
ABSTRACT
Logic built-in self test (BIST) is increasingly being adopted to
improve test quality and reduce test costs for rapidly growing
designs. Compared to deterministic automated test pattern gener-
ation (ATPG), BIST presents inherent fault diagnostic challenges.
Previous diagnostic techniques have been limited in their diagno-
sis resolution and/or require significant hardware overhead. This
paper proposes an interval-based scan-unload method that ensures
diagnosis resolution down to gate-level faults with minimal hard-
ware overhead. Tester fail-data collection is based on a novel con-
struct incorporated into the design-extensions of the standard test-
interface language (STIL). The implementation of the proposed
method is presented and analyzed.

Categories and Subject Descriptors: B.8.1 [Perfor-
mance and Reliability]: Reliability, Testing and Fault-Tol-
erance.

General Terms: Algorithms, Design.

Keywords: built-in self-test (BIST), fault diagnosis.

1. INTRODUCTION
Test represents a significant portion of the total cost of digital cir-
cuits. Larger and more complex designs lead to greater increases in
the cost of automated test equipment, a trend that is projected to
continue and accelerate [1]. Design-for-test (DFT) methods to
reduce test cost include scan ([2], [3]) and, increasingly, BIST [4],
[5].

Figure 1 outlines the logic BIST architecture used in this work,
based on the STUMPS architecture [6]. Values from a pseudo-ran-
dom pattern generator (PRPG) are loaded into the internal scan
chains of the design to be tested, and the scan-chain outputs are
unloaded into a signature analyzer that performs test-response
compaction. After several cycles, the state of the signature analyzer
is compared to the known “signature” of the fault-free design; a
mismatch indicates that at least one erroneous value was unloaded
from the scan chains. The PRPG is commonly implemented as a
linear-feedback shift register (LFSR) and the signature analyzer is
often implemented as a modified LFSR known as a multiple-input
signature register (MISR) [5], [7], [8]. To reduce test application

time, most DFT schemes use a multiplicity of parallel scan chains.
A combinational phase shifter (Figure 1) converts the unidimen-
sional stream of pseudo-random values generated by the LFSR into
a two-dimensional array of values to load parallel scan chains [7],
[9], [10]. The values unloaded from scan chains are fed into a
MISR that must have at least as many bits as there are scan chains
[7]. A combinational [space-] compactor (Figure 1) is inserted
between the scan chain outputs and the signature analyzer inputs,
making it possible to use a smaller MISR [11].

When test patterns fail, it is desirable to quickly locate the cause of
failure to one or more circuit gates so that possible manufacturing
or design errors can be corrected, thereby improving yield. Failures
are located through diagnostic at the logical level; failure analysis
identifies physical defects. Diagnostic relies on extensive space
(scan cell) and time (pattern cycle) failure information to identify
logical failures [3]. Unlike ATPG patterns, diagnosing BIST pat-
tern failures is more difficult because only the compressed final
signature is available. Analysis of the failing signature can identify
the failing test vectors; but, as the number of failing vectors
increases, the complexity of this method also increases and its iden-
tification abilities diminish [12]. To identify an increased number
of failing vectors requires additional hardware as cyclic registers
[13], [14]. Another method utilizes the quotient instead of the sig-
nature, providing improved diagnosis but requiring substantial
additional hardware [15]. Various scan-cell partitioning schemes
have also been presented, which require additional hardware and
apply the same test multiple times with different partition elements
to stepwise refine the failing candidates [16], [17]. In other meth-
ods, patterns are re-run multiple times based on a binary search
technique used to identify the failing patterns, but a large number
of steps may be required and signatures must be computed and ana-
lyzed for each search step [18]. In another scheme, the BIST ses-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00.

Figure 1. Logic BIST architecture.

sc
an

 c
ha

in

design

compactor

MISR LFSR

tested

sc
an

 c
ha

in

sc
an

 c
ha

in

sc
an

 c
ha

in

sc
an

 c
ha

in

sc
an

 c
ha

in

PRPG LFSR

phase shifter

Effective Diagnostics through Interval Unloads in a BIST Environment

Peter Wohl
Synopsys Inc.

Williston VT 05495
wohl@synopsys.com

John A. Waicukauski
Synopsys Inc.

Tualatin OR 97062
johnwaic@synopsys.com

Sanjay Patel
Synopsys Inc.

Beaverton OR 97006
sanjayp@synopsys.com

Greg Maston
Synopsys Inc.

Denver CO 80220
gmaston@synopsys.com

sion is repeated several times with the MISR programmed to
collect multiple signatures for different polynomials [19]. How-
ever, the maximum number of scan cells with faulty responses that
can be identified depends on how many signatures are collected.
Similarly, multiple signatures can be gathered by pseudo-randomly
masking out different sets of scan cells each time the BIST session
is repeated [20].

This paper presents a fast, very-low hardware overhead diagnostic
method that identifies not just the failing scan cells, but the failing
gates(s). Section 2 presents the general concept of interval-based
self test. Section 3 details the method of unloading all scan data for
a selected interval. Section 4 describes the tester flow and section
5 the simulator flow, each based on a single pattern file, without
requiring re-generation of BIST data.

2. INTERVAL-BASED LOGIC BIST
The self-test is divided into independent intervals of a fixed num-
ber of test patterns; e.g., 256 patterns. Each interval consists of an
ordered sequence of events shown in Figure 2, in standard STIL
representation [21]. We assume that the BIST test and diagnostic
operations are controlled by a tester; therefore, the STIL program
in Figure 2 is loaded on the tester. (If the BIST test was fully inde-
pendent, an on-chip BIST controller would generate the necessary
control signals.)

At the beginning of each interval, the “load_unload” procedure
(not shown in Figure 2) is called to initialize, through scan, the
PRPG and MISR. Initializing the PRPG and MISR at the beginning
of each interval ensures that the intervals are independent of each
other. Also, the PRPG is seeded with an initial value targeted to
detect certain hard-to-test faults [22]. The MISR is initialized to a
value so that the fault-free signature at the end of the interval is 0,
simplifying signature compare [7]. Next, an optional “bist_setup”
macro is called to set up scanning of the internal scan chains. In

boundary-scan based BIST, the “bist_setup” macro sets the JTAG
controller to the appropriate state. The 256 test patterns in the inter-
val are run by the Loop statement; each iteration calls the
“bist_load_unload” macro (shown above the interval in Figure 2)
and then pulses, in a single vector (V), the “bist_clk” and the sys-
tem “clk”. The “bist_clk” clocks all BIST hardware: the PRPG,
MISR and BIST controller; the system “clk” is used both for shift
and system capture in Figure 2. In general, the shift clock (used in
the macro “bist_load_unload”) may be different from the capture
clock; multiple capture clocks could also be used. The
“bist_load_unload” macro (Figure 2) pulses “clk” to shift values
into the scan chains defined in “ScanStructures bist” while, at the
same time, pulsing “bist_clk” to advance the PRPG and compress
unloaded values into the MISR. The macro “compare_substitute”
called by “bist_load_unload” can be defined as an empty macro for
normal BIST application and has no effect; a non-empty
“compare_substitute” will be used during diagnostic (section 3).

During the first pattern, scan cells have unpredictable values that
must be prevented from entering the MISR; this is achieved by
ANDing off each compactor input (Figure 3) during the first appli-
cation of “bist_load_unload” [11]. The gating signals c0 and c1 are
provided on-chip by a small counter -- part of the BIST controller.
During the first unload of each interval c0=c1=0; at all other times
c0=c1=1; in diagnosis mode (section 3) c0 and c1 have different
values, thus a single gating signal could not be used. At the end of
each interval, a logic OR gate compares the MISR content to 0; the
interval test has failed if the MISR is non-0.

Figure 4 shows the timing of the shift and capture operations in
non-diagnostic mode. While the shift clocks can be applied at a
lower speed (to reduce power consumption), the sequence marked
“AC” (from the last shift clock to the capture clock) must be
applied fast enough to ensure effective launch-on-last-shift transi-
tion-fault test. The timing of the clocks is also stored in the STIL
file but not shown in Figure 2. The internal shift clock (“clk”) and
the BIST clock (“bist_clk”) are both pulsed every cycle. Although
the bist_clk pulse at the time of the capture cycle (the gray clock
pulse) is logically not needed, it simplifies the control circuitry and
ensures uniformity of clock-induced noise.

// STIL macro definition:
MacroDefs {
"compare_substitute" { /*empty*/ }
"bist_load_unload" {

ScanStructures bist;
Loop 100 { // chains are 100 long

Macro "compare_substitute";
V { "bist_clk"=P; "clk"=P; }

}}}
// STIL BIST intervals:
Pattern "pattern" {
"interval 0":
Call "load_unload" {//load PRPG & MISR

"lfsr_si"=1110101...; }
Macro "bist_setup"; // optional
Loop 256 { // 256 patterns

Macro "bist_load_unload";
V { "bist_clk"=P; "clk"=P; }

}
V { "misr_comp" = L; } // MISR compare
"interval 1": /* similar */
"interval 2": /* similar */
....
}

Figure 2. STIL description of BIST interval containing 256
patterns; scan chains are 100 cells long.

+

i0 i1

o0

+

i2 i3

o1

+

i4 i5

o2

+

i254 i255

o127

Figure 3. Compactor core showing gating of inputs
i0..i255 controlled by signals c0, c1.

c1
c0

from scan chains

to MISR

fr
o

m
 B

IS
T

 c
o

n
tr

o
lle

r

3. UNLOADING INTERVAL DATA
Unlike previously proposed BIST test windows ([23]), intervals are
independent of each other and can be reordered or run individually
in much the same way as individual deterministic ATPG patterns.
Each interval is fully defined by the PRPG and MISR initial values
and the clock(s) pulsed. Test windows define intermediate MISR
fault-free signatures used to quickly determine the failing patterns
(window) for diagnostic. Intervals achieve the same fail patterns
resolution (256 patterns) but do not require the additional overhead
of salvaging future windows by adjusting their signatures to fit past
observed errors [23].

To make failure diagnosis of the failing gate possible, the exact
position of every erroneous bit unloaded from the scan chains must
be known. Diagnostic time is less critical than test time therefore,
in a logic BIST environment, it is desirable and practical to unload
all scan values without using compaction and signature analysis
[24]. To minimize hardware overhead, the compactor (Figure 3)
supports a “pass-through” mode for diagnostic and the scan values
are unloaded from the MISR (Figure 5), eliminating the need for
added scan-chain MUXing to bypass the compactor and MISR.
The AND gates used in the compactor to gate off scan data during
the first unload are re-used during diagnostic to gate off selected
scan chains so that data from the remaining chains are passed
through unmodified. For an m-bit MISR, one bit from each of the
first m scan chains is first passed unaltered through the compactor,
captured in the m cells of the MISR, and then scanned out of the
MISR. This process is repeated to obtain values from all scan cells
of all scan chains [11]. Once all scan unload data has been col-
lected, diagnostic is performed using fault simulation similar to
diagnostic of deterministic ATPG, achieving the same resolution
down to the failing gates(s) [3].

The compactor (Figure 3) and the MISR (Figure 5) can operate in
several modes, controlled by the BIST controller: scan, signature
analyzer, or diagnosis mode. The diagnosis operation for a design
with 256 scan chains, a 2-to-1 compactor and a 128-bit MISR
requires the following steps:

(1) Initialize MISR to 0 through scan: diag=1, c0=c1=0,
scen=1; all values shifted into the MISR are 0.

(2) Capture in MISR outputs of group 0 scan chains (chains
connected to i0, i2, ..., i254): diag=1, c0=1, c1=0, scen=0; values
are captured into MISR cells through XOR gates that have all
inputs 0 except the “o” inputs from the compactor.

(3) Scan out MISR, get 1 bit of every group 0 chain through so,
re-initialize MISR to 0: diag=1, c0=c1=0, scen=1.

(4) Capture in MISR outputs of group 1 scan chains (chains

connected to i1, i3, ..., i255): diag=1, c0=0, c1=1, scen=0; similar
to step 2.

(5) Scan out MISR, get 1 bit of every group 1 chain through so,
re-initialize the MISR to 0: diag=1, c0=c1=0, scen=1.

(6) If more bits in scan chains, shift scan chains and go to 2.

Note that the hardware added for diagnosis is only 3 gates (Figure
5), 2 signals (diag, one extra “c” gating signal) and a counter in the
BIST controller to control c0, c1. The signal diag enables diagnosis
operation in the MISR and in the BIST controller; diag is constant
1 during diagnosis and 0 during normal operation. A primary input
can be used to directly control diag, or it can be generated internally
by the BIST controller when its state machine enters diagnosis
mode as controlled by a limited-pin interface, such as boundary
scan (JTAG).

Failing intervals are re-run on the tester using diagnosis mode of
pattern operation to collect diagnosis data. The pattern block of the
STIL file, shown by example under the “STIL BIST intervals”
comment in Figure 2 is unchanged, but a different set of procedures
and macros are referenced and linked with STIL’s PatternBurst
construct (Figure 6) [21]. The macro “compare_substitute” is no

longer empty, but defined as in Figure 7. Every shift in
“bist_load_unload” is preceded by a call to “compare_substitute”
(Figure 2). In the first phase (Figure 7), one value from each of the
first 128 scan chains is passed through the compactor and captured
into the MISR (“bist_clk” is pulsed). Next, the Loop scans out the

clk:

#shifts

ca
p

tu
re

AC

#shifts

ca
p

tu
re

bist_clk:

pattern n pattern n+1

AC

Figure 4. Clocking in non-diagnostic mode. +DFF

+
scen

si d
ia

g

DFF + DFF

c0
c1

feedback

so

from compactor

Figure 5. MISR architecture; the gates added for diagno-
sis support are gray.

o0 o1 o127

scen
diag

PatternBurst "normal" {
// by default uses unnamed MacroDefs
// which includes empty
// “compare_substitute”
Patlist { “pattern” // see Figure 2

}}
PatternBurst "diagnosis" {
MacroDefs "diagnosis";// see Figure 7
Start “interval 2”; // first failing
Stop “interval 4; // last failing
Patlist { “pattern” // see Figure 2

}}

Figure 6. STIL selection of normal vs. diagnosis mode.

MISR. The “S” character on the scanout pin “lfsr_so” references a
Waveform that contains a “CompareSubstitute” event for the out-
put strobe operation, but the value (compare High or compare Low)
is not known; instead, the tester substitutes the High or Low value
measured from the device-under-test, thus accumulating diagnostic
data each time an “S” is encountered [25]. This process is repeated
in the second phase (and subsequent phases if needed; e.g., 4
phases for 512 scan chains) to obtain values from all scan cells of
all scan chains.

In this diagnostic operation, the MISR is re-used as a shift register
to shift out the content of all scan cells (Figure 5). Figure 8 shows
clocking in diagnostic mode, focusing on the same events as shown
in Figure 4, clocking in normal mode. In diagnostic mode (Figure
8), each shift clock of every pattern is preceded by a complete
unload of scan values, which requires p MISR unload phases.
Unlike Figure 4, the BIST clock (“bist_clk”) is pulsed in Figure 8
while the internal shift clock (“clk”) is off. Each MISR unload
phase starts by copying scanout values to the MISR (so->MISR),
followed by a complete MISR scanout during which the PRPG and
the internal scan chains are not pulsed. To preserve AC-testing
capability, there is no MISR unload between the last shift and the
capture; therefore, the data collected in diagnostic mode does not
include the last-shift data, which is part of the data compressed in
non-diagnostic mode. As with non-diagnostic timing (Figure 4),
the PRPG is advanced by pulsing “bist_clk” every time “clk” is
pulsed; for the MISR the “bist_clk” pulses (marked with X in Fig-

ure 8) during “clk” pulses are unnecessary because diagnostic data
collection starts after the “clk” pulses and completes before next
“clk” pulse.

4. TESTER FLOW
In a typical deterministic ATPG test flow, ATPG generates a large
deterministic pattern file which is loaded and run on the tester; fail-
ing patterns can be selectively re-run in diagnostic mode. It is
important that the very same pattern file is re-used for the diagnos-
tic run so that the ATPG tool is not required to produce another
large file. The diagnostic run typically requires additional tester
settings to only run selected patterns and to log fail data. The fail
data file produced by the tester is then returned (possibly after for-
mat translation) to the ATPG tool that performs diagnosis by fault
simulation [3].

The same flow is maintained with BIST patterns by using the
described diagnostic data collection method. BIST ATPG gener-
ates a very small BIST pattern file (Figure 2) that contains only the
interval data (PRPG and MISR initial values and clocks pulsed in
each interval). The BIST pattern file is loaded and run on the tester;
failing intervals can be selectively re-run in diagnostic mode. As
with deterministic ATPG, the very same pattern file is re-used for
the diagnostic run so that additional ATPG runs or other files are
not required. The diagnostic run requires additional tester settings
to only run selected intervals (using STIL’s “start” and “stop” oper-
ations in PatternBurst diagnosis) and to select the diagnostic proce-
dures and macros from the STIL file (Figure 6). The diagnostic data
file collected by the tester is then returned (possibly after format
translation) to the ATPG tool that performs diagnostic by fault sim-
ulation. The diagnostic data file is much smaller than a determinis-
tic patterns file because it contains only unload (no load) data of
only selected intervals, and unload values are encoded with only 1
bit (2 states -- high and low); unlike deterministic patterns unload,
2 bits are not needed for BIST unloads because X values never
propagate to the MISR.

For example, the diagnostic data file for a 10,000 scan cell design
requires only 320 KB. For increased diagnosis resolution of multi-
ple faults, multiple diagnostic data files can be collected for multi-
ple intervals and returned to the ATPG tool for diagnostic. The
diagnostic flow is enabled by usage of the CompareSubstitute con-
struct in STIL (Figure 7) ([25]) and is not achievable in languages
such as WGL ([26]) that lack such construct.

MacroDefs "diagnosis" {
"compare_substitute" {

C { "clk"=0; } // Condition clk OFF
// 1st phase: first 128 scan chains
V { "bist_clk"=P; } // so->MISR
Loop 128 { // MISR is 128 bits

V { "bist_clk"=P; "lfsr_so"=S; }
}
// 2nd phase: next 128 scan chains
V { "bist_clk"=P; } // so->MISR
Loop 128 {

V { "bist_clk"=P; "lfsr_so"=S; }
}
// more phases if needed

}}

Figure 7. STIL definition of diagnostic macro for a MISR of
m = 128 bits.

AC

bist_clk:

so
->

M
IS

R

MISR
scanout

clk:

so
->

M
IS

R

MISR
scanout

ca
p

tu
re

#shifts

Figure 8. Clocking in diagnostic mode.

phase 1

so
->

M
IS

R

MISR
scanout

so
->

M
IS

R

MISR
scanout

so
->

M
IS

R

MISR
scanout

pattern n

phase p phase 1 phase p phase 1

To support deterministic ATPG diagnostic, some testers imple-
ment the ability to unwind the hardware pipeline, starting with the
first miscompare, to find the cycle corresponding to each failure.
Failures occurring within a limited window from the first failure
can be logged in one pass; to log additional fail data, the first mis-
compares are masked out and the test is repeated. If a separate
BIST diagnostic pattern file is generated (in a WGL-based flow),
the same fail-data logging mechanism can be used for BIST diag-
nostic. Supporting CompareSubstitute (for a STIL-based flow)
requires the tester to efficiently log a larger volume of data, but
does not require selectively masking out previously logged bits.
Some testers implement this, or a similar mechanism for known-
good-die response logging.

5. SIMULATOR FLOW
Before testing a device, it is common that at least a subset of the
patterns are first verified though simulation (commonly Verilog
[27] or VHDL [28]) for logical and timing accuracy. Verification
is particularly important for BIST because the BIST structures
(PRPG, phase-shifter, compactor, MISR, BIST controller) are sim-
ulated only functionally by the ATPG tool (for increased perfor-
mance), whereas Verilog or VHDL simulation verifies the
structural (gate-level) design. For verification, patterns are written
out by the ATPG tool in a testbench format that provides stimuli to
a simulator and compares the simulator outputs with the expected
ATPG outputs. Both deterministic ATPG and BIST patterns can be
verified through this scheme. To verify the diagnostic capability of
deterministic ATPG, a fault can be injected in the simulated design;
and, in turn, the simulator mirroring a tester, could produce a fail
file that the ATPG tool then diagnoses.

Verification of the BIST diagnosis flow is even more important
because the ATPG tool simulates all BIST structures functionally,
including the mechanisms of unloading scan-chain values through
the MISR. For this verification, the testbench is written so that a
simulator compile-time definition controls whether the simulation
is done in normal or diagnostic mode (using the corresponding
STIL procedures and macros translated into Verilog or VHDL);
this allows the same BIST pattern file to be used for either normal
or diagnostic verification. In diagnostic mode, the simulator mir-
rors a tester and collects the diagnostic data file by scanning out the
MISR. The file is then diagnosed by the ATPG tool in a special fail-
only mode in which only the failing scan cell (not the internal gate)
is identified to aid in debugging simulator differences. Diagnosing
the internal gate is unnecessary because a simulator mismatch in
simulating internal gates would have shown up as a MISR miscom-
pare when simulating non-diagnostic mode BIST patterns; diag-
nostic-mode simulator mismatches can be caused only by
functional and structural representation differences of the BIST
structures involved in the diagnostic data collection. Evidently, if
the simulator run matches the ATPG expected data, then the fail-
only diagnostic reports no miscompares.

6. RESULTS
The simulator flow presented in section 5 was used to test the diag-
nosis method presented on designs ranging from 200K to 1M gates.
A typical session, obtained for a 1M gate design, is detailed below.

(1) Generated BIST patterns in 32-pattern intervals.

(2) Saved patterns as Verilog testbench.
(3) Ran Verilog simulation and confirmed that MISR signa-

tures match the expected values.
(4) Edited the Verilog netlist to inject a stuck-at fault.
(5) Re-ran Verilog simulation and confirmed that MISR signa-

tures now miscompare (intervals 0 and 14 miscompared).
(6) Re-ran interval 0 Verilog simulation in diagnosis mode to

generate the interval data (section 3).
(7) Read the file produced by the simulator into the ATPG tool

and performed fault diagnosis.

The output of the diagnosis run is shown in Figure 9. First, the
interval is simulated and the simulated values are compared to the
actual values to identify the failing scan cells. Then, fault simula-
tion is performed on these patterns to determine faults that best
explain the failing scan cells. The summary shows the number of
defects found (1) and the total CPU time (10 seconds on a 1 GHz
Pentium®). Next, the fault candidates are listed: there are two
faults marked with “DS” (detected by simulation), followed by
their equivalent faults marked with “--”. The fault injected at step
(4) above was a stuck-at 0 (sa0) on output pin S of XOR 179345:
the full pin-pathname of this fault is listed on the last line in Figure
9, preceded by two equivalent faults. The first 2 lines in Figure 9
list another defect candidate: the equivalent faults sa0 on output
CO of AND 179152 and input B of buffer 179221 could cause the
same fault signature. Diagnosis successfully identified the fault
simulated. If this were real silicon, failure analysis would follow to
analyze the fault candidates physical locations and identify the
defect. In many cases, a single fault candidate is identified making
failure analysis very simple; the two fault candidates in this case
would still be easy to analyze because of their proximity.

7. CONCLUSIONS
The BIST diagnostic method presented allows identification of the
failing gates -- not just the failing scan cells -- offering the same
diagnosis resolution as deterministic ATPG test. Only minimal
hardware is added for diagnostic: a few gates and internal signals
controlled by the BIST controller. Determining if BIST will run in
normal or diagnosis mode can be done using a “diag” primary input
or, in a reduced-pin implementation, by a “start diagnosis” instruc-
tion to the BIST controller. Any number of fails can be handled and
binary searches or other time-consuming methods are not required.
Instead, the BIST test is composed of small, independent intervals.
Only failing intervals need to be re-run in diagnostic mode to col-
lect all scan data of the interval. Both the tester and the simulator
flows use the same BIST pattern file for normal and diagnostic
mode. The device-under-test timing in diagnostic mode is the same
as in normal mode, preserving AC-test capabilities. The stream-
lined tester flow relies on a tester’s ability to process the new Com-
pareSubstitute event (added to the standard STIL language).
Traditional (WGL-based) tester flows are supported with a sepa-
rate diagnostic pattern file.

ACKNOWLEDGMENT
We are very grateful to Bill Lloyd and Martin Bell for careful
reviews and insightful comments.

REFERENCES
[1] Semiconductor Industry Association (SIA), International

Technology Roadmap for Semiconductors (ITRS), 1999.
[2] M. Abramovici, M.A. Breuer, A.D. Friedman, Digital Systems

Testing and Testable Design, IEEE Press, 1990.
[3] E.B. Eichelberger, E. Lindbloom, J.A. Waicukauski, T.W.

Williams, Structured Logic Testing, Prentice-Hall, 1991.
[4] H.J. Nadig, “Testing a Microprocessor Product Using a Signa-

ture Analysis”, International Test Conference 1978, pp.159-
169.

[5] V.D. Agrawal, C.R. Kime, K.K. Saluja, “A Tutorial on Built-
In Self-Test, Part 1: Principles”, IEEE Design & Test 1993,
Vol. 10, No.1, pp. 73-82.

[6] P.H. Bardell, W.H. McAnney, “Self-Testing of Multichip
Logic Modules”, International Test Conference 1982, pp.200-
204.

[7] P.H. Bardell, W.H. McAnney, J. Savir, Built-In Test for VLSI:
Pseudorandom Techniques, John Wiley & Sons, 1987.

[8] V.D. Agrawal, C.R. Kime, K.K. Saluja, “A Tutorial on Built-
In Self-Test, Part 2: Applications”, IEEE Design & Test 1993,
Vol. 10, No.2, pp. 69-77.

[9] J. Rajski, N. Tamarapalli, J. Tyszer, “Automated Synthesis of
Large Phase Shifters for Built-In Self-Test”, International Test
Conference 1998, pp. 1047-1056.

[10]J. Rajski, N. Tamarapalli, J. Tyszer, “Automated Synthesis of
Phase Shifters for Built-In Self-Test Applications”, IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 2000, Vol. 19 No. 10, pp. 1175-1188.

[11]P. Wohl, J.A. Waicukauski, T.W. Williams, “Design of Com-
pactors for Signature-Analyzers in Built-In Self Test”, Inter-
national Test Conference 2001, pp.54-63.

[12]W.H. McAnney, J. Savir, “There is Information in Faulty Sig-
natures”, International Test Conference 1987, pp. 630-636.

[13]J. Savir, W.H. McAnney, “Identification of Failing Tests with
Cycling Registers”, International Test Conference 1988, pp.
322-328.

[14]J. Ghosh-Dastidar, D. Das, N.A. Touba, “Fault Diagnosis in
Scan-Based BIST Using Both Time and Space Information”,
International Test Conference 1999, pp. 95-102.

[15]R.C. Aitken, V.K. Agarwal, “A Diagnosis Method Using
Pseudo-Random Vectors without Intermediate Signatures”,
International Conference on Computer-Aided Design 1989,
pp. 574-580.

[16] I. Bayraktaroglu, A. Orailoglu, “Deterministic Partitioning
Techniques for Fault Diagnosis in Scan-Based BIST”, Inter-
national Test Conference 2000, pp. 273-282.

[17]J. Ghosh-Dastidar, N.A. Touba, “A Rapid and Scalable Diag-
nosis Scheme for BIST Environments with a Large Number of
Scan Chains”, VLSI Test Symposium 2000, pp. 79-85.

[18]P. Song, F. Motika, D. Knebel, R. Rizzolo, M. Kusko, J. Lee,
M. McManus, “Diagnostic Techniques for the IBM S/390 600
MHz G5 Microprocessor”, International Test Conference
1999, pp. 1073-1082.

[19]Y. Wu, S. Adham, “BIST Fault Diagnosis in Scan-Based VLSI
Environments”, International Test Conference 1996, pp. 48-
57.

[20]J. Rajski, J. Tyszer, “Fault Diagnosis in Scan-Based BIST”,
International Test Conference 1997, pp. 894-902.

[21] IEEE Std 1450-1999, IEEE Standard Interface Test Language
(STIL) for Digital Test Vectors 1999.

[22]B. Könemann, “LFSR-Coded Test Patterns for Scan Designs”,
European Test Conference, Munich, 1991.

[23]J. Savir, “Salvaging Test Windows in BIST Diagnostics”,
VLSI Test Symposium 1997, pp. 416-425.

[24]J.A. Waicukauski, V.P. Gupta, S.T. Patel, “Diagnosis of BIST
Failures by PPSFP Simulation”, International Test Conference
1987, pp. 480-484.

[25] IEEE P1450.1, Extensions to STIL for Semiconductor Design
Environments, http://grouper.ieee.org/groups/1450/dot1/
index.html

[26]Summit (Fluence) Inc., Waveform Generation Language
(WGL) TDS Release 9.1.

[27] IEEE Standards Department, “Verilog Hardware Description
Language”, IEEE-1364, 1994.

[28] IEEE Standards Department, “IEEE Standard VHDL Lan-
guage Reference Manual”, IEEE-1076-1987, IEEE, NY, 1988.

Failures for interval 0: #patterns=32, clocks= bist_clk clk
--
interval pat# chain pos# gate_id simv/expv
-------- ---- -------- ---- ------- ---------
0 9 c359 34 389863 1 / 0
0 9 c359 35 389864 0 / 1
0 9 c359 36 389865 0 / 1
Failure summary: #failing_pats=1, #failures=3, #passes=564569
--
Diagnosis summary for failure file pat.diag
#failing_patterns=1, #defects=1, #unexplained_fails=0, CPU=10.20
Warning: Internal pattern set is now deleted. (M133)
--
Fault candidates for defect 1: #failing_patterns_explained=1
--
val code pin_pathname (module_name)
--- ---- --
sa0 DS core_i/compare_nf/b03_eq_port_fifo_read_60/add_136/U7/B
sa0 -- core_i/compare_nf/b03_eq_port_fifo_read_60/add_136/U6/CO
sa0 DS core_i/compare_nf/b03_eq_port_fifo_read_60/U26/B2
sa0 -- core_i/compare_nf/b03_eq_port_fifo_read_60/U26/B1
sa0 -- core_i/compare_nf/b03_eq_port_fifo_read_60/add_136/U7/S

Figure 9. Diagnosis output: text (top) and schematic view of the fault candidates.

