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Effective Cosmology a la Brans-Dicke with a Non-Minimally Coupling Massive Inflaton Field
Interacting with Minimally Coupling Massless Field
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We discuss an effective cosmology a la Brans-Dicke with two interacting scalar fields: a non-minimally
coupling massive inflaton Higgs-like scalar field φ interacting with a minimally coupling massless scalar field
χ. Several features are observed and discussed in some details.
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1. INTRODUCTION

The nature of the dark matter and dark energy component
as one of the basic ingredients responsible for the acceler-
ated expansion of the universe represents nowadays as one of
the most profound and difficult problem in modern cosmol-
ogy and theoretical physics.1,2,3,4,5,6 One simplest method to
deal with this problem is by means of the Einstein’s lambda
or positive cosmological constant. This later, acts in fact,
as an isotropic and homogenous de-Sitter inflationary phase-
source in the sense that the cosmological equation of state
is pΛ =−ρΛ = Λ and consequently, avoiding problems with
fine-tunning of initial conditions in the early universe. Other
options and alternatives exist in the literature: decaying cos-
mological constant (Λ), cold dark matter, dynamical Λ in the
form of scalar field with self interacting exponential and in-
verse power-law potentials: quintessence and tracker field,
k-essence, viscous fluid, Chaplygin gas, Brans-Dicke (BD)
pressureless solutions, self-interacting BD cosmology with
positive power-law potential, etc.7−19 Most of these theo-
ries are accompanied with problems and difficulties. For
example, the theoretical predicted value of the cosmologi-
cal constant surpasses by 120 order of magnitudes the ob-
servational value. As for the well-known quintessence the-
ory with scalar field φ and equation of state pφ = ωρφ acting
as fluctuating dark energy, fine tuning parameters and sev-
eral constraints are required. A lot of works have been de-
voted to the investigation of a realistic cosmological model
with the non-minimal coupling between gravity and inflaton
scalar field and to their connection with inflationary cosmol-
ogy and phase transitions (spontaneous symmetry breaking
(SSB)) in the early Universe.

For minimally coupled scalar field theories, ω ≥ −1, but
recent observations and phenomenological non-minimally
coupled theories have showed that ω < −1 are also
welcome.20,21,22,23 Minimally coupled theories with ω <−1
were proved to possess spatial gradient instabilities that
would be ruled out by CMB observations.24 It is notewor-
thy that if the kinetic term has the wrong term, it is possible
to achieve a minimally coupled theory with ω < −1. Due
to such growing interests of scalar-tensor theories of gravi-
tation, it is required to study the theory in some more detail.
It is noteworthy that the inflaton scalar field φ satisfies in a
curved spacetime the Klein-Gordon equation and one need

∗Electronic address: nabulsiahmadrami@yahoo.fr

to set up, in general, a non-minimal coupling term that ac-
commodates both the scalar field and the Ricci curvature of
spacetime.

On the other hand, the non-minimal coupling represents
an interesting deviation from the equivalence principle be-
cause it respects the geometrical nature of gravity and gauge
symmetry of electromagnetism. It is in reality introduced by
renormalization even if it is absent at the classical level. It
is also required in classical general relativity by the Einstein
equivalence principle.22,23,25,26,27 It is remarkable that scalar
fields have been often used to explain the dark energy prob-
lem, and referred as quintessence scalar fields. The main pa-
rameter for these appealing cosmological models arises from
the potential of the scalar field V (φ), and one can note for ex-
ample that scaling potentials have been highly investigated.
It is also recognized that scalar fields can account either for
dark matter or for dark energy. In both cases, the behaviour
of the scalar field is determined by its scalar potential. If
one desires to use the same scalar field to unify both prob-
lems, the difficulty is to determine which scalar potential can
provide matter behaviour at local cosmological scales and
satisfy the observational constraints. In reality, it is possi-
ble to build up a cosmological model which could advan-
tageously restore a model containing two dark components.
This fact may have interesting consequences in different as-
pects of gravity theories including supergravities.27,28

However, it has been recognized that reheating process
and SSB may be performed through two scenarios using the
Hartree mean-field approximation: the first one is that the
inflaton scalar field φ is converted through a self-interacting
quartic potential λφ4 (λ ≈ 10−12 from COBE observations)
into many particles and the second one, is the presence of a
new (real) source fieldχcreated through some coupling with
the inflaton as g2φ2χ2, where g is a coupling constant acting
as a free-parameter.29,30,31,32 The non-minimally coupled of
the scalar field φ to R for massive inflaton field were done and
was proved to be successful to describe a geometric reheat-
ing model with large negative ξ. Surprisingly, the field χ was
found to be amplified and that GUT scale gauge boson with
mass ≈ 1016GeV can be produced in the preheating stage, a
scenario not successfully described with a massive-inflation
quadratic potential alone with |ξ| ≈ 10−3.33 Besides, it was
recently argued that large |ξ|(≈ 104) allows using the Stan-
dard Model Higgs field for inflation. At the same time the
case |ξ| ≈ 10−3 makes inflaton with quartic potential compat-
ible with the CMB observations. For the coupling constant
|ξ| ≈ 10−3 very small amount of tensor modes is expected for
the quartic inflation. Interestingly, the non-minimally cou-
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pled inflation with quadratic potential and |ξ| ≈ 10−3 is no
longer compatible with observations, generating too small
spectral index.34

In this paper, we consider a more general dynamics of
a non-minimally coupling inflaton scalar field φ with the
spacetime curvature R interacting with a minimally coupling
massless and scalar field χ. Despite the fact that static mass-
less scalar fields play a crucial role in Schwarzschild-like
geometry, it was argued recently that they are connected to
many cosmological solutions based on some-kind of duality
transformations.35 They also play a crucial role in quantum
fields in curved spacetime, in particular in the background of
an Einstein-like universe36 and dilatonic electrodynamics in
flat spacetime.37 On the other hand, we argue that massless
static scalar field could contribute to the dark energy prob-
lem by supplying a substantial amount of energy density to
the early universe, yet the astronomical data are not precise
enough to pinpoint whether the dark energy is truly static or
dynamical. Additionally, the term gφ2χ2 may have an elec-
tromagnetic origin38 as in the early universe, we strongly be-

lieve that matter was highly ionized and coupled to scalar
field. Latter during cooling as a result of expansion of ions
combined to form neutral matter. Furthermore, massless
chaotic potentials play a leading role in inflationary scenarios
and physics of the early universe and supergravity39,40.

The paper is organized as follows: In Sec.II, we introduce
the Lagrangian of the theory and we analyze the cosmologi-
cal FRW solutions around the background fields φ and χ. In
the same section, we derive the pressure, the density and the
equation of state parameter and we analyze their dynamical
evolutions in time. In Sec. III, we discuss briefly the role of
the fields φ and χ in the early evolution epoch of the universe.
Sec. IV is devoted for conclusions and perspectives.

2. LAGRANGIAN AND COSMOLOGICAL EVOLUTIONS

The Lagrangian of the theory is written in one of the fol-
lowing forms a la Brans-Dicke:

L =
R

2κ2︸︷︷︸
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part of the action

− 1
2
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4
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= f (φ)︸︷︷︸
1

2κ2−
1
2 ξφφ2

R− 1
2

φ;ρφ
;ρ− 1

2
χ;ρχ

;ρ +2 V (φ,χ)︸ ︷︷ ︸
hφ

4 φ4+ 1
4 hχχ4+ 1

2 g2φ2χ2

, (1)

where κ2 = 8πG, G is the gravitational constant, g is the
gauge coupling, ξφ is a coupling constant which corresponds
for the scalar field φ, mφ is the dynamical mass of the field φ,
hφ and hχ are free positive parameters, Λφ is the correspond-
ing cosmological constant. Obviously, the effective mass of
the scalar field φ is m2

φ
= ξφR + g2χ2 which in turns tends

to zero for R = 0(flat spacetime) as well as in the absence
of a the massless field χ. Amazingly, in the majority of in-
flationary cosmological scenarios, the coupling constant ξφ

is not a free parameter that could be tuned randomly, but its
value is fixed by the gravitational theory and of the scalar
field adopted. Moreover, the theoretical consistence of many
inflationary scenarios is deeply affected by their proper val-
ues. Some phenomenological scenarios turn out to be theo-
retically contradictory, while others are viable according to
the correct use of non–minimal coupling constants. Once
their proper values are determined, one does not possess
any longer the freedom to regulate their values and the fine-
tuning problems that may outbreak the inflationary scenario
re-emerge. It is noteworthy that in quantum field theory in
curved spacetime, non-minimal coupling is to be expected
when the spacetime curvature is large.

The field equations are obtained by varying the action (1)
with respect to the metric and to the scalar fields φ and χ:

f (φ)
(

Rµν−
1
2

gµνR
)

=
1
2

(
φ;µφ;ν−

1
2

gµνφ;ρφ
;ρ
)

+
1
2

(
χ;µχ;ν−

1
2

gµνχ;ρχ
;ρ
)

+ f;µ;ν−gµν f ;ρ
;ρ +gµνV (φ,χ),

(2)

φ
;ρ
;ρ +

d f
dφ

R =−2
dV (φ,χ)

dφ
, (3)

χ
;ρ
;ρ +

d f
dχ

R =−2
dV (φ,χ)

dχ
, (4)

where

f (φ) =
1

2κ2 −
1
2

ξφφ
2, (5)

and

V (φ,χ) = hφ

φ4

4
+hχ

χ4

4
+

1
2

g2
φ

2
χ

2, (6)

To analyze the cosmological solutions around the back-
ground fields φ and χ, we adopt the Friedmann-Robertson-
Walker (FRW) flat spacetime with metric dŝ2 = −dt2 +
a2(t)d~x2 strongly favored by cosmological observations and

where from theoretical point of views, the inflaton is dis-
tributed homogeneously. Here a(t) is the scale factor of
the universe. In order to explore the time-variation of the
equation of state parameter, we write the Higgs interacting-
fields potential of the field φ as V (φ) = (1

/
2)µ2φ2 +(h

/
4)φ4

where µ2 = Rξ + g2χ2 with h ≡ hφ ≡ hχ > 0 for simplicity.
In fact making use of the Bianchi identity, the total energy-
momentum tensor is not a conserved quantity. However,
since we have assumed that baryon-matter and radiation are
considered as non-interacting fields from the decoupling age
up to the present time, we presume through this work that the
covariant divergence of the energy-momentum tensors of the
baryonic matter and radiation vanishes. The resulting Klein-
Gordon equation for the scalar fields φ and χ, and the field
equations are:
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[
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χ
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2](Ḣ +2H2)−κ
2 (6ξ−1) φ̇

2 +κ
2
χ̇

2

−4κ
2
(

h
φ4

8
+h

χ4

8
+

1
2

g2
φ

2
χ

2
)

+6κ
2
ξφ
(
hφ

3 +g2
χ

2
φ
)
= 0,

(9)
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Equations (7)-(10) gives:

pe f f ≡ p =
1
2
(
φ̇
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2)−(h
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φ
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1
4
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1
2
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φ
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2
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4
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1
2
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2, (12)

where H = ȧ
/

a is the Hubble parameter. The effective grav-
itational constant is κ2

e f f = κ2(1− κ2ξφ2)−1 and the criti-
cal values of the scalar field are φc = ±(κ2ξ)−1/2 for ξ > 0.
Hence, the effective Einstein equations are:

H2 =
κ2

e f f

3
ρe f f , (13)
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Ḣ =−
κ2

e f f

2
(ρe f f + pe f f ). (14)

One interesting class of solution is obtained by setting φ =
φc =±(κ2ξ)−1/2 and absence of the gauge coupling and the
scalar field χ. This gives R = 6(Ḣ +2H2) = κ2(ρe f f −3pe f f )
and therefore Ḣ +2H2 = C where C is a constant. The solu-
tion is given by22:

a(t) = a0 cosh1/2
(√

C(t− t0)
)

, (15)

with

H =

√
C
2

tanh
(√

2C(t− t0)
)

, (16)

for H <
√

C
/

2. Equation (15) describes an asymptotic con-
tracting de Sitter spacetime as t→−∞, reaching a maximum
at t = t0 and then superaccelerating with Ḣ < 0 tending when
t→ ∞ to a de-Sitter expanding spacetime.

 

FIG. 1: Plot of a(t) = a0 cosh1/2 (√2C(t− t0)
)
,a0 =t0 =1,2C = 1.

 

FIG. 2: Plot of H =
√

C
2 tanh

(√
2C(t− t0)

)
,a0 = 1, t0 = 1,2C = 1.

In fact, by setting φ =±φc, one finds the following effec-
tive time dependent density and pressure:

ρe f f =
1
2
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2 +3ξH2

φ
2
c +

h
4

φ
4
c +

1
4

hχ
4 +

1
2
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2
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1
2

χ̇
2−
(
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φ
4
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1
4

hχ
4 +

1
2
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φ

2
cχ

2
)
−ξ(2Ḣ +3H2)φ2

c ,

(18)
and accordingly the corresponding state equation is

w =
pe f f

ρe f f
=

1
2 χ̇2−

( h
4 φ4

c + 1
4 hχ4 + 1

2 g2φ2
cχ2
)
−ξ(2Ḣ +3H2)φ2

c
1
2 χ̇2 +3ξH2φ2

c + h
4 φ4

c + 1
4 hχ4 + 1

2 g2φ2
cχ2

. (19)

One amazing interesting class of solution is obtained if we
conjecture that χ = exp(−φ). As we expect that |φc| =
(κ2ξ)−1/2 >> 1, then we find:

w =−
h
4 φ4

c + h
4 e−4φc + 1

2 g2φ2
ce−2φc +ξ(2Ḣ +3H2)φ2

c

3ξH2φ2
c + h

4 φ4
c + h

4 he−4φc + 1
2 g2φ2

ce−2φc

≈−
h
4 φ2

c +ξ(2Ḣ +3H2)
h
4 φ2

c +3ξH2
. (20)

Consequently for Ḣ << H2, w→−1 which corresponds for
quintessence whereas for h << 1, we obtain w < −1 which
corresponds to phantom energy. The equation of state which

may be written like:

w≈−1− 2
3

Ḣ
H2 , (21)

suggests that the equation of state parameter may varies in
time and this is quite appealing. Amazingly, for H = α/t,α >
0 (t is here the cosmological time), we find w ≈ −1 + 2

/
3α

and accordingly for α = 3
/

2, we get w≈ 0 . This special case
corresponds for an accelerated universe dominated by pres-
sureless matter and not dark energy. The case χ = exp(−φ)
results into the special exponential potential:

V (φ) =
h
4
(
φ

4 + exp(−4φ)
)
+

1
2

g2
φ

2 exp(−2φ). (22)
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We plot in what follows the potential V (φ) for h =
1
/

2,g = 1 for illustration purpose.

 

FIG. 3: Plot of V (φ), φ≡ x

It is note worthy that exponential potential plays a crucial
role in inflationary cosmology 31,32. The case χ = exp(−φ)
is not the only possible choice of solution. We may discuss
the following independent interesting cases:
II-1: We discuss first the case of the scalar field χ = φm,m
is a real parameter. Accordingly, the state equation takes the
special form:

w =−
h
4 φ4

c + h
4 φ4m

c + 1
2 g2φ2+2m

c +ξ(2Ḣ +3H2)φ2
c

3ξH2φ2
c + h

4 φ4
c + h

4 φ4m
c + 1

2 g2φ
2+2m
c

. (23)

Notice that for m < 0 and for |φc| = (κ2ξ)−1/2 >> 1, equa-
tion (23) is approximated again by:

w≈−
ξ(2Ḣ +3H2)+ h

4 φ2
c

3ξH2 + h
4 φ2

c
, (24)

and the same previous arguments may hold. However, for
m >> 1, we may approximate equation (24) by:

w =−
h
4 φ4m

c +ξ(2Ḣ +3H2)φ2
c

h
4 φ4m

c +3ξH2φ2
c

→−1. (25)

This case corresponds also for a quintessence dominated uni-
verse. The case where χ = φm results on the following po-
tential

V (φ) =
h
4
(φ4 +φ

4m)+
1
2

g2
φ

2+2m. (26)

We plot in what follows V (φ) for h = 4,g = 1 and four dif-
ferent values for m:

II-2: Another interesting cases corresponds for H = βχ̇
/

χ,β

is a real parameter augmented by χ = φm, that is H = βχ̇
/

χ =
βmφ̇

/
φ. Accordingly, equation (19) is reduced to:

w =
1
2 χ̇2−

( h
4 φ4
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cχ2
)
−ξ

(
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χ
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)
φ2

c

1
2 χ̇2 +3ξβ2 χ̇2

χ2 φ2
c + h

4 φ4
c + 1

4 hχ4 + 1
2 g2φ2

cχ2
. (27)

As χ = φm, then at |φc| = (κ2ξ)−1/2 >> 1, equation (26) is
reduced straightforwardly to w =−1.

II-3: At the end, we discuss the case H = eφ and χ = φm.
Accordingly, equation (19) is reduced again to:

w =−
3ξe2φcφ2

c +
( h

4 φ4
c + 1

4 hφ4m
c + 1

2 g2φ2+2m
c

)
3ξe2φcφ2

c + h
4 φ4

c + 1
4 hφ4m

c + 1
2 g2φ

2+2m
c

=−1. (28)

The previous case corresponds for certain modified gravity
types having the following corresponding Lagrangians:

χ = φ
m : L =

(
1

2κ2 −
1
2

ξφ
2
)

R−
(
1+m2

φ
2m−2) φ;µφ;µ

2

−
(

h
8
(φ4 +φ

4m)+
1
2

g2
φ

2+2m
)

. (29)

More generally, we will discuss the particular case ξ << 1.
For this, we assume the following ansatzs φ = φ0Hq,χ =
χ0H p where (p,q) ∈ R and φ0,χ0 are constants parameters

chosen such that at t = 1,φ = φ0 = 1,χ = χ0 = 1 for mathe-
matical simplicity. These ansatzs could be important build-
ing blocks in constructing the models of dark energy. For
these particular solutions, as the universe expands in time,
one naturally expects that the cosmological constant and ac-
cordingly the scalar curvature should decay, thereby leading
to the tiny value observed presently. In fact, cold dark matter
particles with time decreasing masses were proved to have an
important measurable effect in the dynamical motion of the
halo of spiral galaxies. At clusters scale this could have im-
portant consequences on dark matter halos (axions and mass
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FIG. 4: Plot of V (φ), m =−1, φ≡ x

 

FIG. 5: Plot of V (φ), m =−1, φ≡ x

varying neutrinos are good candidate for the cold dark mat-
ter of our universe).41.42,43 Accordingly, can easily check that
for p = q:

 

FIG. 6: Plot of V (φ), m = 1/2, φ≡ x

w =
q2 Ḣ2

H2 − 1
2

(
h+g2

)
H2q−ξ

[
2(2q+1)Ḣ +2q2 Ḣ2

H2 +2q(q−1) Ḣ2

H2 +2q Ḧ
H +3H2

]
q2 Ḣ2

H2 +3ξH2 +6ξqḢ + 1
2 (h+g2)H2q

. (30)

The author may check that the quintessence solution is ob-
tained one more if, for instance, h = −g2 , Ḣ << H and
Ḧ << H. However, for H = α/t,α > 0, equation (28) is re-
duced to:

w =

[
q2− 1

2

(
h+g2

)
α2q +6αξ−2ξ−3α2ξ

] 1
t2 −3ξq 1

t4[
q2− 1

2 (h+g2)α2q−6αξ+3α2ξ
] 1

t2

.

(31)

≈
q2− 1

2

(
h+g2

)
α2q +6αξ−2ξ−3α2ξ

q2− 1
2 (h+g2)α2q−6αξ+3α2ξ

. (32)

For h =−g2 and ξ = 1
/

6 which corresponds for the confor-
mal coupling case, we obtain:

w≈
q2 +α− 1

3 −
α2

2

q2−α+ α2

2

. (33)

Notice that w > −1(dark energy dominance) for q2 > 1
/

6
whereas w <−1 (phantom energy dominance) for q2 < 1

/
6.

In order to analyze the dynamical equations in some de-
tails, we choose the scaling solutions which were proved to
be useful to describe many interesting features of early and
late-time dynamics of the cosmological evolutions. For this,
we choose: φ = tx, χ = tyand a = tz, (x,y,z) are real param-
eters. Equations (7)-(10) are now reduced for the case of
conformal coupling ξ = 1

/
6 to:

x(x−1)tx−2 +3xztx−2 +
[

1
6

R+g2t2y +ht2x
]

tx = 0, (34)

y(y−1)ty−2 +3yzty−2 +
[
g2t2x +ht2y] ty = 0, (35)

6(2z−1)zt−2 +κ
2y2t2y−2
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FIG. 7: Plot of V (φ), m = 1/2, φ≡ x

 

FIG. 8: Plot of V (φ), m = 1, φ≡ x

−4κ
2
(

h
t4x

8
+h

t4y

8
+

1
2

g2t2x+2y
)

+κ
2tx (ht3x +g2tx+2y)= 0,

(36)

κ
2 (x2t2x−2 + y2t2y−2)+2κ

2zxt2x−2−6z2t−2
(

1− 1
6

κ
2t2x
)

 

FIG. 9: Plot of V (φ), m =−1/2, φ≡ x

 

FIG. 10: Plot of V (φ), m =−1, φ≡ x

+κ
2
(

h
2

t4x +
1
2

ht4y +g2t2x+2y
)

= 0. (37)

It is an easy task to check that consistency is obtained if, for
instance,R = 0, y = x = −1 and κ2 = t2 (increasing gravita-
tional coupling constant). The case y = x =−1 indicates that
χ ∝ φ. Then:

x(x−1)+3xz+
[
g2 +h

]
= 0, (38)

y(y−1)+3yz+
[
g2 +h

]
= 0, (39)

(
1−g2)+6(2z−1)z = 0, (40)

(
2−2z+

(
h+g2)+ z2)−6z2 = 0. (41)

After adding equation (38) to (39) we find:

7z2−8z+h−3 = 0, (42)

which gives

z =
4+
√

100−28h
7

, (43)

which holds for h < 3.57. For h = −1, z ≈ 2.18 and for
h << −1,z >> 1 which corresponds for an accelerated ex-
pansion of the universe. Besides, equation (38) or (39) gives
g2 + h = 3z− 2. This fact corresponds for a chaotic quar-
tic inflationary potential V (φ) = (h+g2)φ4

/
2. The effective

pressure and density vary like:

pe f f ≡ p =−1
2
(
z(z−2)+h+g2) t−4, (44)
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ρe f f ≡ ρ =
(

1+
1
2

z(z−2)+
1
2
(h+g2)

)
t−4, (45)

and accordingly the equation of state parameter for z≈ 2.18
and g2 +h = 3z−2is:

w =
2

z2 + z
−1 =−0.7, (46)

whereas w→−1 for z >> 1 as it is expected.
Finally, it is interesting to see that

κ
2
e f f =

κ2

1−κ2ξt2x ∝ t2, (47)

and that the present day variation of it κ̇2
e f f

/
κ2

e f f = 2H
/

z is
too small for h << −1,z >> 1 in agreement with observa-
tional limit.44 In fact, time variation of the effective gravita-
tional constant is tightly constrained by astronomical stellar
observations with the Solar system and terrestrial laborato-
ries. The time-variation of the effective gravitational cou-
pling constant is not new as a variation of the gravitational
constant is predicted in numerous scalar field tensor theo-
ries. Further, that there exit a lot of experimental evidence
on the time variation of the 4D gravitational constant: radar
ranging data to the Viking landers on Mars, lunar laser rang-
ing experiments, measurements of the masses of young and

old neutron stars in binary pulsars. It was recently observed
that for late times, a modified cosmology with varying κe f f is
in accordance with the observed values of the cosmological
parameters.44,45

3. ROLE OF THE INTERACTING DYNAMICAL-STATIC
SCALAR FIELDS DURING THE QUANTUM

GRAVITATIONAL EPOCH OF THE UNIVERSE

In this section, we give a brief thought on the role of the
inflaton dynamical massive field φ interacting with the mass-
less static scalar field χ in the early evolution epoch of the
universe where the scalar field potential is:

V (φ,χ) =
1
4

hφ
4 +

1
4

hχ
4 +

1
2

g2
φ

2
χ

2. (48)

The case where χ = φm results on the following potential

V (φ) =
h
4
(φ4 +φ

4m)+
1
2

g2
φ

2+2m. (49)

We choose m = 1 for which

V (φ) =
1
2
(h+g2)φ4. (50)

The partition function is written as:26

Z =
∫

Dφe−
∫ β

0 dτ
∫

d3xLH(φ,∂µφ), (51)

=
∫

d < ϕ > e−(h+g2)
∫ β

0 dτ
∫

d3x( 1
2 <ϕ4>)

×
∫

Dχe

−(h+g2)
∫ β

0 dτ
∫

d3x


1
2

(∂µψ)2 +
1
2
(
6 < ϕ

2 >
)

ψ
2︸ ︷︷ ︸

free part

+4ψ
3 < ϕ > +4ψ < ϕ

3 > +
h
4

ψ
4︸ ︷︷ ︸

interaction part


, (52)

≡
∫

d < φ > e−
∫ β

0 dτ
∫

d3xVe f f ective(<ϕ>), (53)

where ∂µ = (∂τ,∇), Dφ = ∏i dφi and:

φ(x) =

√
1

βV ∑
k

φ~knei(~k·~x+ωnτ) = ψ(x)+ < φ > . (54)

whereβ is a constant having the dimension of time,~k is the
wave number, ωn = (2π

/
β)n,n = 0,±1,±2, ... is the Mat-

subara frequency, V is the volume in which we are consider-

ing the Fourier modes of the fields, ν here is assumed here to
represent the~k = n = 0-mode of the scalar field assumed to
be periodic to the imaginary Euclidean time τ and where the



Brazilian Journal of Physics, vol. 40, no. 3, September, 2010 281

mass of the free part is M2 = 3(h+g2) < φ2 >. All the~k = 0
modes are in the ”ν-part” with

∫
d3xψ = 0. The form of the

effective Mexican potential will be responsible of the kind of
symmetries we have in the theory. We can now expand the
potential like:

Ve f f ective (< φ >) = V (0)
e f f ective +V (1)

e f f ective +V (2)
e f f ective + ...,

(55)

=
(
h+g2)(1

2
< φ

4 > +4ψ < φ
3 > +3ψ

2 < φ
2 > +..

)
..

(56)
The first term is the classical term, the second one is a 1-loop
correction, the third one is the 2-loop-correction and so on.

4. CONCLUSIONS AND PERSPECTIVES

In this work, we have discussed numerous new fea-
tures of a cosmology a la Brans-Dicke with inflaton scalar
field φ with Higgs-like potential non-minimally coupled
to the spacetime curvature R interacting with a minimally
scalar field χ with a scalar fields potential of the form
V (φ,χ) = hφ4

/
8 + hχ4

/
8 + g2φ2χ2

/
2. The cosmologi-

cal model described in this work corresponds for a ho-
mogeneous, isotropic and flat Friedmann-Robertson-Walker
spacetime. It has interesting and promising features concern-
ing the description of quintessence/ vacuum energy as non-
minimally coupled scalar field as well as the important role
of the interacting massive dynamics and massless static fields
in the theory described. We have discussed many interesting
ansatzs relating the inflaton field to a new (real) source fieldχ

created through some coupling with the inflaton as g2φ2χ2,
where g is a coupling constant acting as a free-parameter.
The first case corresponds to χ = exp(−φ) and the second
case is χ = φm and both cases where discussed at the criti-
cal value of the scalar field |φc| = (κ2ξ)−1/2 >> 1. For the
first case, it was found that for Ḣ << H2, the equation of
state parameter w→−1 which corresponds for quintessence
whereas for h << 1, we obtain w < −1 which corresponds
to phantom energy. Furthermore, it was observed that the
equation of state parameter may varies in time and this is
quite appealing. One additional result obtained for this spe-
cial case is obtained if the Hubble parameter decays like
H = α/t,α > 0. We found that the equation of state parameter
varies like w≈−1+2

/
3α and accordingly for α = 3

/
2, we

get w≈ 0 . This particular case is amazing as it corresponds
for an accelerated universe dominated by pressureless mat-

ter and not dark energy. The case χ = exp(−φ) results into
the special exponential potential described by equation (22).
It will be of interest to explore in the future a scalar tensor
theory dominated by this type of potential. Whereas for the
second case χ = φm, it was as well observed that similar re-
sults occur just like the previous exponential behavior with
the major difference of the form of the potential obtained. As
it was observed in equation (26), the potential depends on m.
For m = 1, the potential is of the form V (φ) ∝ φ4 which is
chaotic-like.

Furthermore, we have made a detailed analysis of the dy-
namical equations obtained in some details where we have
choose the scaling solutions. Other types of solutions may
exist but we left this part for a future work, nevertheless, scal-
ing laws were proved to give a good picture of the evolution
of the universe. It was found that χ = φ = t−1 and that the
universe is in the stage of accelerated universe dominated by
dark energy for z≈ 2.18 and by quintessence for z >> 1. In
addition, it was observed that the gravitational coupling con-
stant increases in time whereas its present time-variation is
too small for z >> 1, that is, in agreements with terrestrial
and astrophysical observations.

We have also analyzed briefly the role of the inflaton dy-
namical massive field φ interacting with the massless static
scalar field χ in the early evolution epoch of the universe.
One may extends all the previous arguments to include a dy-
namical gauge coupling parameter, e.g. a decrease of the
gauge coupling scale due to a dilution of the scalar field.
Work in this direction is under progress. It is interesting to
have a decreasing gauge coupling constant during the matter
evolution epoch of the universe. In fact, the physics respon-
sible for a cosmic time variation of the coupling constants
takes place at energies above the unification scale.46−51 In
all cases, if g varies with time, this means that there exists
some new physics beyond out ordinary physical theory and
consequently the description of gravity from Einstein’s Gen-
eral Relativity is incomplete. If it is the case, we need to
introduce something to complete the theory and makes the
scalar field vary.52,53,54,55 Further details and analysis are in
progress.
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