the dependency score

of a vertex s ∈ V (G) on a vertex v ∈ V (G) \ {s}, which is
defined as:

δs•(v) =
∑

t∈V (G)\{v,s}

σst(v) (3)

and then:

B(v) =
∑

s∈V (G)\{v}

δs•(v) (4)

As discussed in [8], given the SPD rooted at s, δs•(v) can be com-
puted in O(m).

3. COMPUTING CO-BETWEENNESS CEN-

TRALITY OF A SET OF VERTICES
In this section, we study Problem 1. In [20], the authors intro-

duced the problem and extended an O(n3) time algorithm for the
special case of |K| = 2. We present a O(nm) time algorithm for
co-betweenness centrality computation of a set K of vertices. K
can be a set of any size. First, in Lemma 1, we present a prop-
erty for every SPD D containing at least one shortest path which
passes through all the vertices in K. Then, we present a pruned

subgraph of D with respect to K, called ρK(D), and show that
co-betweenness centrality computation of K can be reduced to be-
tweenness centrality computation of a single vertex in ρK(D).

LEMMA 1. Let s ∈ V (G), K ⊆ V (G) \ {s}, and D be the

SPD rooted at s. There exists a shortest path from s to some vertex

t ∈ V (G)\{s}\K passing through all vertices in K, if for any two

vertices u, v ∈ K, either u is an ancestor of v or v is an ancestor

of u in D.

PROOF. Let s→ t be a shortest path passing through all vertices
in K and without loss of generality, assume that in the SPD rooted
at s, s → t passes through u before v. Let w be the vertex which
is met by s→ t after u. Obviously, w can not be a parent of u. On
the other hand, in every SPD, two vertices with the same distance
from the root are not connected to each other. Therefore, w is a
child of u, and similarly, the next vertex will be a child of w, etc.
After finite steps, s → t will reach v. Therefore, v is a descendant
of u.

Lemma 1 expresses the necessary condition for a source vertex
s, to have at least one shortest path to other vertices in the graph
passing through all vertices in K. This condition applies a total
ordering on the members of K according to their distance from s
which can be expressed in terms of the α operator introduced in
Definition 1.

Definition 1. The operator α : K → {1 . . . |K|} is defined with
respect to a SPD D and maps an integer i ∈ {1 . . . |K|} to a vertex
v ∈ K, such that:

• ∀i, j ∈ {1, . . . , |K|} : i 6= j ⇔ αD,K(i) 6= αD,K(j), and

• ∀i, j ∈ {1, . . . , |K|} : i < j ⇔ αD,K(i) is an ancestor of
αD,K(j).

Definition 2. Let D be the SPD rooted at s ∈ V (G) and K ⊂
V (G). A vertex v ∈ V (G) is markable in D if v /∈ K and at least
one of the following conditions holds:

1. there exists a vertex u ∈ K such that depD(v) = depD(u),

2. if vertices satisfying condition (1) are removed from G, in
the resultant graph, v and s are not in the same component.

For example, in Figure 1.(b), vertices distinguished with a red
’+’ are markable vertices. Vertices ′3′, ′7′ and ′15′ are markable
because they satisfy condition (1) of Definition 2, and vertices ′6′,
′9′, ′10′ and ′11′ are markable because they satisfy condition (2)
of Definition 2.

Definition 3. Let D be the SPD rooted at s ∈ V (G) and K ⊂
V (G). The pruned DAG of D with respect to K, denoted by
ρK(D), is the subgraph of D induced by {v ∈ V (D)|v is not markable}.

Figure 1.(c) shows the pruned DAG of the SPD presented in
1.(b), with respect to K = {′2′,′ 8′,′ 14′}.

LEMMA 2. Given a SPD D rooted at s ∈ V (G) and K ⊆
V (G), ρK(D) is computable in O(m).

The following properties can be shown for ρK(D):

• if for a set K of vertices, the condition of Lemma 1 is satis-
fied, none of the members of K are markable, and therefore,
K ⊆ V (ρK(D)).

• if for a set K of vertices, the condition of Lemma 1 is satis-
fied, for every i : 1 ≤ i ≤ |K|, αD,K(i) = αρ(D),K(i). We
sometimes write αD,K(i) or αρ(D),K(i) simply as αK(i).

• For v ∈ V (D) ∩ V (ρ(D)), depD(v) = depρ(D)(v).

In the rest of this paper, we might talk about computing depen-
dency scores either in a SPD D, or in its pruned form ρ(D). To
distinguish these two situations, we use δs•(A,D) for dependency
score computation in D and δs•(A, ρ(D)) for dependency score
computation in ρ(D). s is a vertex in the network and A is either a
’vertex’ or ’a set of vertices’ or ’a sequence of vertices’.

LEMMA 3. Let s ∈ V (G), K ⊆ V (G) \ {s}, and D be the

SPD rooted at s.

1. if members of K are not in a single path of D, then: δs•(K,D) =
0

2. if all members of K are in a single path of D, then:

δs•(K,D) = δs•(αK(|K|), ρ(D)) (5)

i.e. δs•(K,D) is equal to the number of shortest paths in

ρ(D) from s to other vertices which pass through αK(|K|).

PROOF. Case (1) is directly resulted from Lemma 1. To prove
case (2):

• First, we prove that for every shortest path in D starting
form s and passing through all vertices in K, there exists a
shortest path in ρ(D) which starts from s and passes through
αK(|K|). Let S = s1s2 . . . sl be a shortest path from s1(=
s) to sl in D which passes through all vertices in K. As a
contradiction, for any 1 < i ≤ l, suppose si /∈ V (ρK(D)).
Let sj ∈ S be the ancestor of si with the largest depth which
belongs to V (ρK(D)). sj always exists because s1 is an
ancestor of si and s1 ∈ V (ρK(D)). sj is not equal to sl be-
cause otherwise, S is a path in ρK(D). Now, consider sj+1.
sj+1 is not markable because:

– there does not exist a v ∈ K such that depD(v) =
depD(sj+1) because S passes through all members of
K (and S can not pass through two vertices with the
same depth). Therefore the first condition of Definition
2 does not hold for sj+1.

425

Figure 1: Part (a) shows a network G. K is {′2′,′ 8′,′ 14′}, which are depicted with bold circles. Part (b) shows the SPD rooted at

s =′ 1′. In this graph, vertices with red ’+’ are markable vertices with respect to K. We have: α(1) =′ 2′, α(2) =′ 8′, α(3) =′ 14′.
Part (c) shows ρK(D). As Lemma 3 says, the number of shortest paths in G starting from s and passing through all ′2′, ′8′ and ′14′,
is equal to the number of shortest path in ρK(D) starting from s and passing through ′14′.

– sj is not markable (since it belongs to V (ρK(D))) and
sj+1 is connected to it, therefore, the second condition
of Definition 2 does not hold for sj+1.

Therefore, a contradiction occurs because sj+1 is an ances-
tor of si which belongs to V (ρK(D)) and depD(sj+1) >
depD(sj). So, si belongs to V (ρK(D)).

• Second, we prove that for every shortest path S in ρ(D)
which starts from s and passes through αK(|K|), there exists
a shortest path in D which starts form s and passes through
all vertices in K. Since V (ρK(D)) ⊆ V (D), vertices of S
exist in D and we only need to show that S passes through all
vertices in K. As a contradiction suppose that in D, S does
not pass through at least one vertex v ∈ K. Then, there will
exist a vertex u such that u /∈ K, depD(u) = depD(v) and
S passes through u. However, according to the first condi-
tion of Definition 2, u is markable and it can not be in ρ(D)
and therefore, S can not pass through it. �

Lemma 3 says that if we check the property expressed in Lemma
1 for K, and then, prune the network in the way defined in Defini-
tion 3, instead of co-betweenness centrality computation of K, we
can compute betweenness centrality of a single vertex. This means
that co-betweenness centrality computation of larger sets is not nec-
essarily more difficult that co-betweenness centrality computation
of smaller ones.

For example, in Figure 1, K = {′2′,′ 8′,′ 14′}, vertices ′2′ ,′8′

and ′14′ are in a single path of the SPD rooted at s =′ 1′ and
αK(1) =′ 2′, αK(2) =′ 8′ and αK(3) =′ 14′. αK(|K|) =′ 14′

and We have: δ′1′•,D({′2′,′ 8′,′ 14′}) = δ′1′•,ρ(D)(
′14′).

Algorithm 1 shows the high level pseudo code for co-betweenness
centrality computation of a set K. For a vertex s ∈ V (G) \K:

• First, the SPD D rooted at s is formed. Using e.g. the method
of [7], this step can be done in O(m) time.

• Second, it is checked whether members of K are in a single
path of D. To do so, the following steps are done:

1. For every v ∈ K, depD(v) is computed. This can be
done in O(m) time.

2. Vertices in K are sorted increasingly, according to their
depth in D. Using sorting algorithms like merge sort

[19], this step can be done in O(|K| log|K|) time.

3. If two or more vertices have the same depth, they are
not in a single path. Time complexity of this check is
O(|K|).

4. Let v1 . . . v|K| be the members of K which are sorted
according to their depth in D. For every j, 1 ≤ j ≤
|K|−1, the following procedure is performed: the sub-
graph of D induced by

{vj} ∪ {u ∈ V (D)|u is a descendant of vj}

is traversed in BFS, until either (i) vj+1 is met or, (ii)
the traversal is finished. In case (i), vj+1 is a descen-
dant of vj and the procedure is performed for j + 1. In
case (ii), vj+1 is not a descendant of vj and therefore,
all members of K are not in a single path of D. Mem-
bers of K are in a single path of D, if and only if for
all j, case (i) occurs. This procedure is done in O(m)
time.

Therefore, it can be decided in O(m + |K| log|K|) time
whether all members of K are in a single path of D.

• Third, ρ(D) is computed. As Lemma 2 says, it can be com-
puted in O(m).

• Forth, the dependency score of s on αD,K(|K|) in ρ(D) is
computed. Using e.g. the method of [7], this step can be
done in O(m) time.

The above mentioned procedure is performed for every s ∈ V (G)\
K. Therefore, we have the following theorem.

THEOREM 1. Algorithm 1 computes co-betweenness central-

ity of a set K ⊂ V (G) in O(nm − |K|m + n|K| log|K| −
|K|2 log|K|) time.

426

Algorithm 1 High level pseudo code of the algorithm of computing
vertex co-betweenness centrality.

1: VERTEXCOBETWEENNESS

2: Require. A network (graph) G, a set K ⊆ V (G).
3: Ensure. The co-betweenness centrality of K.
4: CB ← 0;
5: for all s ∈ V (G) \K do

6: Generate the SPD D rooted at s;
7: if all vertices in K are in a single path of D then

8: Compute ρ(D)
9: cb← δs,•(αD,K(|K|), ρ(D));

10: CB ← CB + cb;
11: end if

12: end for

13: return CB;

3.1 Computing co-betweenness centrality of se-
quences

In this section, we investigate how the algorithm proposed for
computation of co-betweenness centrality of sets can be revised to
compute co-betweenness centrality of sequences.

Let K = v1, . . . , vk be the sequence of vertices for which we
want to compute co-betweenness centrality. Let s ∈ V (G) and D
be the SPD rooted at s. There exists a shortest path from s to some
other vertex t ∈ V (G) \ {s} \K passing through all vertices in K
in order (i.e. first v1, second v2 etc), if in addition to the condition
presented in Lemma 1 (i.e. all vis are in a single path of D), the
following holds:

∀i ∈ {1, . . . , k} ⇒ vi = αD,K(i) (6)

which means the order of vertices in K corresponds to the order
applied by the condition presented in Lemma 1. This condition
makes computation of co-betweenness centrality easier; it is possi-
ble to check both conditions in O(m) time as follows:

Let D be the SPD rooted at s ∈ V (G) \ K. For every vi,
i ∈ {1, . . . , |K| − 1}, the subgraph of D induced by {vi} ∪ {u ∈
V (D) : u is a descendant of vi} is traversed in BFS, until either
(i) vi+1 is met, or (i) the traversal is finished. In case (i), vi+1 is
a descendant of vi. In case (ii), vi+1 is not a descendant of vi,
and therefore, the conditions do not hold. The conditions presented
in Lemma 1 and Equation 6 hold if and only if for all vis, case
(i) occurs. The procedure can be done in O(m) time, therefore
it is possible to decide in O(m) time whether the conditions are
satisfied. In fact, for sequences we do not need to compute the
depth of vertices in D and sort members of K according to their
depth.

Similar to sets, in order to compute co-betweenness centrality of
a sequence K, for every s ∈ V (G) \ K, the following steps are
done:

1. Form the SPD D rooted at s,

2. Check whether members of K satisfy the conditions pre-
sented in Lemma 1 and Equation 6,

3. Compute ρK(D) (if the conditions hold),

4. Calculate δs•(vk, ρK(D)) (if the conditions hold).

Co-betweenness centrality of K is the sum of the calculated de-
pendency scores. All steps 1-4 can be done in O(m) time, and they
are performed for n − |K| times, therefore, co-betweenness cen-
trality of a sequence of vertices is computable in O(nm − |K|m)
time:

THEOREM 2. Co-betweenness centrality of a sequence K of

vertices in an unweighted graph can be computed in O(nm −
|K|m) time.

3.2 Computation of co-betweenness centrality
in weighted graphs

Algorithms proposed for unweighted graphs can be used to com-
pute co-betweenness centrality in weighted graphs. However, com-
pared to unweighted graphs, time complexity of steps like forming
SPDs, is higher for weighted graphs. As Corollary 4 of [7] says,
for a weighted graph G, given a source s ∈ V (G), the number
of all shortest paths to other vertices can be determined in time
O(m+ n log n).

For vertex co-betweenness centrality computation, this time com-
plexity overcomes time complexity of checking whether all mem-
bers of the set (or the sequence) are in a single path. This means
that for weighted graphs, it is possible to compute co-betweenness
centrality of a set (or sequence) K of vertices in O((n − |K|) ×
(m+n log n)) = O(nm−|K|m+n2 log n−|K|n log n) time.

THEOREM 3. For weighted graphs, co-betweenness centrality

of a set (or a sequence) K of vertices is computable in O(nm −
|K|m+ n2 log n− |K|n log n) time.

4. CO-BETWEENNESS CENTRALITY COM-

PUTATION OF SETS OF EDGES
Betweenness of edges, defined in terms of the number of shortest

paths passing through an edge, has many interesting applications in
network analysis. For example, Girvan and Newman [16] used it to
detect communities in complex networks. Very recently, Cuzzocrea
et al. [10] proposed a new topology-control algorithm in wire-
less sensor networks, called edge betweenness centrality, which is
based on edge betweenness centrality.

Co-betweenness centrality of a set or a sequence of edges (edge

co-betweenness centrality), is a generalization of this notion to a set
or a sequence of edges. It has several applications in traffic network
analysis, social networks etc. For example, an important problem
in traffic data analysis is finding hot routes in a road network. A hot

route is a sequence of edges which share (almost) the same amount
of traffic. This problem has applications in city planning, real estate
developing, etc and allows city-holders to better direct traffic or an-
alyze congestion resources. Efficient algorithms for addressing this
problem cluster sets of edges based on the density of common traf-
fic they share [25]. With the assumption that movements are done
through shortest paths, the basic element of this problem is edge

co-betweenness centrality computation. A weight can be assigned
to every edge (road) to reflect the number of trajectories passing
through that edge. In the rest of this section, we first briefly for-
mulate edge co-betweenness centrality, and then, we discuss about
effective edge co-betweenness centrality computation.

4.1 Edge co-betweenness centrality
For e ∈ E(G), σst(e) denotes the number of shortest paths

between s and t that also pass through e. We note that in this
definition, s and t are allowed to be an end-point of e. σst(W),
W ⊆ E(G), denotes the number of shortest paths between s and t
that also pass (in any order) through all members of W . We have

σs(e) =
∑

t∈V (G)\{s}

σst(e)

and

σs(W) =
∑

t∈V (G)\{s}

σst(W)

427

Betweenness centrality of an edge e is defined as

B(e) =
∑

s,t∈V (G)

σst(e)

Co-Betweenness centrality of a set W ⊆ E(G) is defined as:

CB(W) =
∑

s,t∈V (G)

σst(W)

We note that the number of shortest paths passing through a set of
edges can be exponential in terms of n.

4.2 Computation of edge co-betweenness cen-
trality

Lemma 4 expresses the necessary condition for a source vertex
s, to have at least one shortest path to other vertices in the network
which pass through all edges in W :

LEMMA 4. Let s ∈ V (G), W ⊆ E(G) and D be the SPD

rooted at s. There exists at least one shortest path from s to some

other vertex in the network which pass through all edges in W , if

vertices in L are in a single path of D, where L is

{v ∈ V (G) \ {s}|v is an end-point of at least one e ∈W} (7)

PROOF. The proof is omitted because it is similar to the proof
of Lemma 1.

As a result of Lemma 4, we can define an ordering operator α, in
a way similar to Definition 1, which applies a total ordering on the
members of L, and therefore, on the members of W . Dependency
score of s ∈ V (G) on W ⊆ E(G), i.e. the number of shortest
paths from s to other vertices in the network which pass through all
edges in W , is defined as δs•(W) =

∑
t∈V (G)\{s} σst(W), and

then CB(W) =
∑

s∈V (G) δs•(W).
Lemma 5 shows how ’edge co-betweenness centrality’ of W is

related to ’betweenness centrality’ of a single vertex in L.

LEMMA 5. Let s ∈ V (G), W ⊆ E(G) and D be the SPD

rooted at s.

1. if W ⊆ E(D) and members of L are in a single path of D,

then:

δs•(W,D) = δs•(αL(|L| − 1), ρL(D)) (8)

where L is defined in Equation 7.

2. otherwise: δs•(W,D) = 0

We note that in ρL(D), αL(|L| − 1, ρL(D)) has always exactly
one child which is αL(|L|, ρL(D)) and αL(|L|, ρL(D)) has al-
ways exactly one parent which is αL(|L| − 1, ρL(D)).

As an example, consider Figure 2. All members of W which is
{(′1′,′ 2′), (′4′,′ 8′), (′12′,′ 14′)}, are in a single path of the SPD
D rooted at s. Furthermore, W ⊆ E(D). Therefore, δs•(W,D) =
δs•(

′12′, ρ(D))
Algorithm 2 shows the high level pseudo code of co-betweenness

centrality computation for a set of edges. It differs from Algorithm
1 in two aspects. First, we need to check whether W ⊆ E(D)
(Line 7 of Algorithm 2). This step can be done in O(|W |) time
since we can check in O(1) time whether there exists an edge be-
tween two vertices of a graph G. Second, we need to perform the
different steps (generating SPDs, checking whether W ⊆ E(D),
checking whether all members of K are in a single path of D, and

computing dependency scores) for n times (the loop in Lines 5-14).
We note that the second case increases time complexity of edge co-
betweenness centrality, compared to vertex co-betweenness cen-
trality computation.

THEOREM 4. Algorithm 2 computes co-betweenness centrality

of a set W ⊂ E(G) in O(nm+ n|W | log|W |) time.

Algorithm 2 High level pseudo code of the algorithm of computing
co-betweenness centrality of a set of edges.

1: EDGECOBETWEENNESS

2: Require. A network (graph) G, a set W ⊆ E(G).
3: Ensure. The co-betweenness centrality of W .
4: CB ← 0;
5: for all s ∈ V (G) do

6: Generate the SPD D rooted at s;
7: if W ⊆ E(D) then

8: {let L be {v ∈ V (G) \
{s}|v is an end-point of at least one e ∈W}}

9: if all vertices in L are in a single path of D then

10: cb← δs•(αD,L(|L| − 1), ρL(D));
11: CB ← CB + cb;
12: end if

13: end if

14: end for

15: return CB;

Co-betweenness centrality of a sequence W of edges can be
computed, as the following. For every vetex s in the graph:

1. form the SPD D rooted at s,

2. check whether W ⊂ E(D),

3. check whether members of L are in a single path of D,

4. the condition expressed in item (3), applies a total ordering
on the edges in W . Check whether this total ordering is con-
sistent with the order of edges in the sequence.

5. calculate δs•(αD,L(|L| − 1), ρL(D)), if the conditions hold
(L is defined in Equation 7).

Similar to our discussion for vertex co-betweenness centrality
computation, we can show that every step 1-5 can be done in O(m)
time. Therefore, we have the following theorem:

THEOREM 5. Co-betweenness centrality of a sequence W of

edges in an unweighted graph can be computed in O(nm) time 2.

Finally, for co-betweenness centrality computation of a set (or a
sequence) of edges in weighted graphs, we present the following
theorem, where the proof is omitted because it is similar to the
case of vertex co-betweenness centrality computation in weighted
graphs.

THEOREM 6. For weighted graphs, co-betweenness centrality

of a set (or a sequence) W of edges is computable in O(nm +
n2 log n) time.

2A sequence of edges is also the sequence of vertices composing
the edges. What increases time complexity of co-betweenness cen-
trality computation for edges is the number of source vertices used
to form SPDs. According to the definitions, a shortest path starting
with (or ending to) a member of a sequence of vertices does not
contribute to the co-betweenness centrality of the sequence. How-
ever, a shortest path starting with (or ending to) an end-point of a
member of a sequence of edges contributes to co-betweenness cen-
trality of the sequence.

428

Figure 2: Part (a) shows the SPD rooted at s =′ 1′. W is {(′1′,′ 2′), (′4′,′ 8′), (′12′,′ 14′)} which are distinguished with bold lines. In

part (b), members of L = {′2′,′ 4′,′ 8′,′ 12′,′ 14′} are distinguished with bold circles and vertices with red ’+’ are markable vertices

with respect to L. We have: α(1) =′ 2′, α(2) =′ 4′, α(3) =′ 8′, α(4) =′ 12′, α(5) =′ 14′. Part (c) shows ρL(D).

Table 1: Summary of real-world networks.

Dataset # vertices # edges Reference

Advogato 6,551 51,332 [27]
ego-facebook 2,888 2,981 [28]
caida 26,475 53,381 [22]
CA-HepTh 27,770 352,807 [23]
Eva 8,343 6,726 [30]
Odlis 2,909 18,419 [34]
Dolphins 62 159 [26]
dblp 12,591 49,793 [24]

5. EXPERIMENTAL RESULTS
We performed extensive experiments on real-world networks from

different domains to assess the quantitative and qualitative behav-
ior of the proposed algorithm. The experiments were done on one
core of a single AMD Processor 270 clocked at 2.0 GHz with 8
GB main memory and 2× 1 MB L2 cache, running Ubuntu Linux
12.0. The program was compiled by the GNU C++ compiler 4.0.2
using optimization level 3. Table 1 summarizes specifications of
our real-world networks.

Due to lack of space, we only report the results obtained for co-
betweenness centrality computation of a set of vertices. The results
obtained for other problems, e. g. a set of edges, are very similar
to the results reported here for a set of vertices. In our experiments,
for every dataset, we select a random set P of vertices such that the
subgraph induced by them is a path. Then, we start with a randomly
chosen subset K of P (of size 2) and compute their co-betweenness
centrality. Then, we add a randomly chosen vertex v ∈ P \ K
to K and compute co-betweenness centrality of the vertices in K.
Adding new vertices to K is continued until co-betweenness cen-
trality of all vertices in P is computed. We note that if the subgraph
induced by K is a cyclic graph, its co-betweenness centrality will
be 0.

Two well-known existing methods in the literature are the algo-
rithm of Kolaczyk et. al. [20] and the algorithm of Dolev et. al.
[11]. As mentioned earlier, the first one can only computes co-
betweenness centrality of sets of size 2. On the other hand, the
algorithm of Dolev et. al. can only compute co-betweenness cen-
trality of sequences. Therefore, both algorithms are improper for

our comparisons since they consider limited cases. Thus, we only
report the results of our algorithm. Table 2 reports the empirical
results.

The first dataset studied here is the Advogato network3. It is the
trust network of the Advogato online community. Vertices are users
of Advogato and edges represent trust relationships [27]. Clearly,
by increasing the size of K, co-betweenness centrality decreases,
i.e. for a subset K′ of K, co-betweenness centrality of K′ is not
less than co-betweenness centrality of K. This is reflected in our
experiments. On the other hand, over Advogato, as the size of K
increases, the time required to compute co-betweenness centrality
decreases. It shows the efficiency of the SPDs pruning techniques.

The next dataset is the ego-facebook network4. This network
contains Facebook user-user friendships. A vertex represents a user
and an edge indicates a friendship relationship [28]. As depicted
in Table 2, over this dataset, co-betweenness centrality always de-
creases as the size of K increases. On the other hand, the running
time usually decreases, as the size of K increases. The only ex-
ception is that the time required to compute co-betweenness cen-
trality of {428, 10} is less than the time required to compute co-
betweenness centralities of {2897, 428, 10} and {3428, 2897, 428, 10}.
In these situations, while compared to smaller sets, forming pruned
SPDs with respect to larger sets is much more expensive, shortest
path counting over pruned SPDs of larger sets is not much more ef-
ficient. In other words, the time required to prune SPDs dominates
the speed-up resulted by counting shortest paths over pruned SPDs.

The next dataset comes from autonomous systems of the Inter-
net5. The caida network is the undirected network of autonomous
systems of the Internet connected with each other from the CAIDA
project, collected in 2007. Vertices are autonomous systems (AS)
and edges are communications [22]. Over this dataset, the run-
ning time does not stay consistent as the size of K changes. For
example, the running time increases when vertex 14835 is added
to {3891, 5379, 81, 1}. The next dataset is CA-HepTh6. This col-
laboration network covers scientific collaborations between authors
papers submitted to High Energy Physics - Theory category. If an

3http://konect.uni-koblenz.de/networks/
advogato
4http://snap.stanford.edu/data/
egonets-Facebook.html
5http://snap.stanford.edu/data/as-caida.html
6http://snap.stanford.edu/data/ca-HepTh.html

429

Table 2: Empirical results of our proposed algorithm on different datasets. K contains the vertex identifiers of the chosen vertices.

Dataset Vertices in the set K Running time (sec) Co-betweenness centrality

Advogato {428, 1} 822.643 662982499
{2209, 428, 1} 546.88 152106265
{5235, 2209, 428, 1} 533.351 76053118
{5234, 5235, 2209, 428, 1} 469.635 38026559

ego-facebook {428, 10} 238.184 1683935329
{2897, 428, 10} 500.259 23371727
{3428, 2897, 428, 10} 383.021 4475940
{3999, 3428, 2897, 428, 10} 349.836 106570
{4000, 3999, 3428, 2897, 428, 10} 361.781 85256
{4001, 4000, 3999, 3428, 2897, 428, 10} 307.447 63942
{4002, 4001, 4000, 3999, 3428, 2897, 428, 10} 303.489 42628
{4003, 4002, 4001, 4000, 3999, 3428, 2897, 428, 10} 302.32 21314

caida {5379, 81, 1} 6079.36 979172539
{3891, 5379, 81, 1} 5897.89 4198841
{14835, 3891, 5379, 81, 1} 6015.15 1050967
{14834, 14835, 3891, 5379, 81, 1} 5998.22 263472
{20972, 14834, 14835, 3891, 5379, 81, 1} 5237.81 16866

CA-HepTh {5622, 7907, 5784, 2930} 1836.33 3793691022
{3125, 5622, 79075784, 2930} 1284.3 3762578814
{9457, 3125, 5622, 7907, 5784, 2930} 1219.95 3306837476
{7289, 9457, 3125, 5622, 7907, 5784, 2930} 1071.67 2227068862
{840, 7289, 9457, 3125, 5622, 7907, 5784, 2930} 1046.52 1115518431

Eva {165, 0} 280.202 162635430
{159, 165, 0} 332.485 118993976
{2, 159, 165, 0} 220.67 8610082
{287, 2, 159, 165, 0} 201.197 158516
{4356, 287, 2, 159, 165, 0} 299.393 29440
{4853, 4356, 287, 2, 159, 165, 0} 314.575 7728
{4584, 4853, 4356, 287, 2, 159, 165, 0} 367.678 7544
{4859, 4584, 4853, 4356, 287, 2, 159, 165, 0} 380.485 5152
{4660, 4859, 4584, 4853, 4356, 287, 2, 159, 165, 0} 401.938 4600
{4554, 4660, 4859, 4584, 4853, 4356, 287, 2, 159, 165, 0} 302.847 920
{6239, 4554, 4660, 4859, 4584, 4853, 4356, 287, 2, 159, 165, 0} 407.922 368

Odlis {2530, 117} 116.878 233058
{2531, 2530, 117} 197.293 232872
{1541, 2531, 2530, 117} 238.806 230268
{1550, 1541, 2531, 2530, 117} 196.662 155310
{339, 1550, 1541, 2531, 2530, 117} 189.471 144336
{481, 339, 1550, 1541, 2531, 2530, 117} 54.8989 10602
{270, 481, 339, 1550, 1541, 2531, 2530, 117} 46.7788 4278
{155, 270, 481, 339, 1550, 1541, 2531, 2530, 117} 46.482 4092
{2025, 155, 270, 481, 339, 1550, 1541, 2531, 2530, 117} 48.6372 2790
{2430, 2025, 155, 270, 481, 339, 1550, 1541, 2531, 2530, 117} 51.9214 2604

Dolphins {40, 0} 0.0431 13348
{7, 40, 0} 0.033 355
{54, 7, 40, 0} 0.0308 233
{13, 54, 7, 40, 0} 0.0308 83
{32, 13, 54, 7, 40, 0} 0.0302 38

dblp {2, 135} 3812.74 3242271388
{2, 135, 1377} 3556.46 1823783366

430

author i co-authored a paper with author j, an edge is drawn be-
tween vertices i and j [23]. Over this dataset, the running time
always decreases, as the size of K increases.

Eva is a prototype system for extracting, visualizing, and ana-
lyzing corporate ownership information as a social network. Ap-
plying the system to the telecommunications and media industries,
Norlen et al. [30] constructed an ownership network with 6,726 re-
lationships among 8,343 companies7. In this network, an edge from
company u to company v is drawn iff the company u is an owner
of company v. Since we do not have ownership relationships for all
companies, there will be companies without edges. Analysis shows
that this network is highly clustered, with over 50% of all compa-
nies connected to one another in a single component. We tested our
proposed algorithm over this ownership network. In this dataset,
co-betweenness value of a set shows its impact on the ownership re-
lations in the network. Our proposed algorithm scales well on this
dataset, as sets with different sizes have close running times. By
increasing the size of the set, its co-betweenness score decreases.

Odlis [34] is a hypertext reference system for users like library
and information science professionals and university students and
faculty. Users can add a new term to the system if they expect to
encounter it in future or if they require to know its meaning. In the
network representing this system, vertices are terms and an edge
from term u to term v exists iff in the Odlis dictionary the term v is
used to describe the meaning of term u 8. As reflected in Table 2,
over this network, in most cases, by increasing the size of the set the
time required to compute its co-betweenness centrality decreases.
In this network, the co-betweenness score of a set K shows the
number of pairs of terms which use all terms in K to describe their
meaning.

We also tested the proposed algorithm on a small dataset. The
dolphins dataset [26] consists of an undirected graph of frequent as-
sociations between 62 dolphins in a community living off Doubtful
Sound, New Zealand 9. In this dataset, the co-betweenness value
of a set K of dolphins shows the importance of all members in K
with together in associations between dolphins. As depicted in Ta-
ble 2, over this dataset, sets with different sizes have almost the
same running time.

Finally, we performed experiments on the dblp dataset10. Each
vertex in this network is a publication (paper, book, etc), and each
edge represents a citation of a publication by another publication
[24]. Using the proposed algorithm, we calculated co-betweenness
scores of two sets of vertices {2, 135} and {2, 135, 1377}. As pre-
sented in Table 2, it takes a shorter time to compute co-betweenness
score of the larger set.

6. RELATED WORK
Betweenness centrality is widely used as a precise indicator for

the information flow controlled by a vertex in social and infor-
mation networks [35]. It assumes that information flow is done
through shortest paths. Brandes [7] introduced new algorithms
for computing betweenness centrality of a vertex, which is per-
formed in O(nm) and O(nm+n2 logn) time for unweighted and
weighted networks, respectively. Holme [17] showed that between-
ness centrality of a vertex is highly correlated with the fraction

7http://vlado.fmf.uni-lj.si/pub/networks/
data/econ/Eva/Eva.htm
8http://vlado.fmf.uni-lj.si/pub/networks/
data/dic/odlis/Odlis.htm
9http://www-personal.umich.edu/~mejn/
netdata/

10http://konect.uni-koblenz.de/networks/
dblp-cite

Table 4: Time complexity of edge co-betweenness centrality

computation (|W | is the size of the set (sequence)).

Unweighted graphs Weighted graphs

Set O(nm+ n|W | log|W |) O(nm+ n2 log n)
Sequence O(nm) O(nm+ n2 log n)

of time that the vertex is occupied by the traffic of the network.
Barthelemy [3] showed that many scale-free networks [1] have a
power-law distribution of betweenness centrality. There are also
several notions of betweenness centrality which are used to deter-
mine the structural prominence of Web pages [18] and [9].

There are several variations of betweennes centrality which are
not designed for shortest path routing. Flow betweenness [15] equally
considers all paths for routing. Borgatti [4] and [5] considered be-
tweenness for all possible paths, as well as all possible trails, as
well as walks (weighted inversely by length). He used numerical
simulation to estimate the betweenness values. Newman [29] pro-
posed Random walk betweenness which prefers shorter paths over
the longer ones. In this work, Newman provided closed-form equa-
tions for the case of random traversal via walks. Borgatti [5] pro-
posed a dynamic model-based view of centrality that focuses on the
outcomes of vertices in a graph.

In [13], Freeman defined group betweenness centrality as a mea-
sure of homogeneity of betweenness of members. Everett and Bor-
gatti [12] defined group betweenness centrality as a natural exten-
sion of betweenness centrality for sets of vertices. The other natu-
ral extension of betweenness centrality is co-betweenness centrality

[20]. The authors of [20] presented an algorithm for individual co-
betweenness centrality computation. However, this method works
only for sets of size 2 and its time complexity is O(n3). Puzis et
al. [32] proposed a O(|K|3) time algorithm for computation of
successive group betweenness centrality. In [33], the authors pre-
sented two algorithms for finding the most prominent group. The
first algorithm is based on heuristic search and the second is based
on iterative greedy choice of vertices. In [11], the authors defined
the Routing Betweenness Centrality (RBC) measure and presented
algorithms for computing RBC of single vertices in the network
and algorithms for computing group RBC of sets (or sequences) of
vertices. Ballester et al. [2] discussed the importance of finding the
key group in a criminal network. Borgatti elaborated in [6] on a
Key Player Problem (KPP) that is strongly related to the cohesion
of a network. He defined two problems: KPP-Pos and KPP-Neg.
The solution of the first problem is a group maximally connected
to all other vertices in a graph and the solution of the second is a
group maximally disrupting the network.

7. CONCLUSION
In this paper, we developed efficient algorithms for vertex and

edge co-betweenness centrality computation in different settings.
Tables 3 and 4 summarize time complexity of the proposed meth-
ods. Our methods are based on reducing vertex co-betweenness

centrality and edge co-betweenness centrality of a set (or a se-
quence) to betweenness centrality of a single vertex. They are not
limited to special cases and they are more efficient than existing
methods. We empirically evaluated the efficiency of the proposed
methods and showed their high performance over different real-
world networks.

8. REFERENCES
[1] A.-L. Barabasi and R. Albert, Emergence of scaling in random

networks, Science, 286, 509-512, 1999.

431

Table 3: Time complexity of vertex co-betweenness centrality computation (|K| is the size of the set (sequence)).

Unweighted graphs Weighted graphs

Set of vertices O(nm− |K|m+ n|K| log|K| − |K|2 log|K|) O(nm− |K|m+ n2 log n− |K|n log n)
Sequence of vertices O(nm− |K|m) O(nm− |K|m+ n2 log n− |K|n log n)

[2] C. Ballester, A. C. Armengol and Y. Zenou, Who’s who in
networks. wanted: The key player, Econometrica, 74(5),
1403-1417, Sep. 2006.

[3] M. Barthelemy, Betweenness centrality in large complex
networks. The Europ. Phys. J. B - Condensed Matter 38,
2(Mar.), 163-168, 2004.

[4] S. P. Borgatti, Types of network flows and how to destabilize
terrorist networks, Sunbelt International Social Networks
Conference, New Orleans, 2002.

[5] S. P. Borgatti, Centrality and network flow, Social Networks,
27(1), 55-71, 2005.

[6] S. P. Borgatti, Identifying sets of key players in a social
network, Comput. Math. Organ. Theory, 12(1), 21-34, 2006.

[7] U. Brandes, A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology, 25(2), 163-177, 2001.

[8] U. Brandes, On variants of shortest-path betweenness
centrality and their generic computation, Social Networks,
30(2), 136-145, May 2008.

[9] S. Brin, R. Motwani, L. Page and T. Winograd, What can you
do with a web in your pocket? IEEE Bulletin of the Technical
Committee on Data Engineering, 21(2), 37-47, 1998.

[10] A. Cuzzocrea, A. Papadimitriou, D. Katsaros and Y.
Manolopoulos, Edgebetweenness centrality: A novel
algorithm for QoS-based topology control over wireless
sensor networks, Journal of Network and Computer
Applications, 35(4), 1210-1217, July 2012.

[11] S. Dolev, Y. Elovici and R. Puzis, Routing betweenness
centrality, J. ACM, 57(4), 2010.

[12] M. Everett and S. Borgatti. The centrality of groups and
classes, Journal of Mathematical Sociology, 23(3), 181-201,
1999.

[13] L. C. Freeman, A set of measures of centrality based upon
betweenness, Sociometry, 40, 35-41, 1977.

[14] L. C. Freeman, Centrality in social networks: Conceptual
clarification. Social Networks, 1(3), 215-239, 1979.

[15] L. C. Freeman, S. P. Borgatti, and D. R. White, Centrality in
valued graphs: A measure of betweenness based on network
ïňĆow, Social Networks, 13(2), 141-154, 1991.

[16] M. Girvan and M. E. J. Newman, Community structure in
social and biological networks, Proc. Natl. Acad. Sci. USA
99, 7821-7826, 2002.

[17] P. Holme, Congestion and centrality in traffic flow on
complex networks, Adv. Complex Syst, 6(2), 163-176, 2003.

[18] J. M. Kleinberg, Authoritative sources in a hyperlinked
environment, Journal of the Association for Computing
Machinery, 46(5), 604-632, 1999.

[19] D. Knuth, Section 5.2.4: Sorting by Merging, Sorting and
Searching. The Art of Computer Programming 3 (2nd ed.),
Addison-Wesley, 158-168, 998.

[20] E. D. Kolaczyk, D. B. Chua and M. Barthelemy.
Group-betweenness and co-betweenness: Inter-related notions
of coalition centrality, Social Networks, 31(3), 190-203, 2009.

[21] S. Lammer, B. Gehlsen, D. Helbing. Scaling laws in the
spatial structure of urban road networks. Physica A, 363(1),
89-95, 2006.

[22] J. Leskovec, J. Kleinberg and C. Faloutsos, Graphs over
Time: Densification Laws, Shrinking Diameters and Possible
Explanations, KDD, 2005.

[23] J. Leskovec, J. Kleinberg and C. Faloutsos, Graph Evolution:
Densification and Shrinking Diameters, ACM Transactions on
Knowledge Discovery from Data (ACM TKDD), 1(1), 2007.

[24] M. Ley, The DBLP computer science bibliography:
Evolution, research issues, perspectives, In Proc. Int.
Symposium on String Processing and Information Retrieval,
1-10, 2002.

[25] X. Li, J. Han, J.-G. Lee and H. Gonzalez, Traffic
density-based discovery of hot routes in road networks, 10th
Symposium on Spatial and Temporal Databases (SSTD),
441-459, 2007.

[26] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E.
Slooten, and S. M. Dawson, The bottlenose dolphin
community of Doubtful Sound features a large proportion of
long-lasting associations, Behavioral Ecology and
Sociobiology 54, 396-405, 2003.

[27] P.Massa, M. Salvetti and D. Tomasoni, Bowling alone and
trust decline in social network sites, In Proc. Int. Conf.
Dependable, Autonomic and Secure Computing, 658-663,
2009.

[28] J. McAuley and J. Leskovec, Learning to discover social
circles in ego networks, NIPS, pages 548-556. 2012.

[29] M. E. J. Newman, A measure of betweenness centrality
based on random walks, Social Networks, 27(1), 39-54, 2005.

[30] K. Norlen, G. Lucas, M. Gebbie and J. Chuang, EVA:
Extraction, Visualization and Analysis of the
Telecommunications and Media Ownership Network.
Proceedings of International Telecommunications Society
14th Biennial Conference (ITS2002), Seoul Korea, August
2002.

[31] A. Perer, B. Shneiderman, Balancing systematic and flexible
exploration of social networks, IEEE Transactions on
Visualization and Computer Graphics, 12(5), 693-700, 2006.

[32] R. Puzis, Y. Elovici and S. Dolev. Fast algorithm for
successive computation of group betweenness centrality, Phys.
Rev. E, 76(5), 2007.

[33] R. Puzis, Y. Elovici and S. Dolev, Finding the most
prominent group in complex networks, AI Commun. 20(4),
287-296, 2007.

[34] J. M. Reitz, ODLIS: Online Dictionary of Library and
Information Science, 2002.

[35] G. Yan, T. Zhou, B. Hu, Z. Q. Fu, and B.-H. Wang, Efficient rout-
ing on complex networks. Phys. Rev. E, 73, 046108, 2006.

432

