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Introduction

o Classically constraints are functions on phase-space [¢jass

o arise directly from the action principle
o must vanish on the accessible region of I'¢jass
o some distinct points of ;1,55 are physically equivalent

o Follow Dirac-Bergmann algorithm
o solve constraints—restrict to region where they vanish
o factor out gauge orbits
o result: reduced phase-space [eq

0 [eq generally not a cotangent bundle/no natural polarization
—ordinary quantization typically has to be modified

@ Avoid this problem using Dirac’s prescription
o quantize the free system
o promote constraints to operators C;
o impose Ci|tphys) =0



Complications

Condition on physical states: | C|tphys) = 0

o Construction is clear if |tpnys) € Hiin
o In general [¢)pnys) are distributional

— a separate inner product must be defined to construct Hpnys

o “Effective” scheme for semiclassical states

o enlarge l¢ass to [ adding leading order quantum parameters
o formulate constraints for extra variables on I'q

o analyze the enlarged system as if it were classical
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Sketch of the method

o Take a system that is understood in the absence of constraints

o Expectation values of canonically quantized observables represent
the classical phase space [¢jass

o This space will be appended by a finite number of quantum
fluctuations (or “moments”), representing leading order
semiclassical contributions

o The expanded phase-space is equipped with a Poisson structure that
follows from the quantum commutator

@ A version of Dirac’s condition can be formulated directly on our
variables as constraint functions on I'q

o We are left with a “classical constrained system”
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Basic assumptions

o Assume that the free system has been quantized, in particular

o we have a sufficiently complete Poisson subalgebra of classical
phase space functions a; : class — R, i = 1,2... N, with
{ai,a;} = @ kKay

o it is identified with elements of an associative algebra
a, e/, i=12...N, with [a;,aj] =a;aj —aja; = I'hOé,-j kak

o o/ is generated by polynomials in the basic elements a;

o there is a single constraint C € &/

o A state is a linear, complex-valued function on the algebra .«
— specified by the values assigned to ordered polynomials af" ... aj"
impose (1) =1



What " quantum parameters” ?

o Instead of values of ordered polynomials describe a state by
o N expectation values (a;)

o oo number of “moments” ((a1 — (a1))™ ... (ax — (an))™) eyt

o The value of any polynomial function (f(ay,
expressed using these variables

..,aN)) may be
2y & Garation
0 e.g. a particle on a line,
[x.p] =ih . {(x—(x))*)
is the squared spread of
the wave-function

. . . “ " 1 .
o For semiclassical wave-functions “moments’ « hz X"
—— take lower order moments as “quantum parameters”

[m]

=



How do these parameters fit into o7

0 [class comes with a Poisson bracket, crucial for dynamics
d 0
EO ={O,H} + EO

o Poisson structure on Iq inspired by Ehrenfest's theorem

d 1 0
$5(0) = = ([0, H]) + £-(0)
o Define {(A). (B)} := % (IA.B])

brackets for moments follow from linearity and Leibnitz rule

o (H) generates quantum evolution, Schrédinger equation takes the
form [M. Bojowald, A. Skirzewski 2006]
d

dt

X ={X,(H)} — oo number of coupled ODE — s
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Implementing Dirac’s prescription
o Physical states must satisfy C|¢)) =0
this implies (¢|C|) =0, V |¢)

@ One condition on our variables (¢)|C|¢)) = (C) =0
—still need infinitely many more

o For normalizable [1)) and |¢) there is some A s.t. (¢| = (¢|A
— the condition is equivalent to (¢)|AC|y)) = (AC) = 0, VA

o We use this form of the condition enforcing it systematically as

|(a'1’1...a"N"’C):0|

The constraint element is always on the right!
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flows

The elements af" ... ay"'C are closed with respect to the
commutator

— constraint functions (af...ay'C) form a closed Poisson algebra
(1st class)

Dirac-Bergman analysis may be followed with minor adjustments

Flows generated by constraints are treated as gauge—generated by
the action of C to the left

Expectation values and moments of the Dirac observables are
recovered by constructing gauge invariant functions on g

After truncation, the constraint system is 1lst class only up to the
relevant order in moments
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Constraints on free relativistic particle

©

Free system: two canonical pairs {q, p; t, p:} subject to

[a,p] = ih = [t, pi]

Let o7 consist of identity and all ordered polynomials in the
canonical variables subject to the canonical commutation relations

A state is completely determined by the values (q*p’t™p”)

Introduce constraint: ’ C= p% —p?—m*l

, classically—a

relativistic particle in 1+1-dimensional Min

Systematically impose constraints order by

kowski space

order:

Carpltmpr = (q*p't™p"C) = 0 —infinitely many



Corrections up to 2nd order

o Degrees of freedom: 4 expectation values a = (a); 4 spreads
(Aa)? = {(a — a)?) and 6 variances A(ab) = {(a — a)(b — b)) wey1

o 5 non-trivial constraints left:
(€)= p2 —p* —m® +(Bpe)® — (Bp)° =0,  ((t— (1))C) = 2peA(tpe) + ihpe — 2pA(tp) = 0

(Pt — (Pe))C) = 2pe(Bpe)> — 2pA(pep) =0,  {(a — (@))C) = 2peA(peq) — 2pA(qp) — ihp = 0

((p = (P))C) = 2p:A(pep) — 2p(Ap)° =0

o There are two corresponding surfaces compatible with the
semiclassical approximation

P ih
pe=%E, Altp) = £ A(t) = —, (Bp)’ =" +m” 4 (8p) — E?

ik
A(peq) = i% (A(qp) + ?> , Apep) = ig(Ap)2

where

E= %¢ (p2 2 4 (B (2 - (BpP) — 42007 )



Deparametrization gauge

o ldea: p; is a derivative operator with respect to the evolution
parameter t

iﬁ%z/) =4+/p2+ m?2l

o Mimic this process:
o use constraints to eliminate variables involving p;
o gauge-fix all moments of t to vanish
o treat the remaining gauge as the evolution of variables
generated by q and p along parameter t = (t)

@ Resulting evolution along t is generated by

d (0)

£2(0) = {(0),pe + E} = {(0), E} + ==

o Enforce positivity of the state with respect to q and p by imposing
o reality: q,p,(Aq)% (Ap)? Agp) € R
o positivity: (Ap)?,(Aq)? >0
o inequality: (Aq)2(Ap)? — (A(ap))® > 112



Some conclusions

@ These steps can be repeated for a particle in an external potential

o For constraints of the form C = p? — H(q, p)?, evolution in the
reparametrization gauge is generated by +(|H(q, p)|)

o This still holds if the variation of H in time is “slow”—more
generally, a different gauge choice is needed

@ Our results strengthen the case for using “effective square-root
hamiltonians” in quantum cosmology
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L e e e
Outlook

o Constructed a method for deriving semiclassical corrections for
constrained quantum-mechanical systems

o Applied to Newtonian and relativistic particle in a potential,
recovering the usual deparameterized dynamics

@ In the cases where deparametrizadtion is not possible, the gauge
choices still need to be better understood

o Construction should generalize to non-canonical Poisson algebras
—various cosmological models are to be analyzed next
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