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Introduction

Classically constraints are functions on phase-space Γclass

arise directly from the action principle
must vanish on the accessible region of Γclass

some distinct points of Γclass are physically equivalent

Follow Dirac-Bergmann algorithm
solve constraints—restrict to region where they vanish
factor out gauge orbits
result: reduced phase-space Γred

Γred generally not a cotangent bundle/no natural polarization
—ordinary quantization typically has to be modified

Avoid this problem using Dirac’s prescription
quantize the free system
promote constraints to operators Ci

impose Ci|ψphys〉 = 0
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Complications

Condition on physical states: C|ψphys〉 = 0

Construction is clear if |ψphys〉 ∈ Hkin

In general |ψphys〉 are distributional
→ a separate inner product must be defined to construct Hphys

“Effective” scheme for semiclassical states

enlarge Γclass to ΓQ adding leading order quantum parameters
formulate constraints for extra variables on ΓQ

analyze the enlarged system as if it were classical
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Sketch of the method

Take a system that is understood in the absence of constraints

Expectation values of canonically quantized observables represent
the classical phase space Γclass

This space will be appended by a finite number of quantum
fluctuations (or “moments”), representing leading order
semiclassical contributions

The expanded phase-space is equipped with a Poisson structure that
follows from the quantum commutator

A version of Dirac’s condition can be formulated directly on our
variables as constraint functions on ΓQ

We are left with a “classical constrained system”
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Basic assumptions

Assume that the free system has been quantized, in particular

we have a sufficiently complete Poisson subalgebra of classical
phase space functions ai : Γclass → R, i = 1, 2 . . .N, with
{ai , aj} = α k

ij ak

it is identified with elements of an associative algebra
ai ∈ A , i = 1, 2 . . .N, with [ai , aj ] = aiaj − ajai = i~α k

ij ak

A is generated by polynomials in the basic elements ai

there is a single constraint C ∈ A

A state is a linear, complex-valued function on the algebra A
→ specified by the values assigned to ordered polynomials an1

1 . . . anN

N

impose 〈1〉 = 1
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What ”quantum parameters”?

Instead of values of ordered polynomials describe a state by

N expectation values 〈ai〉
∞ number of “moments” 〈(a1 − 〈a1〉)n1 . . . (aN − 〈aN〉)nN 〉Weyl

The value of any polynomial function 〈f (a1, . . . , aN)〉 may be
expressed using these variables

e.g. a particle on a line,
[x,p] = i~ ,

〈
(x− 〈x〉)2

〉
is the squared spread of
the wave-function

For semiclassical wave-functions “moments” ∝ ~
1
2

∑
ni

−→ take lower order moments as “quantum parameters”
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How do these parameters fit into ΓQ?

Γclass comes with a Poisson bracket, crucial for dynamics

d

dt
O = {O, H}+

∂

∂t
O

Poisson structure on ΓQ inspired by Ehrenfest’s theorem

d

dt
〈O〉 =

1

i~
〈[O,H]〉+

∂

∂t
〈O〉

Define {〈A〉, 〈B〉} := 1
i~ 〈[A,B]〉

brackets for moments follow from linearity and Leibnitz rule

〈H〉 generates quantum evolution, Schrödinger equation takes the
form [M. Bojowald, A. Skirzewski 2006]

d

dt
X = {X , 〈H〉} → ∞ number of coupled ODE− s
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Implementing Dirac’s prescription

Physical states must satisfy C|ψ〉 = 0
this implies 〈φ|C|ψ〉 = 0, ∀ |φ〉

One condition on our variables 〈ψ|C|ψ〉 = 〈C〉 = 0
—still need infinitely many more

For normalizable |ψ〉 and |φ〉 there is some A s.t. 〈φ| = 〈ψ|A
→ the condition is equivalent to 〈ψ|AC|ψ〉 = 〈AC〉 = 0, ∀A

We use this form of the condition enforcing it systematically as

〈an1
1 . . . anN

N C〉 = 0

The constraint element is always on the right!
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Gauge flows

The elements an1
1 . . . anN

N C are closed with respect to the
commutator
→ constraint functions 〈an1

1 . . . anN

N C〉 form a closed Poisson algebra
(1st class)

Dirac-Bergman analysis may be followed with minor adjustments

Flows generated by constraints are treated as gauge—generated by
the action of C to the left

Expectation values and moments of the Dirac observables are
recovered by constructing gauge invariant functions on ΓQ

After truncation, the constraint system is 1st class only up to the
relevant order in moments
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Constraints on free relativistic particle

Free system: two canonical pairs {q,p; t,pt} subject to
[q,p] = i~ = [t,pt ]

Let A consist of identity and all ordered polynomials in the
canonical variables subject to the canonical commutation relations

A state is completely determined by the values 〈qkpltmpn
t 〉

Introduce constraint: C = p2
t − p2 −m21 , classically—a

relativistic particle in 1+1-dimensional Minkowski space

Systematically impose constraints order by order:
Cqkpl tmpn

t
= 〈qkpltmpn

t C〉 = 0 —infinitely many



Corrections up to 2nd order

Degrees of freedom: 4 expectation values a = 〈a〉; 4 spreads
(∆a)2 = 〈(a− a)2〉 and 6 variances ∆(ab) = 〈(a− a)(b− b)〉Weyl

5 non-trivial constraints left:

〈C〉 = p2
t − p2 − m2 + (∆pt )2 − (∆p)2 = 0, 〈(t− 〈t〉)C〉 = 2pt ∆(tpt ) + i~pt − 2p∆(tp) = 0

〈(pt − 〈pt〉)C〉 = 2pt (∆pt )2 − 2p∆(ptp) = 0, 〈(q− 〈q〉)C〉 = 2pt ∆(ptq)− 2p∆(qp)− i~p = 0

〈(p− 〈p〉)C〉 = 2pt ∆(ptp)− 2p(∆p)2 = 0

There are two corresponding surfaces compatible with the
semiclassical approximation

pt = ±E , ∆(tpt ) = ±
p

E
∆(tp)−

i~
2

, (∆pt )2 = p2 + m2 + (∆p)2 − E2

∆(ptq) = ±
p

E

(
∆(qp) +

i~
2

)
, ∆(ptp) = ±

p

E
(∆p)2

where
E =

1
√

2

√(
p2 + m2 + (∆p)2 +

√
(p2 + m2 + (∆p)2)2 − 4p2(∆p)2

)



Deparametrization gauge

Idea: pt is a derivative operator with respect to the evolution
parameter t

i~
∂

∂t
ψ = ±

√
p2 + m21

Mimic this process:

use constraints to eliminate variables involving pt

gauge-fix all moments of t to vanish
treat the remaining gauge as the evolution of variables
generated by q and p along parameter t = 〈t〉

Resulting evolution along t is generated by

d
dt
〈O〉 = {〈O〉, pt + E} = {〈O〉,E}+

∂〈O〉
∂t

Enforce positivity of the state with respect to q and p by imposing

reality: q, p, (∆q)2, (∆p)2, ∆(qp) ∈ R
positivity: (∆p)2, (∆q)2 ≥ 0
inequality: (∆q)2(∆p)2 − (∆(qp))2 ≥ 1

4
~2
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Some conclusions

These steps can be repeated for a particle in an external potential

For constraints of the form C = p2
t − H(q,p)2, evolution in the

reparametrization gauge is generated by ±〈|H(q,p)|〉

This still holds if the variation of H in time is “slow”—more
generally, a different gauge choice is needed

Our results strengthen the case for using “effective square-root
hamiltonians” in quantum cosmology
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Outlook

Constructed a method for deriving semiclassical corrections for
constrained quantum-mechanical systems

Applied to Newtonian and relativistic particle in a potential,
recovering the usual deparameterized dynamics

In the cases where deparametrizadtion is not possible, the gauge
choices still need to be better understood

Construction should generalize to non-canonical Poisson algebras
—various cosmological models are to be analyzed next
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