Effective Constraints for Quantum Systems

Artur Tsobanjan
work with M. Bojowald, B. Sandhöfer and A. Skirzewski
The Pennsylvania State University

The Planck Scale workshop, June 29, 2009
${ }^{1}$ arXiv:0804.3365, published in Rev. Math. Phys. arXiv:0906.1772, submitted to Phys. Rev. D.
(1) Introduction

2 Effective Constraints
(3) Relativistic Particle
(4) Outlook

Introduction

- Classically constraints are functions on phase-space $\Gamma_{\text {class }}$
- arise directly from the action principle
- must vanish on the accessible region of $\Gamma_{\text {class }}$
- some distinct points of $\Gamma_{\text {class }}$ are physically equivalent
- Follow Dirac-Bergmann algorithm
- solve constraints-restrict to region where they vanish
- factor out gauge orbits
- result: reduced phase-space $\Gamma_{\text {red }}$
- 「red generally not a cotangent bundle/no natural polarization —ordinary quantization typically has to be modified
- Avoid this problem using Dirac's prescription
- quantize the free system
- promote constraints to operators $\mathbf{C}_{\mathbf{i}}$
- impose $\mathbf{C}_{\mathrm{i}}\left|\psi_{\text {phys }}\right\rangle=0$

Complications

Condition on physical states: $\quad \mathbf{C}\left|\psi_{\text {phys }}\right\rangle=0$

- Construction is clear if $\left|\psi_{\text {phys }}\right\rangle \in \mathcal{H}_{\text {kin }}$
- In general $\left|\psi_{\text {phys }}\right\rangle$ are distributional
\rightarrow a separate inner product must be defined to construct $\mathcal{H}_{\text {phys }}$
- "Effective" scheme for semiclassical states
- enlarge $\Gamma_{\text {class }}$ to Γ_{Q} adding leading order quantum parameters
- formulate constraints for extra variables on Γ_{Q}
- analyze the enlarged system as if it were classical

Sketch of the method

- Take a system that is understood in the absence of constraints
- Expectation values of canonically quantized observables represent the classical phase space $\Gamma_{\text {class }}$
- This space will be appended by a finite number of quantum fluctuations (or "moments"), representing leading order semiclassical contributions
- The expanded phase-space is equipped with a Poisson structure that follows from the quantum commutator
- A version of Dirac's condition can be formulated directly on our variables as constraint functions on Γ_{Q}
- We are left with a "classical constrained system"

Basic assumptions

- Assume that the free system has been quantized, in particular
- we have a sufficiently complete Poisson subalgebra of classical phase space functions $a_{i}: \Gamma_{\text {class }} \rightarrow \mathbb{R}, i=1,2 \ldots N$, with $\left\{a_{i}, a_{j}\right\}=\alpha_{i j}{ }^{k} a_{k}$
- it is identified with elements of an associative algebra $\mathbf{a}_{i} \in \mathscr{A}, i=1,2 \ldots N$, with $\left[\mathbf{a}_{i}, \mathbf{a}_{j}\right]=\mathbf{a}_{i} \mathbf{a}_{j}-\mathbf{a}_{j} \mathbf{a}_{i}=i \hbar \alpha_{i j}{ }^{k} \mathbf{a}_{k}$
- \mathscr{A} is generated by polynomials in the basic elements \mathbf{a}_{i}
- there is a single constraint $\mathbf{C} \in \mathscr{A}$
- A state is a linear, complex-valued function on the algebra \mathscr{A} \rightarrow specified by the values assigned to ordered polynomials $\mathbf{a}_{1}^{n_{1}} \ldots \mathbf{a}_{N}^{n_{N}}$ impose $\langle\mathbb{1}\rangle=1$

What "quantum parameters"?

- Instead of values of ordered polynomials describe a state by
- N expectation values $\left\langle\mathbf{a}_{\mathbf{i}}\right\rangle$
- ∞ number of "moments" $\left\langle\left(\mathbf{a}_{1}-\left\langle\mathbf{a}_{1}\right\rangle\right)^{n_{1}} \ldots\left(\mathbf{a}_{\mathrm{N}}-\left\langle\mathbf{a}_{\mathrm{N}}\right\rangle\right)^{n_{N}}\right\rangle_{\text {Weyl }}$
- The value of any polynomial function $\left\langle f\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathrm{N}}\right)\right\rangle$ may be expressed using these variables
e.g. a Gaussian
- e.g. a particle on a line, $[\mathbf{x}, \mathbf{p}]=i \hbar \quad,\left\langle(\mathbf{x}-\langle\mathbf{x}\rangle)^{2}\right\rangle$ is the squared spread of the wave-function

- For semiclassical wave-functions "moments" $\propto \hbar^{\frac{1}{2} \sum n_{i}}$
\longrightarrow take lower order moments as "quantum parameters"

How do these parameters fit into Γ_{Q} ?

- $\Gamma_{\text {class }}$ comes with a Poisson bracket, crucial for dynamics

$$
\frac{\mathrm{d}}{\mathrm{~d} t} O=\{O, H\}+\frac{\partial}{\partial t} O
$$

- Poisson structure on Γ_{Q} inspired by Ehrenfest's theorem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathbf{O}\rangle=\frac{1}{i \hbar}\langle[\mathbf{O}, \mathbf{H}]\rangle+\frac{\partial}{\partial t}\langle\mathbf{O}\rangle
$$

- Define $\{\langle\mathbf{A}\rangle,\langle\mathbf{B}\rangle\}:=\frac{1}{i \hbar}\langle[\mathbf{A}, \mathbf{B}]\rangle$ brackets for moments follow from linearity and Leibnitz rule
- $\langle\mathbf{H}\rangle$ generates quantum evolution, Schrödinger equation takes the form [M. Bojowald, A. Skirzewski 2006]

$$
\frac{\mathrm{d}}{\mathrm{~d} t} X=\{X,\langle\mathbf{H}\rangle\} \rightarrow \infty \text { number of coupled ODE }-\mathrm{s}
$$

Implementing Dirac's prescription

- Physical states must satisfy $\mathbf{C}|\psi\rangle=0$ this implies $\langle\phi| \mathbf{C}|\psi\rangle=0, \forall|\phi\rangle$
- One condition on our variables $\langle\psi| \mathbf{C}|\psi\rangle=\langle\mathbf{C}\rangle=0$ -still need infinitely many more
- For normalizable $|\psi\rangle$ and $|\phi\rangle$ there is some \mathbf{A} s.t. $\langle\phi|=\langle\psi| \mathbf{A}$ \rightarrow the condition is equivalent to $\langle\psi| \mathbf{A C}|\psi\rangle=\langle\mathbf{A C}\rangle=0, \forall \mathbf{A}$
- We use this form of the condition enforcing it systematically as

$$
\left\langle\mathbf{a}_{1}^{n_{1}} \ldots \mathbf{a}_{\mathrm{N}}^{n_{N}} \mathbf{C}\right\rangle=0
$$

The constraint element is always on the right!

Gauge flows

- The elements $\mathbf{a}_{1}^{n_{1}} \ldots \mathbf{a}_{\mathrm{N}}^{n_{N}} \mathbf{C}$ are closed with respect to the commutator
\rightarrow constraint functions $\left\langle\mathbf{a}_{1}^{n_{1}} \ldots \mathbf{a}_{\mathrm{N}}^{n_{N}} \mathbf{C}\right\rangle$ form a closed Poisson algebra (1st class)
- Dirac-Bergman analysis may be followed with minor adjustments
- Flows generated by constraints are treated as gauge-generated by the action of \mathbf{C} to the left
- Expectation values and moments of the Dirac observables are recovered by constructing gauge invariant functions on Γ_{Q}
- After truncation, the constraint system is 1 st class only up to the relevant order in moments

Constraints on free relativistic particle

- Free system: two canonical pairs $\left\{\mathbf{q}, \mathbf{p} ; \mathbf{t}, \mathbf{p}_{t}\right\}$ subject to $[\mathbf{q}, \mathbf{p}]=i \hbar=\left[\mathbf{t}, \mathbf{p}_{t}\right]$
- Let \mathscr{A} consist of identity and all ordered polynomials in the canonical variables subject to the canonical commutation relations
- A state is completely determined by the values $\left\langle\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n}\right\rangle$
- Introduce constraint: $\mathbf{C}=\mathbf{p}_{t}^{2}-\mathbf{p}^{2}-m^{2} \mathbb{1}$, classically-a relativistic particle in $1+1$-dimensional Minkowski space
- Systematically impose constraints order by order: $C_{\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n}}=\left\langle\mathbf{q}^{k} \mathbf{p}^{\prime} \mathbf{t}^{m} \mathbf{p}_{t}^{n} \mathbf{C}\right\rangle=0$-infinitely many

Corrections up to 2 nd order

- Degrees of freedom: 4 expectation values $a=\langle\mathbf{a}\rangle ; 4$ spreads $(\Delta a)^{2}=\left\langle(\mathbf{a}-a)^{2}\right\rangle$ and 6 variances $\Delta(a b)=\langle(\mathbf{a}-a)(\mathbf{b}-b)\rangle_{\text {weyl }}$
- 5 non-trivial constraints left:

$$
\begin{aligned}
& \langle\mathbf{C}\rangle=p_{t}^{2}-p^{2}-m^{2}+\left(\Delta p_{t}\right)^{2}-(\Delta p)^{2}=0, \quad\langle(\mathbf{t}-\langle\mathbf{t}\rangle) \mathbf{C}\rangle=2 p_{t} \Delta\left(t p_{t}\right)+i \hbar p_{t}-2 p \Delta(t p)=0 \\
& \left\langle\left(\mathbf{p}_{t}-\left\langle\mathbf{p}_{t}\right\rangle\right) \mathbf{C}\right\rangle=2 p_{t}\left(\Delta p_{t}\right)^{2}-2 p \Delta\left(p_{t} p\right)=0, \\
& \langle(\mathbf{p}-\langle\mathbf{p}\rangle) \mathbf{C}\rangle=2 p_{t} \Delta\left(p_{t} p\right)-2 p(\Delta p)^{2}=0
\end{aligned}
$$

- There are two corresponding surfaces compatible with the semiclassical approximation

$$
\begin{array}{r}
p_{t}= \pm E, \quad \Delta\left(t p_{t}\right)= \pm \frac{p}{E} \Delta(t p)-\frac{i \hbar}{2}, \quad\left(\Delta p_{t}\right)^{2}=p^{2}+m^{2}+(\Delta p)^{2}-E^{2} \\
\Delta\left(p_{t} q\right)= \pm \frac{p}{E}\left(\Delta(q p)+\frac{i \hbar}{2}\right), \quad \Delta\left(p_{t} p\right)= \pm \frac{p}{E}(\Delta p)^{2}
\end{array}
$$

where

$$
E=\frac{1}{\sqrt{2}} \sqrt{\left(p^{2}+m^{2}+(\Delta p)^{2}+\sqrt{\left(p^{2}+m^{2}+(\Delta p)^{2}\right)^{2}-4 p^{2}(\Delta p)^{2}}\right)}
$$

Deparametrization gauge

- Idea: \mathbf{p}_{t} is a derivative operator with respect to the evolution parameter \mathbf{t}

$$
i \hbar \frac{\partial}{\partial t} \psi= \pm \sqrt{\mathbf{p}^{2}+m^{2} \mathbb{1}}
$$

- Mimic this process:
- use constraints to eliminate variables involving p_{t}
- gauge-fix all moments of t to vanish
- treat the remaining gauge as the evolution of variables generated by \mathbf{q} and \mathbf{p} along parameter $t=\langle\mathbf{t}\rangle$
- Resulting evolution along t is generated by

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\mathbf{O}\rangle=\left\{\langle\mathbf{O}\rangle, p_{t}+E\right\}=\{\langle\mathbf{O}\rangle, E\}+\frac{\partial\langle\mathbf{O}\rangle}{\partial t}
$$

- Enforce positivity of the state with respect to \mathbf{q} and \mathbf{p} by imposing
- reality: $q, p,(\Delta q)^{2},(\Delta p)^{2}, \Delta(q p) \in \mathbb{R}$
- positivity: $(\Delta p)^{2},(\Delta q)^{2} \geq 0$
- inequality: $(\Delta q)^{2}(\Delta p)^{2}-(\Delta(q p))^{2} \geq \frac{1}{4} \hbar^{2}$

Some conclusions

- These steps can be repeated for a particle in an external potential
- For constraints of the form $\mathbf{C}=\mathbf{p}_{t}^{2}-H(\mathbf{q}, \mathbf{p})^{2}$, evolution in the reparametrization gauge is generated by $\pm\langle | H(\mathbf{q}, \mathbf{p})| \rangle$
- This still holds if the variation of H in time is "slow"-more generally, a different gauge choice is needed
- Our results strengthen the case for using "effective square-root hamiltonians" in quantum cosmology

Outlook

- Constructed a method for deriving semiclassical corrections for constrained quantum-mechanical systems
- Applied to Newtonian and relativistic particle in a potential, recovering the usual deparameterized dynamics
- In the cases where deparametrizadtion is not possible, the gauge choices still need to be better understood
- Construction should generalize to non-canonical Poisson algebras -various cosmological models are to be analyzed next

