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Abstract—Hyperspectral imaging (HSI) classification has 

become a popular research topic in recent years, and effective 

feature extraction is an important step before the classification 

task. Traditionally, spectral feature extraction techniques are 

applied to the HSI data cube directly. This paper presents a novel 

algorithm for HSI feature extraction by exploiting the curvelet 

transformed domain via a relatively new spectral feature 

processing technique – singular spectrum analysis (SSA). 

Although the wavelet transform has been widely applied for HSI 

data analysis, the curvelet transform is employed in this paper 

since it is able to separate image geometric details and background 

noise effectively. Using the support vector machine (SVM) 

classifier, experimental results have shown that features extracted 

by SSA on curvelet coefficients have better performance in terms 

of classification accuracies over features extracted on wavelet 

coefficients. Since the proposed approach mainly relies on SSA for 

feature extraction on the spectral dimension, it actually belongs to 

the spectral feature extraction category. Therefore, the proposed 

method has also been compared with some state-of-the-art spectral 

feature extraction techniques to show its efficacy. In addition, it 

has been proven that the proposed method is able to remove the 

undesirable artefacts introduced during the data acquisition 

process as well. By adding an extra spatial post-processing step to 

the classified map achieved using the proposed approach, we have 

shown that the classification performance is comparable with 

several recent spectral-spatial classification methods. 

 
Index Terms—Hyperspectral imaging (HSI), the curvelet 

transform, singular spectrum analysis (SSA), classification, 

support vector machine (SVM), spatial post-processing.  
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I. INTRODUCTION 

YPERSPECTRAL imaging (HSI) sensors, which capture 

hundreds of continuous bands in a broad spectral range 

covering visible, near-infrared, and beyond, play an important 

role in many research areas, including applications in food 

quality control and analysis [1], pharmaceuticals [2], 

computer-based forensics and security [3], as well as planet 

surface investigation such as Mars [4]. In addition to these 

applications, one of the most active areas of HSI is remote 

sensing, where researchers develop diverse algorithms based on 

it, e.g. target detection for military surveillance [5], data 

compression for faster transmission [6, 7], surface and data 

classification for land-cover analysis [8–12]. However, due to 

the characteristics of HSI, data redundancy is inevitable. 

Furthermore, for remote sensing HSI, noise could be involved 

during the process of data acquisition and transmission. 

Therefore, effective feature extraction and denoising of HSI 

data is necessary for remote sensing applications, in particular 

for supervised classification problems as discussed in this 

paper. 

 Feature extraction could be considered as a linear or 

non-linear data transformation. Several unsupervised and 

supervised feature extraction methods have been proposed by 

researchers, including the most widely used principal 

component analysis (PCA) [8, 12], along with other approaches 

such as independent component analysis (ICA) [13], linear 

discriminant analysis (LDA) [14], minimum noise fraction 

(MNF) [15], non-negative matrix factorisation (NMF) [16] and 

singular value decomposition (SVD) [17]. The above 

mentioned approaches not only extract features, but also they 

could reduce the dimensionality of HSI data. Other alternatives 

exist for supervised feature extraction without reducing the data 

dimensionality, such as spectral curve fitting of hyperspectral 

image bands [18]. Additionally, an impressive technique, called 

singular spectrum analysis (SSA), has recently demonstrated its 

ability in effective feature extraction for HSI data. SSA is a 

great improvement in terms of potential classification 

accuracies compared with another popular technique, empirical 

mode decomposition (EMD) [9–11]. Rather than reducing the 

dimensionality, SSA ’smooths’ the spectral profile of HSI data 
so that effective features can be extracted and classification 

accuracies can be improved accordingly. 
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It is assumed that directly applying denoising techniques on 

the original image could probably remove fine features and 

noise at the same time, which is undesirable for following 

applications. To avoid this problem, the multi-scale wavelet 

transform based approaches are widely used for image 

denoising, where the transform decomposes the image into a set 

of wavelet coefficients at different decomposition levels, and 

noise in the low-energy channels of the transformed domain can 

be removed. A famous algorithm called soft thresholding in the 

wavelet domain was proposed by Donoho in [19]. By removing 

small coefficients under a certain threshold and shrinking large 

coefficients, most unwanted noise can be discarded easily. For 

HSI data, Othman and Qian proposed a hybrid spatial-spectral 

derivative-domain wavelet shrinkage approach based on the soft 

thresholding [20]. This algorithm works in the spectral 

derivative domain, in which the noise level is elevated and the 

signal regularity is dissimilar in the spatial and spectral domains 

of HSI data. Recently, Chen and Qian combined feature 

extraction and denoising, leading to a more effective denoising 

method for HSI data using PCA and wavelet shrinkage [21]. In 

this approach, first PCA transform is performed on the HSI data 

and then a 2D bivariate wavelet thresholding method is used to 

remove noise for low-energy PCA channels. 

In this paper, we are also aiming at combining ideas of feature 

extraction and denoising together for improving classification 

accuracies of remote sensing hyperspectral images. This work is 

inspired by [22] where the curvelet transform is applied to HSI 

data and the representation of noise free signals in the curvelet 

domain is predicted using multiple linear regression (MLR), a 

regression that has been previously used for noise analysis 

[23-24]. Although the wavelet transform has been widely 

applied for image denoising, many studies have concluded that 

the wavelet transform cannot provide a good representation of 

an anisotropic singularity, such as curves or edges in the image 

[25–27]. For this reason, soft-thresholding directional curvelet 

coefficients that match image edges could achieve better noise 

reduction effect than the coefficients obtained in the wavelet 

domain. It has been proven that the curvelet transform could 

represent piecewise linear contours on multiple scales through a 

few significant coefficients, leading to a better separation 

between geometric details and background noise [28]. 

Therefore, the curvelet transform is a good candidate for image 

denoising and enhancement. After the curvelet transform, the 

coefficients of two adjacent bands still maintain the correlation 

similarity of the original HSI data [29], which means spectral 

processing techniques could then be applied in the curvelet 

domain. Feature extraction by MLR in [22] is achieved by 

estimating the noise free band by using all pixels in adjacent 

bands at the same time, while more accurate spectral feature 

extraction is proposed to be achieved by applying the above 

mentioned SSA to each pixel. The denoising performance in 

[22] is then assessed by adding noise to the original HSI data 

and comparing the mean squared errors (MSE) and the mean 

structural similarity (MSSIM) between the original data and 

denoised data, where the classification performance on the 

denoised image is unknown. We therefore adopt the curvelet 

transform instead of the wavelet transform in our approach and 

combine SSA to extract effective spectral features in the 

curvelet domain in order to improve classification accuracies 

for remote sensing hyperspectral images. 

The paper is organized as follows: the theory of the curvelet 

transform and SSA is introduced in Section II. The proposed 

denoising and feature extraction approach applied on HSI data 

is given in Section III. Section IV introduces the experimental 

setup, including data sets, the classifier and tuning of optimal 

parameters. Results and analysis are presented in Section V. 

The paper ends with a conclusion section. 

II. BACKGROUND PRINCIPLES 

In this section, the theory of the curvelet transform and SSA 

[9, 26, 30–33], which will be used in following sections, is 

reviewed. 

A. The Curvelet Transform 

Similar to the wavelet transform, the curvelet transform could 

also provide multi-scale analysis on images. It was first 

proposed by Candes and Donoho in 1999, and their version is 

also called the first-generation curvelet transform [34]. 

However, this transform is rather complicated and needs at least 

four steps to complete, including a sub-band decomposition, 

smooth partitioning, renormalization and ridgelet analysis [34]. 

A few years later, a simpler and faster version of the curvelet 

transform was developed, which is the second-generation 

transform also called the fast discrete curvelet transform 

(FDCT) [31]. Two forms of FDCT with the same computational 

complexity were proposed by Candes et al., based on the 

unequally-spaced fast Fourier transforms (USFFT) and the 

wrapping of specially selected Fourier samples, respectively. 

The curvelet transform used here is the one based on USFFT. 

Let us assume there is a pair of smooth, non-negative and 

real-valued windows called the radial window )(rW and the 

angular window )(tV , such that W  is supported on 

)2,21(r  and V  is supported on ]1,1[t . These 

windows will always satisfy the admissibility conditions: 

)23,43(,1)2(2 
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For each scale j , the frequency window jU is defined in 

the Fourier domain by 
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where ]2[ j is the integer part of 2j . Consequently the 

support of jU  is defined by the support of W  and V , 

which will be a polar wedge. 
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A mother curvelet waveform )(xj is defined related to 

)(jU ( ),( rU j  will be abbreviated as )(jU ), where 

the Fourier transform of j  is equal to jU . Thus, all 

curvelets of scale 
j2  can be acquired by rotations and 

translations of j , where the equispaced sequence of 

rotation angles are lj
l   ]2[22 , with ,...1,0l  

such that  20  l , and the sequence of translation 

parameters 
2

21 ),( Zkkk  . Then, we can have the 

curvelets at scale
j2 , orientation l  and 

position  2
21

1),(
2,2 jjlj

k kkRx
l

   , defined as 

  ),(
,, )( lj

kjklj xxRx
l

  ,      (4) 

where R  is the rotation by  radians and 
1

R is its inverse, 
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A curvelet coefficient of an element 
2f   is the inner 

product of f  and a curvelet klj ,, , 

 2 )()(,:),,( ,,,, R kljklj dxxxffkljc  . (6) 

Our discussion of the digital curvelet transforms will 

always be in the frequency domain. Therefore, the curvelet 

coefficient could be re-expressed in the frequency domain 

using Plancherel’s theorem, 
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In practice, instead of using the polar window defined in 

(3), it is more common to use Cartesian equivalents. The 

Cartesian frequency window is shown as follows: 

)()(:)(
~

1  jjj VU  ,      (8) 

where we define 
2

1
2

11 )()2()(    as a 

bandpass profile in )2()( 11  j
j

 and 

)2()( 12
]2[  j

j VV   with V  still obeying (2). By 

introducing the set of equispaced slopes 
]2[2:tan j

l l   

with 12,,2 ]2[]2[  jjl  , for each )4,4[  l , 

the Cartesian window can be rewritten as: 

)()(:)(
~

1,  l
SVU jjlj  ,      (9) 

where S  is the shear matrix defined as below: 
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Similarly, curvelets should be re-defined in Cartesian form: 

  bSxSx TT
j

j
klj ll

  ~
2)(

~ 43
,, ,    (11) 

with  2
21 2,2: jj kkb   , where the superscript T  

represents the transpose of the matrix. Accordingly, the curvelet 

coefficient will be 

  
 deUSfkljc
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Assume the input Cartesian arrays for an n  by n image are 

in the form of nttttf  2121 ,0],,[ , a four-step 

implementation of FDCT via USFFT can be obtained as 

follows: 

1) 2D FFT: Apply two-dimensional (2D) fast Fourier 

transform (FFT) to input arrays and obtain Fourier samples as: 

ntntni
n

tt

ettfnnf
)(2

1

0,
2121

2211

21

],[],[ˆ 



 

,  (13) 

with 2,2 21 nnnn  . 

2) Interpolation: For each pair of scale and angle ),( lj , 

Fourier samples ],[ˆ 21 nnf  are interpolated to get new values, 

]tan,[ˆ 121 lnnnf  , for jPnn 21, . jP  is defined as a 

set below: 

}

:),{(

,220220

,11011021
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where jL ,1  and jL ,2 are the length and width of a rectangle 

and ),( 2010 nn  is the index of the pixel at the bottom-left of the 

rectangle. 

3) Multiplication: Multiply the interpolated samples with 

the frequency window jU
~

 and obtain 

],[
~

]tan,[ˆ],[
~

2112121, nnUnnnfnnf jllj  . (15) 

4) Inverse 2D FFT: The last step is to apply the inverse 2D 

FFT to ljf ,

~
 in order to get the discrete curvelet coefficients: 
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With all four steps, the discrete curvelet transform via 

USFFT requires )log( 2 nnO flops for computation and 

)( 2nO  for storage. 
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B. Singular Spectrum Analysis 

As a well-established approach, SSA has been applied for 

time series analysis and forecasting and is widely used in 

different areas, including mathematics, economics and even 

biomedical engineering [35]. SSA shares the same theoretical 

foundations as PCA. Both of them are able to decompose the 

original time series into a linear combination of a new 

orthogonal basis, which includes eigenvectors generated from 

the diagonalization of the data correlation matrix [36]. The main 

capability of SSA is that it can decompose the original series 

into some interpretable components, such as the trend, 

oscillations and unstructured noise [9]. The SSA algorithm 

consists of two stages including the decomposition and the 

reconstruction, and it is briefly explained as follows. 

1) Decomposition: Assume that X is a non-zero 

one-dimensional (1D) series vector with length N , 

i.e., ),,,( 21 Nxxx X . Given a window 

size )1( NLL  , the original series X  is mapped to K  

lagged vectors, 
T

Liiii xxx ),,,( 11  X for 

Ki ,,2,1  , where 1 LNK . The window size 

should be chosen properly depending on the application. Then 

the trajectory matrix is formed as: 
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.   (17) 

It should be noted that the matrix T  in (17) is a Hankel 

matrix of size KL , which means its entries along the 

anti-diagonals are equal. 

The next step is to compute the SVD of the trajectory matrix 

T . First, eigenvalues of 
TTT  are calculated and sorted in a 

descending order, i.e., 021  L  . Let the 

corresponding eigenvectors be  LUUU ,,, 21  , and the 

resulting trajectory matrix after the SVD is shown in (18), 

dTTTT  21 ,      (18) 

where d  is the rank of T , 
T
iiii VUT    

),,2,1( di  is called the elementary matrix with rank 1, 

and ii
T

i UTV  are often referred to the principal 

components (PCs) of the matrix T . Generally, the contribution 

of the elementary matrix iT  to the trajectory matrix T  is 

determined by the ratio of each eigenvalue and the sum of all 

eigenvalues, as shown in (19), 
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 .        (19) 

2) Reconstruction: The first step of reconstruction is 

grouping, where the set of indices },,2,1{ d is divided 

into m  disjoint subsets },,,{ 21 mIII  . Each 

),,2,1( mjI j  contains one or several elementary 

matrices iT which are summed within each group. Then, the 

resultant trajectory matrices can be computed for each group 

and consequently (18) is expanded as follows: 
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The last step is diagonal averaging, which transforms each 

grouped matrix 
jIT  into a new series with length N . This 

process is also known as Hankelisation of the matrix 
jIT  . 

Assume ),,,( 211 Nyyy Y  is the transformed 1D series 

of 
1I

T  , elements in 1Y   can be calculated using (21) by 

averaging the corresponding diagonals of 
1I

T , 
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(21) 

where ),max(),,min( ** KLKKLL  , 
*

1,  jkjy  

refers to the elements in 
1I

T  , 1,
*

1,   jkjjkj yy  if 

KL  and jjkjkj yy ,1
*

1,    if KL  . Then, the initial 

series ),,,( 21 Nxxx X is decomposed into m  series, 

like shown in (22), 

mYYYX  21
.       (22) 

Therefore, the original series vector could be reconstructed 

by only using the first or the first a few groups generated from its 

eigenvalues and the rest could be discarded as noise. For 

example, if the window size L  is set as ten, reconstruction 

using the first three to five components should usually be 

enough to achieve a good denoising performance. However, 

there is no general rule for the grouping. Like the window 

size L , one can choose the eigenvalue grouping (EVG) value 

depending on the application. If all decomposed components 

are involved in the EVG, the reconstructed series will be the 

same as the original series. 
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III. THE PROPOSED APPROACH: APPLYING SSA IN THE 

CURVELET DOMAIN 

As briefly mentioned in Section I, the proposed denoising 

and feature extraction approach will be applied on hyperspectral 

images and the flowchart is shown in Fig. 1 for reference. 

Hyperspectral sensors have a relatively high spectral resolution 

and can generate hundreds of observation channels [37]. The 

obtained three-dimensional (3D) HSI data cube can be regarded 

as a stack of 2D images of the same scene corresponding to 

different wavelengths [22], and the correlation between each 

two adjacent bands is fairly high. The first step of the proposed 

method is to perform the curvelet transform on each band of the 

hyperspectral image and a few image stacks are generated after 

the transform as shown in Fig. 1. By applying the curvelet 

transform on each band, the band correlation property can be 

preserved so that SSA is able to exploit the spectral signature. 

The next step is to apply SSA in the spectral dimension for each 

detail image stack for feature extraction and denoising. After 

that, the denoised detail images at each band are gathered 

according to their original location, followed by the inverse 

curvelet transform to get the denoised hyperspectral image.  
 

 

Fig. 1.  Flowchart of the proposed methodology. 

 

In this paper, a hyperspectral image is denoted as 
B

B qpIqpIqpIqp  )),(,),,(),,((),( 21 I , where 

],1[],,1[ QqPp   and QP  is the spatial dimension 

of the hyperspectral image and B  is the number of bands.   

represents the set of real numbers with the pixel intensity 

),( qpIb  at all sensor channels with ],1[ Bb . The 2D 

curvelet transform via USFFT employed in this paper is 

completed using the toolbox CurveLab (version 2.1.2) [38]. 

Similar to the wavelet transform, the curvelet transform can also 

decompose the image into a coarse image and several detail 

images. Just like most image processing algorithms, the curvelet 

transform requires the processed image to be a square whose 

dimension is a power of two. If the size of the original image is 

not a power of two, pixels with a value of zero are padded to the 

next larger power of two.  

Given the zero-padded HSI data set, 

,),,(_),,(_(),(_ 21 nmpadInmpadInmpad I  

)),(_ nmpadI B where ],1[, Nnm  , consisting of B  

bands where each band has 
2N  pixels, the curvelet transform 

is performed on a band image bpadI _  to obtain the curvelet 

coefficients corresponding to that band
D
bc : 

)_( b
D
b padICTc  ,       (23) 

where CT stands for the discrete curvelet transform operation 

explained in Section II. The decomposition results of the 

transform can be regarded as a superposition in the form as 

follows: 







1

1
,,

J

j
jbJb

D
b WCc ,       (24) 

where JbC ,  is the coarse version of the original band image 

with low frequency contents and jbW , stands for the detail band 

image at scale
j2  containing high frequency contents. With an 

N  by N  image, the default number of decomposition scales 

is 3)(log2  NJ as set in the CurveLab toolbox. Take a 

band image with size of 128 by 128 for instance, the number of 

decomposition scales J  will be four. According to the settings 

in the toolbox, there are eight orientations of the curvelet in the 

second and third scales, starting from the top-left wedge and 

increasing in a clockwise fashion, but for the coarsest and finest 

scales, there is only one direction. Thus, (24) is rewritten as 

below, 

 


 


1

2

8

1
,,1,1,1,,

J

j l
ljbbJb

D
b WWCc ,    (25) 

where 1,1,bW  represents the finest scale with one orientation. 

The schematic diagram of four decomposition scales 

corresponding to a 128 by 128 image is shown in Fig. 2. Then, 

after applying the curvelet transform to all bands, there will be 

a coarse image stack and 17 detail image stacks. 
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Fig. 2.  Illustration of a 128 by 128 image with 4 decomposition scales, where 

(a) is the first (finest) scale with 1 orientation, (b) is the second scale with 8 

orientations, (c) is the third scale with 8 orientations, and (d) is the fourth 

(coarsest) scale with 1 orientation. 

 

As suggested by the commonly adopted wavelet denoising 

rule, noise is removed by thresholding only the wavelet 

coefficients of the detail sub-bands, while keeping the low 

frequency coefficients unchanged [39]. Therefore, in our 

approach, the coarse image stack stays unaltered as well. For 

each detail image stack, SSA is applied to the spectral 

dimension for smoothing the spectral profile, followed by the 

inverse curvelet transform to get the denoised HSI data cube. 

Given a detail image stack at scale 
j2 and orientation l , 

which is denoted as 

]),1[],,1[],,1[(),(,, YyXxBbyxW ljb  containing 

YX  coefficients in each band, the spectral series vector for 

one pixel can be constructed as 

)),(,),,(),,((),( ,,,,2,,1, yxWyxWyxWyx ljBljljlj W

. Then, the smoothing process on the spectral dimension by SSA 

could be achieved, denoted as below, 

)),((),( ,,, yxSSAyx ljEVGLlj WY  ,    (26) 

in which SSA  is the operation of the singular spectrum 

analysis listed in (18)-(22), L , EVG  are SSA parameters, and 

)),(,),,(),,((),( ,,,,2,,1, yxYyxYyxYyx ljBljljlj Y is 

the smoothed spectral feature in the curvelet domain. After 

collecting all smoothed spectra for each detail stack, the inverse 

discrete curvelet transform is performed on the smoothed 

curvelet coefficients band by band using the same toolbox 

CurveLab and the denoised HSI data cube is achieved, shown as 

(27), 









  



 

1

2

8

1
,,1,1,1,,_

J

j l
ljbbJbb YYCICTdI ,  (27) 

where ICT stands for the inverse curvelet transform operation. 

The last step is to crop the denoised HSI cube to its original size. 

The pseudo code of the proposed curvelet and SSA approach is 

summarized in Algorithm 1. 

 

Algorithm 1 The Curvelet and SSA algorithm 

1: procedure CURVELETSSA( I , L , EVG )  

BQP   HSI data set I , SSA window size L  

and grouping parameter EVG  

2: if QP   & P , Q  are not power of two then 

3: zero-pad each band of I  to the next larger 

power of two to get 

4: a new data cube padI _ with size of 

5: BNN   

6: else 

7: IpadI _  

8: end if 

  

9: for Bb ,1  do 

10: apply curvelet transform to bpadI _  to get   

11: coarse JbC ,  and detail ljbW ,,  images 

12: end for 

  

13: for all detail image stacks do 

14: for Xx ,1  do 

15: for Yy ,1  do 

16: ,),,(((),( ,,1, yxWyx ljlj W  

17: )),(,, yxW ljB  

18: ),),,((),( ,, EVGLyxSSAyx ljlj WY 
 

19: end for 

20: end for 

21: end for 

  

22: substitute original detail curvelet coefficients 

23: with SSA-processed detail coefficients 

  

24: for Bb ,1 do 

25: apply inverse curvelet transform to JbC ,   and 

26: 
ljb ,,Y  to get denoised band image bdI _  

27: end for 

  

28: crop bdI _ to the original size BQP   

29: end procedure 

IV. DATA SETS AND EXPERIMENTAL SETUP 

In this section, the experimental data sets will be introduced 

as well as the choice of the classification model and parameters. 

Three publicly available and widely used HSI remote sensing 

data sets are employed to evaluate the performance of the 

proposed method in this paper, including the airborne 

visible/infrared imaging spectrometer (AVIRIS) natural scenes 

Indian Pines [40] and Salinas Valley [41], as well as the 

reflective optics system imaging spectrometer (ROSIS) urban 

scene Pavia University [42]. 

The Indian Pines data set, was collected in the Indian Pines 

test site in North-western Indiana, USA in June 12, 1992. The 

scene consists of two-thirds agriculture, and one-third forest or 

other natural perennial vegetation [43]. Acquired in band 

interleaved (BIL) format, it has 145 by 145 pixels with a spatial 

resolution of 18 m, and 220 continuous spectral channels 

ranging from 400 to 2500 nm covering the complete 
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VIS-NIR-SWIR spectrum. The nominal spectral resolution is 

10 nm and the radiometric resolution is 16 bits [44]. Due to 

atmospheric water absorption, bands 104-108, 150-163 and 220 

do not contain useful information and are consequently 

removed to prevent from decreasing the classification accuracy, 

resulting in a reduced data set with 200 spectral bands. There 

are 16 classes in the original ground truth map. However, some 

classes have insufficient samples for training the classification 

model. As suggested by other researchers [9, 37, 45], 7 out of 16 

classes are discarded for more consistent results, leaving 9 

classes considered in experiments. One band image and the 

reduced ground truth map of Indian Pines are shown in Fig. 3. 

 

 

Fig. 3.  Indian Pines data set: band 150 out of 200 bands (left) and the reduced 

9-class ground truth map (right) with number of samples shown. 

 

 

Fig. 4.  Salinas Valley data set: band 50 out of 204 bands (left) and the 16 

class-ground truth map (right) with number of samples shown. 

 

The second data set was collected over Salinas Valley, CA at 

low altitude in October 9, 1998, resulting in a high spatial 

resolution of 3.7 m per pixel [46]. The full scene, which 

includes vegetables, bare soils and vineyard fields, comprises 

512 lines by 217 samples with 224 spectral bands. The spectral 

and radiometric resolutions of this data set are the same as for 

Indian Pines. After removing water absorption bands (108-112, 

154-167 and 224), the obtained image then has 204 channels 

covering 400 to 2500 nm [44]. The ground truth map of Salinas 

Valley contains 16 classes as shown in Fig. 4. 

The Pavia University data set was collected during a flight 

campaign over the Pavia district in north Italy, with a spatial 

resolution of 1.3 m per pixel [47]. There are originally 115 

bands with a spectral coverage ranging from 430 to 860 nm. 

However, 12 channels have been removed due to noise, leaving 

103 bands with 610 × 340 pixels per band. Nine classes of 

interest are provided in the ground truth map, including urban, 

soil and vegetation features, as shown in Fig. 5. 

 

 

Fig. 5.  Pavia University data set: band 70 out of 103 bands (left) and the 9 

class-ground truth map (right) with number of samples shown. 

 

The spatial area of all data sets is not a square, hence, before 

applying the curvelet transform, Indian Pines, Salinas Valley 

and Pavia University are zero-padded to the size of 256 × 256 × 

200, 512 × 512 × 204 and 1024 × 1024 × 103, respectively. 

Then, when the denoising and feature extraction process is 

finished, reconstructed images are cropped to their original 

sizes for the following performance evaluation. 

In the context of supervised classification, a variety of 

methods have been developed for HSI data classification 

problems, including the famous artificial neural networks 

[48–50], multinomial logistic regression [51], as well as the 

widely used support vector machine (SVM) which shows its 

outstanding performance in many papers [1, 8, 37, 52]. The 

properties of SVM make it an effective tool for HSI data 

classification problems which are influenced by the Hughes 

phenomenon [53]. The Hughes phenomenon is also known as 

the ’curse of dimensionality’, where the high number of spectral 
bands and low number of labelled training sample result in an 

decrease in the generalisation capability of the classifier [37]. In 

this paper, a publicly available SVM library called LIBSVM 

[54] is adopted and the Gaussian radial basis function (RBF) 

kernel is chosen as it has been shown to outperform other kernel 

functions for HSI data, such as linear and polynomial kernel 
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functions, in terms of classification accuracy [37]. Optimal 

values of the regularization parameter C and the width 

parameter γ in the Gaussian RBF kernel are achieved using 
ten-fold cross validation on training samples, where values of 

both parameters are tested within the exponentially increasing 

sequence }2,,2,2{ 10910 
. 

V. RESULTS AND ANALYSIS 

In this section, the classification results based on SVM for 

three hyperspectral data sets are revealed. The classification 

performance is evaluated by the overall accuracy (OA) and the 

average accuracy (AA), where OA refers to the percentage of all 

pixels that are correctly labelled and AA stands for the average 

percentage of correctly labelled pixels for each class. 

Since the proposed methodology is inspired by feature 

extraction approach based on SSA [9] and the denoising 

approach in [22] which uses MLR applied in the curvelet 

domain, it is compared with them in subsection A below. 

Besides, the curvelet transform is similar to the wavelet 

transform as a multi-scale geometric analysis (MGA). 

Therefore, SSA and MLR are also applied in the wavelet 

domain for comparison in this subsection. For the wavelet 

transform-based approaches, the hyperspectral data are also 

zero-padded and the number of decomposition scales is set the 

same as the curvelet transform, where the 

Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet is adopted. 

For convenience, the proposed approach is denoted as CT-SSA 

and other inspirational approaches are named as SSA, CT-MLR 

(MLR applied in the curvelet domain), WT-MLR (MLR applied 

in the wavelet domain) and WT-SSA (SSA applied in the 

wavelet domain). The computational cost required for these 

methods is also discussed in this part. 

Then, the CT-SSA method as well as its extended version 

CT-SSA-PCA, are further compared with some state- of-the-art 

spectral feature extraction techniques in subsection B, including 

PCA, LDA, NMF and ensemble EMD (EEMD) [55], to show 

the efficacy of the proposed methodology. 

The proposed approach only takes into account the spectral 

information of the HSI data, while ignoring the important spatial 

information. For this reason, in subsection C, a simple yet 

powerful post-processing technique is applied to the classified 

ground truth map and it is compared with several recent 

spectral-spatial classification methods listed in [56]. 

A. Comparison with Inspirational Approaches 

The SSA based feature extraction approach mentioned in [9] 

has two parameters: window size L  and grouping parameter 

EVG . It is noticed in [9] that good results can be achieved with 

only the first component used for EVG , as long as a proper 

window size L  is chosen. Another parameter in the proposed 

approach is the decomposition level in the curvelet transform. 

As mentioned previously, the default number of decomposition 

levels in the CurveLab toolbox is 3)(log2  NJ  and it is 

advised that the number of decomposition levels should not be 

higher than the default setting. Therefore, different values have 

been tested to look for optimal parameters. Firstly, the default 

number of decomposition levels is used in the curvelet 

transform and the window size L  is tested from 2 to 5 as 

plotted in Fig. 6. Similarly, experiments have been carried out 

ten times, and the average OA as well as the standard deviation 

are shown in the plots. By trial and error, optimal value for L  is 

set as 5 for both Indian Pines and Salinas Valley. For Pavia 

University, L  is set as 4. The same settings of SSA are used for 

CT-SSA and WT-SSA as well. With the chosen optimal values 

for window size L , the number of decomposition levels is 

tested from 2 to the default setting. Results plotted in Fig. 6 

indicate that the default setting of decomposition levels should 

always be used in the curvelet transform. 

 

  

  

  
Fig. 6.  Sensitivity analysis of window size (left) and number of 

decomposition levels (right) for Indiana Pines (top), Salinas Valley  

(middle) and Pavia University (bottom). 

 

For the Indian Pines data set, in each class out of the 9 classes, 

10% of pixels are randomly extracted into the training set with 

the rest allocated in the testing set. As Salinas Valley is a high 

resolution HSI data set, spectra with this scene are more 

separable than those with Indian Pines. Therefore, a lower 

percentage of samples in each class (5%) is used for training the 

classification model of SVM to give a more interpretable result. 

A recent publication proposed to use a fixed number (200) from 

each class in the Pavia University data set as training samples 

[56], which account for 4% of the whole labelled pixels. 

Therefore, 4% of pixels are also randomly chosen from Pavia 

University for training SVM in the following experiment. Figs. 

7-9 have shown the classification maps as well as overall 
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accuracies for three data sets. Compared with those 

inspirational methods, the CT-SSA approach always presents 

better denoising and feature extraction performance in terms of 

highest classification accuracies. 

Additionally, the capability of the proposed CT-SSA method 

in removing noise is compared. One noisy band is taken from 

each data set and the same band after being processed by 

CT-SSA is compared visually in Fig. 10 – 12. It can be observed 

that the CT-SSA method works for both high-noise (Fig. 10 and 

Fig. 11) and low-noise (Fig. 12) cases, where the noise in the 

corrupted band is effectively suppressed and local details of the 

original image can be kept simultaneously. 

In order to avoid errors and to get a more consistent result, ten 

repeated experiments are carried out based on randomly chosen 

training and testing samples, and average classification 

accuracies are calculated, with numerical results shown in Table 

I – III for three experimental data sets. It can be noticed that 

compared with the original image, OA using the CT-SSA 

method is increased with a percentage of 10.02%, 4.44% and 

0.89% respectively for three data sets, achieving an impressive 

improvement over other methods. For both Indian Pines and 

Salinas Valley, in most cases, the proposed method presents the 

highest classification accuracy, especially in class 15 of Salinas 

Valley, the accuracy is improved by over 20% compared with 

the raw image. Although it was found that the classification of 

hyperspectral urban data is a challenging problem without 

combining the spatial and spectral information together [47], 

both AA and OA are slightly improved for Pavia University 

using the proposed spectral processing method CT-SSA. In 

comparison with CT-MLR, WT-MLR yields slightly worse 

results in both AA and OA. Same situations occur for WT-SSA 

and CT-SSA, where the latter presents slightly higher AA and 

OA than the former. It proves that the curvelet transform does 

have advantages over the wavelet transform for extracting 

geometric details in some ways, but the performance of the 

curvelet transform is largely dependent on the data set. Despite 

the fact that CT-SSA is inspired by CT-MLR, SSA is applied to 

the detail curvelet coefficients for each pixel while MLR is 

applied to each detail image stack all at once. This along with 

the embedding process and SVD decomposition in SSA is the 

main reason why CT-SSA overperforms MLR in potentially 

maximised the opportunity in reducing redundancy and noise 

within the hyperspectral image data for improved accuracy of 

classification. 

 

TABLE I 

MEAN CLASS-BY-CLASS, AVERAGE AND OVERALL ACCURACIES (%) OF TEN REPEATED EXPERIMENTS ON TESTING SAMPLES OF THE ORIGINAL INDIAN PINES DATA 

SET AND SSA, CT-MLR, WT-MLR, WT-SSA AND CT-SSA PROCESSED DATA SETS WITH 10% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD 

DEVIATION 

Class 
Method 

Original SSA CT-MLR WT-MLR WT-SSA CT-SSA 

2 75.44 ± 2.09 80.02 ± 2.38 86.76 ± 1.35 86.15 ± 2.20 87.61 ± 1.97 89.58 ± 3.15 

3 69.92 ± 5.11 77.01 ± 5.34 88.26 ± 3.16 89.64 ± 2.84 93.19 ± 1.42 92.38 ± 2.43 

5 90.46 ± 3.41 91.31 ± 1.34 93.33 ± 2.10 92.60 ± 2.08 93.17 ± 2.06 94.76 ± 1.94 

6 98.11 ± 0.86 97.79 ± 0.67 98.71 ± 0.95 98.54 ± 0.88 98.89 ± 0.95 98.95 ± 0.45 

8 99.26 ± 0.42 99.63 ± 0.23 99.61 ± 0.35 99.77 ± 0.36 99.54 ± 0.48 99.84 ± 0.11 

10 72.35 ± 2.59 80.87 ± 4.74 86.22 ± 1.52 85.49 ± 2.56 90.20 ± 2.33 89.45 ± 2.29 

11 85.10 ± 2.32 87.52 ± 1.73 92.01 ± 1.52 91.65 ± 1.65 94.59 ± 2.02 93.96 ± 0.95 

12 75.21 ± 3.96 82.42 ± 5.23 85.99 ± 2.16 87.83 ± 2.80 91.92 ± 2.00 90.83 ± 2.73 

14 98.27 ± 0.52 98.37 ± 0.62 99.17 ± 0.35 99.07 ± 0.57 98.93 ± 1.04 99.54 ± 0.26 

AA 84.90 ± 1.18 88.35 ± 1.01 92.34 ± 0.41 92.30 ± 0.55 94.23 ± 0.29 94.48 ± 0.32 

OA 84.11 ± 0.87 87.54 ± 0.83 91.93 ± 0.50 91.76 ± 0.44 93.87 ± 0.38 94.13 ± 0.28 

 
TABLE II 

MEAN CLASS-BY-CLASS, AVERAGE AND OVERALL ACCURACIES (%) OF TEN REPEATED EXPERIMENTS ON TESTING SAMPLES OF THE ORIGINAL SALINAS VALLEY 

DATA SET AND SSA, CT-MLR, WT-MLR, WT-SSA AND CT-SSA PROCESSED DATA SETS WITH 5% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD 

DEVIATION 

Class 
Method 

Original SSA CT-MLR WT-MLR WT-SSA CT-SSA 

1 99.02 ± 0.50 99.07 ± 0.61 99.48 ± 0.44 99.40 ± 0.41 99.32 ± 0.37 99.35 ± 0.33 

2 99.85 ± 0.06 99.71 ± 0.20 99.68 ± 0.20 99.72 ± 0.20 99.68 ± 0.24 99.69 ± 0.27 

3 99.07 ± 0.41 99.37 ± 0.49 99.39 ± 0.33 99.67 ± 0.08 99.65 ± 0.19 99.59 ± 0.22 

4 99.21 ± 0.34 99.44 ± 0.34 99.32 ± 0.28 99.30 ± 0.41 99.09 ± 0.69 99.28 ± 0.33 

5 98.79 ± 0.42 98.52 ± 0.75 99.07 ± 0.66 98.84 ± 0.60 98.98 ± 0.55 99.04 ± 0.32 
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6 99.80 ± 0.08 99.74 ± 0.17 99.80 ± 0.09 99.98 ± 0.14 99.83 ± 0.16 99.81 ± 0.08 

7 99.62 ± 0.18 99.48 ± 0.23 99.52 ± 0.17 99.51 ± 0.23 99.59 ± 0.18 99.62 ± 0.15 

8 88.05 ± 1.47 87.90 ± 1.20 91.28 ± 0.82 90.62 ± 0.77 92.26 ± 0.74 94.60 ± 0.75 

9 99.65 ± 0.22 99.72 ± 0.14 99.60 ± 0.42 99.54 ± 0.21 99.86 ± 0.09 99.88 ± 0.09 

10 94.98 ± 1.20 95.19 ± 0.80 95.36 ± 1.30 96.01 ± 1.11 97.35 ± 1.17 97.19 ± 1.02 

11 97.63 ± 1.01 97.02 ± 2.10 97.84 ± 1.42 97.62 ± 2.44 97.78 ± 2.58 98.58 ± 0.30 

12 99.53 ± 0.28 99.64 ± 0.19 99.78 ± 0.15 99.50 ± 0.80 99.79 ± 0.20 99.92 ± 0.06 

13 98.09 ± 1.11 98.45 ± 1.40 98.43 ± 0.86 98.84 ± 0.72 98.52 ± 0.93 98.54 ± 0.95 

14 94.56 ± 2.12 95.70 ± 1.99 96.86 ± 1.45 95.89 ± 2.14 94.83 ± 3.80 96.46 ± 1.62 

15 71.73 ± 3.21 76.16 ± 1.85 82.70 ± 2.88 83.17 ± 1.26 87.12 ± 1.73 92.49 ± 0.86 

16 98.34 ± 0.28 98.13 ± 0.51 98.72 ± 0.32 98.48 ± 1.18 98.50 ± 0.97 98.71 ± 0.26 

AA 96.12 ± 0.11 96.45 ± 0.22 97.30 ± 0.28 97.25 ± 0.31 97.63 ± 0.44 98.30 ± 0.13 

OA 92.91 ± 0.12 93.49 ± 0.25 95.18 ± 0.33 95.11 ± 0.21 96.08 ± 0.34 97.35 ± 0.16 

 

TABLE III 

MEAN CLASS-BY-CLASS, AVERAGE AND OVERALL ACCURACIES (%) OF TEN REPEATED EXPERIMENTS ON TESTING SAMPLES OF THE ORIGINAL PAVIA UNIVERSITY 

DATA SET AND SSA, CT-MLR, WT-MLR, WT-SSA AND CT-SSA PROCESSED DATA SETS WITH 4% OF DATA USED FOR TRAINING, FOLLOWED BY THE STANDARD 

DEVIATION 

Class 
Method 

Original SSA CT-MLR WT-MLR WT-SSA CT-SSA 

1 93.05 ± 0.69 92.50 ± 1.11 93.27 ± 0.99 92.27 ± 0.66 92.81 ± 0.66 94.17 ± 0.91 

2 97.63 ± 0.38 97.47 ± 0.54 97.74 ± 0.54 97.65 ± 0.39 98.10 ± 0.27 97.92 ± 0.21 

3 76.45 ± 1.65 76.21 ± 2.02 79.05 ± 2.79 77.51 ± 2.78 80.48 ± 0.84 79.63 ± 1.59 

4 93.15 ± 1.63 92.88 ± 1.42 93.40 ± 1.41 92.69 ± 1.99 92.43 ± 2.26 93.97 ± 1.66 

5 99.08 ± 0.35 99.03 ± 0.29 99.11 ± 0.41 99.15 ± 0.32 99.01 ± 0.24 99.10 ± 0.31 

6 86.19 ± 1.91 85.20 ± 1.56 86.99 ± 1.02 86.46 ± 1.53 88.10 ± 1.16 88.11 ± 1.67 

7 83.07 ± 3.70 85.45 ± 2.14 83.55 ± 2.09 85.47 ± 2.99 86.59 ± 2.94 85.62 ± 1.72 

8 87.43 ± 2.52 87.75 ± 1.44 87.66 ± 2.40 88.04 ± 1.97 88.02 ± 0.58 88.08 ± 1.90 

9 99.84 ± 0.12 99.77 ± 0.23 99.85 ± 0.16 99.85 ± 0.13 99.76 ± 0.12 99.84 ± 0.11 

AA 90.59 ± 0.49 90.69 ± 0.41 91.18 ± 0.36 91.01 ± 0.54 91.70 ± 0.58 91.82 ± 0.32 

OA 92.96 ± 0.32 92.77 ± 0.37 93.34 ± 0.20 93.05 ± 0.30 93.67 ± 0.21 93.85 ± 0.28 

 

 
 

Fig. 7. Classification results (overall accuracy in percentage) of Indian Pines obtained on (a) original data, (b) SSA processed data, (c) CT-MLR processed data, 

(d) WT-MLR processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data. 
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Fig. 8 .   Classification results (overall accuracy in percentage) of Salinas Valley obtained on (a) original data, (b) SSA processed data, (c) CT-MLR processed 

data, (d) WT-MLR processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data. 

 

 
 

Fig. 9.  Classification results (overall accuracy in percentage) of Pavia University obtained on (a) original data, (b) SSA processed data, (c) CT-MLR processed 

data, (d) WT-MLR processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data. 

 

For an NN   block, the computational complexity for the 

curvelet transform is given as )log( 2 NNO  [31], while the 

computation of the wavelet transform requires 

))411)((23( 2NmmO J
LH   flops for a block with the 

same size, where J  is the decomposition level and 

LH mm , are the lengths of the filter [57]. With the CDF 9/7 

filter used in the experiments, the lengths of the filter are both 9, 

i.e. 9 LH mm . Therefore, when J  is higher than 2, the 

computational complexity for the wavelet transform can be 

approximated as )27( 2NO , which is much higher than that of 

the curvelet transform. Besides, it should be noted that the 

processing time for MLR and SSA is largely dependent on the 

number of detail coefficient stacks and the number of total 

pixels in those stacks. However, it is not a problem for SSA, as 

fast implementation of SSA [10] has been proposed without 

degrading the feature extraction performance. For the Indian 

Pines data set, the computing time of the proposed CT-SSA 

method (using the original SSA implementation) is about 5 min 

on a personal computer with an Intel Core i5-2400 CPU at 3.10 

GHz using Matlab 2014a (Mathworks). Hence, it is reasonable 

to believe that with the fully optimised CurveLab toolbox and 

the fast implementation of SSA, the time cost of the proposed 

method should be much lower. 

 

 

Fig. 10.  Band 199 of Indian Pines in (a) original data and (b) CT-SSA 

processed data. 
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Fig. 11.  Band 2 of Salinas Valley in (a) original data and (b) CT-SSA processed 

data. 

 

Fig. 12.  Band 1 of Pavia University in (a) original data, (b) CT-SSA processed 

data. 

B. Comparison with Other State-of-the-Art Spectral Processing 

Techniques 

Although the curvelet transform is applied in the spatial 

domain of the hyperspectral images, the dominating part of the 

proposed denoising and feature extraction method, SSA, is 

applied in the spectral domain. As a matter of fact, the proposed 

CT-SSA approach actually belongs to the 1D spectral 

processing technique for hyperspectral images. Therefore, a few 

state-of-the-art 1D spectral feature extraction and 

dimensionality reduction techniques, including PCA, LDA, 

NMF are compared with the proposed approach for further 

performance assessments. Linear discriminant analysis is a 

standard supervised dimensionality reduction technique for 

pattern recognition, where the highest degree of class 

separability is obtained by maximizing the Raleigh quotient, i.e. 

the ratio of the between- class scatter matrix to the within-class 

scatter matrix [14]. Different from PCA which could only 

extract holistic features from the original HSI data, NMF is a 

parts-based learning algorithm, decomposing a non-negative 

matrix into two non-negative matrices which are more intuitive 

and interpretable. One of the decomposed matrices is formed 

with a set of basis vectors, which can be utilised to project the 

original data into the lower dimensional subspace [16]. The 

NMF algorithm is realized by the NMF Matlab toolbox [58]. 

Additionally, as an upgraded version of EMD, EEMD is also 

included for comparison as it overcomes the drawback of EMD, 

and therefore it outperforms EMD [55]. Being the fundamental 

part of the Hilbert-Huang transform (HHT), EMD is a 

non-linear and non-stationary signal decomposition method that 

decomposes the signal into a finite number of intrinsic mode 

functions (IMFs) [59]. Each IMF represents a zero-mean 

frequency-amplitude modulation component that is often 

related to a specific physical process so that EMD is not biased 

with any predetermined basis. Although EMD has shown its 

efficacy in time series decomposition (e.g. speech recognition), 

results reported in [60] indicated that spectral feature extraction 

using EMD could potentially reduce the following classification 

accuracy. Consequently a more robust and data-driven 

technique, EEMD was proposed to alleviate the addressed 

problem. It is achieved by sifting an ensemble of white 

noise-added signal and similarly it generates a series of IMFs, 

where the sum of them represents the processed signal. In this 

paper, the fast EEMD Matlab toolbox is adopted [59]. The 

performance of PCA on the proposed approach for further 

feature extraction is also included for comparison. 

The number of resulting features using PCA on both original 

data and CT-SSA processed data is tested within 5 – 50 in a step 

of 5 [11], while the dimensions of extracted features are tested 

from 2 to 10 for both LDA and NMF. Best results with highest 

classification accuracy are chosen for comparison. With regard 

to EEMD, it is suggested that the input white noise level 0  

should be in the range of 0.1 – 0.4 and the number of ensemble 

EN  should be the order of 100 [61]. Therefore, we keep these 

parameters the same as [55], where 200,2.00  EN  and 

the number of IMFs is 7. Experiments are also repeated ten 

times and comparison results are given in Table IV. 

 
TABLE IV 

MEAN OVERALL ACCURACIES (%) OF TEN REPEATED EXPERIMENTS ON THE 

ORIGINAL DATA SETS, SSA, CT-MLR, WT-MLR, WT-SSA, CT-SSA, 

CT-SSA-PCA AND SOME STATE-OF-THE-ART SPECTRAL FEATURE 

EXTRACTION TECHNIQUES PROCESSED DATA SETS, WITH DIMENSIONALITY OF 

FEATURES SHOWN IN PARENTHESES 

Method 

Data set 

Indian Pines 

(10%) 

Salinas 

Valley (5%) 

Pavia University 

(4%) 

Original 84.11 (200) 92.91 (204) 92.96 (103) 

SSA 87.54 (200) 93.49 (204) 92.77 (103) 

CT-MLR 91.93 (200) 95.18 (204) 93.34 (103) 

WT-MLR 91.76 (200) 95.11 (204) 93.05 (103) 

WT-SSA 93.87 (200) 96.08 (204) 93.67 (103) 

CT-SSA 94.13 (200) 97.35 (204) 93.85 (103) 

CT-SSA-PCA 95.75 (50) 98.33 (50) 91.78 (10) 

PCA [12] 82.65 (50) 92.78 (40) 92.93 (50) 

LDA [14] 87.03 (9) 91.62 (10) 92.06 (10) 

NMF [58] 77.43 (10) 92.64 (10) 91.71 (10) 

EEMD [59] 83.78 (200) 93.20 (204) 93.22 (103) 

 

It can be seen that those dimensionality reduction techniques 

only give comparable results compared with original data set, 

even though they could speed up the classification process. As 

given in [9], with 10% training rate of Indian Pines, the highest 

classification OA achieved by EMD is 75.49%. Although 

EEMD has made an improvement of over 8% on this data set, it 

is not as good as the proposed CT-SSA approach. For Indian 
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Pines and Salinas Valley, adding an extra PCA step leads to 

further improvement in classification accuracy while reducing 

the classification time with less number of features. Even though 

the extra step of PCA has limited performance on the Pavia 

University data set, the proposed CT-SSA method still 

outperforms other spectral feature extraction techniques. 

C. Comparison with Recent Spectral-spatial Classification 

Methods 

For the majority of supervised classifiers, such as neural 

networks, decision trees, SVM and etc., the spectral 

feature-based classification chain is adopted. However, they are 

not able to incorporate spatial dependencies presented in the 

original scene into the classification process [62]. Several recent 

publications have demonstrated that the integration of spectral 

and spatial information could be beneficial to hyperspectral 

image classification problems, where some spectral-spatial 

classification methods, including the extended morphological 

profile (EMP) [47], the logistic regression and multi-level 

logistic (LMLL) [63], the edge-preserving filter (EPF) [64], 

image fusion and recursive filter (IFRF) [65] and the intrinsic 

image decomposition (IID) [56], have been proved to be 

superior to the spectral feature-based classification method. 

Therefore, a post-processing step is added to the proposed 

CT-SSA approach to increase the spatial consistency in the 

classification result, where a TT   spatial window is applied 

around each central pixel in the classification map and the final 

classified label is decided in favour of the class which appears 

most in the window. The window shape could be designed to 

conform to different scenes, but to make it simple, here the 

square window is used. 

As can be noticed in ground truth maps in Fig. 3-5, Indian 

Pines has a smaller spatial area for some classes compared with 

Salinas Valley and Pavia University. Therefore, the spatial 

post-processing (SPP) window T  is chosen as 5 for Indian 

Pines, 9 for Salinas Valley and 9 for Pavia University, 

respectively. Results using EMP, LMLL, EPF, IFRF and IID 

are cited directly from [56]. Since only 9 classes in Indian Pines 

are involved in our experiments, we have eliminated the other 7 

classes from their results and recalculated AA and OA 

accordingly. For Salinas Valley in [56], 2% of pixels in each 

class have been used for training. Therefore, we have 

reperformed the experiment under the same training rate with 

other parameters unchanged. Numerical results are shown in 

Tables V–VII, where the proposed approach with spatial 

post-processing (CT-SSA-SPP) gives comparable accuracies 

with other spectral-spatial classification methods. For the 

proposed CT-SSA approach, it is found that the best overall 

accuracy values achieved are 94.13, 97.35 and 93.85 for the 

three datasets Indiana Pines, Salinas Valley and Pavia 

University, where the corresponding training ratios are 10%, 

5% and 4%, respectively. With the introduced spatial 

post-processing and under the same or even less training ratios, 

the overall accuracy values for the three datasets have been 

dramatically improved to 98.40, 99.39 and 99.19 from the new 

CCT-SSA-SPP approach. This has clearly demonstrated the 

efficacy of the SPP procedure in the proposed approach. 

 
TABLE V 

COMPARISON OF CLASS-BY-CLASS, AVERAGE AND OVERALL CLASSIFICATION 

ACCURACIES (%) OF THE CT-SSA-SPP APPROACH AND RECENT SPECTRAL- 

SPATIAL METHODS FOR THE INDIAN PINES DATA SET (10% TRAINING RATE) 

Class 

Method 

EMP 

[47] 

LMLL 

[63] 

EPF 

[64] 

IFRF 

[65] 

IID 

[56] 

CT-SSA- 

SPP (T=5) 

2 86.63 90.64 95.03 95.41 96.90 96.18 

3 89.74 87.23 95.68 96.07 97.20 99.63 

5 93.23 96.39 98.39 98.07 97.88 97.08 

6 97.50 99.90 98.90 98.62 99.40 100 

8 100 100 99.49 100 100 100 

10 86.18 93.49 82.09 95.26 95.49 95.45 

11 93.82 89.75 95.93 98.42 98.03 99.38 

12 87.09 98.60 92.81 96.72 97.23 97.32 

14 99.59 92.45 99.11 99.75 99.76 99.96 

AA 92.64 94.27 95.27 97.59 97.99 98.33 

OA 92.45 92.57 95.07 97.56 97.89 98.40 

 
TABLE VI 

COMPARISON OF CLASS-BY-CLASS, AVERAGE AND OVERALL CLASSIFICATION 

ACCURACIES (%) OF THE CT-SSA-SPP APPROACH AND RECENT SPECTRAL- 

SPATIAL METHODS FOR THE SALINAS VALLEY DATA SET (2% TRAINING RATE) 

Class 

Method 

EMP 

[47] 

LMLL 

[63] 

EPF 

[64] 

IFRF 

[65] 

IID 

[56] 

CT-SSA- 

SPP (T=9) 

1 99.93 99.83 100 99.99 100 100 

2 99.60 99.96 100 100 99.97 100 

3 96.75 99.80 98.36 99.89 99.85 100 

4 98.25 99.22 97.17 97.32 97.80 99.93 

5 99.14 98.75 99.96 99.94 99.96 99.73 

6 99.95 99.66 99.98 100 99.98 100 

7 99.87 99.55 99.98 99.70 99.90 100 

8 94.79 85.97 91.78 99.34 99.07 98.15 

9 99.41 99.69 99.65 99.99 99.86 99.92 

10 95.10 94.68 93.88 99.81 98.80 99.69 

11 96.39 98.47 98.80 99.26 99.98 100 

12 98.79 100 99.99 99.90 99.99 99.99 

13 98.87 98.48 100 99.28 100 100 

14 97.06 98.60 99.19 97.96 97.51 97.15 

15 86.67 78.78 85.50 97.07 99.52 99.04 

16 97.31 99.35 99.99 99.95 97.92 99.99 

AA 97.37 96.92 97.76 99.34 99.38 99.60 

OA 96.11 93.55 95.59 99.27 99.45 99.39 

 
TABLE VII 

COMPARISON OF CLASS-BY-CLASS, AVERAGE AND OVERALL CLASSIFICATION 

ACCURACIES (%) OF THE CT-SSA-SPP APPROACH AND RECENT SPECTRAL- 

SPATIAL METHODS FOR THE PAVIA UNIVERSITY DATA SET ( 4% TRAINING 

RATE) 

Class 

Method 

EMP 

[47] 

LMLL 

[63] 

EPF 

[64] 

IFRF 

[65] 

IID 

[56] 

CT-SSA- 

SPP (T=9) 

1 98.61 94.36 98.07 97.25 99.62 100 

2 98.84 97.79 98.38 99.68 99.88 100 

3 95.09 88.10 98.39 95.53 98.92 98.57 

4 96.64 98.05 98.45 96.52 97.54 95.91 

5 98.00 99.83 99.51 99.90 99.89 100 

6 88.33 99.74 95.35 98.72 99.91 99.97 
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7 93.51 98.14 97.57 96.69 99.59 100 

8 97.48 93.77 93.72 94.40 98.66 97.29 

9 99.91 99.92 98.23 92.54 94.84 90.37 

AA 96.27 96.63 97.63 96.80 98.76 98.01 

OA 96.82 96.81 97.98 98.07 99.41 99.19 

VI. CONCLUSIONS 

In this paper, two powerful tools, SSA and the curvelet 

transform, are combined for HSI feature extraction. By applying 

SSA in the curvelet domain, noise can be smoothed from the 

decomposed signals, resulting in more effective feature 

extraction. Inspired by applying MLR in the curvelet domain 

and another method of solely applying SSA on HSI data, the 

proposed method takes advantage of those approaches. Using 

SVM on three publicly available data sets, i.e. Indian Pines, 

Salinas Valley and Pavia University for performance 

assessment, the proposed CT-SSA method significantly 

improves OA by as much as 10% compared with the result of 

the original Indian Pines data set. In addition, noise could be 

effectively removed by checking the band image visually. 

Compared with the inspirational approaches and some 

state-of-the-art spectral feature extraction techniques, the 

proposed method always stands out with the highest 

classification accuracies. Furthermore, it is noticed that with the 

spatial post-processing step, another 4% improvement in 

accuracy could be added to the final result of Indian Pines, while 

for Salinas Valley and Pavia University, classification results 

can even be improved to nearly 100%. It is worth noting that by 

adding the simple spatial post-processing step, the performance 

of the proposed denoising and feature extraction method is 

either comparable with in terms of accuracies or even higher 

than some recent spectral-spatial classification methods. The 

choice of the spatial post-processing techniques will be a topic 

of our future work. 

Although in this paper the use of SSA is proposed for spectral 

processing in the curvelet domain, other filtering techniques 

could also give a relatively good result, where 2D filtering in the 

spatial domain in combination with SSA will be further 

investigated as well. 
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