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We present computer simulation data for the effective permittivity ~in the quasistatic limit! of a

system composed of discrete inhomogeneities of permittivity e1 , embedded in a three-dimensional

homogeneous matrix of permittivity e2 . The primary purpose of this paper is to study the related

issue of the effect of the geometric shape of the components on the dielectric properties of the

medium. The secondary purpose is to analyse how the spatial arrangement in these two-phase

materials affects the effective permittivity. The structures considered are periodic lattices of

inhomogeneities. The numerical method proceeds by an algorithm based upon the resolution of

boundary integral equations. Finally, we compare the prediction of our numerical simulation with

the effective medium approach and with results of previous analytical works and numerical

experiments. © 1996 American Institute of Physics. @S0021-8979~96!06815-6#

I. INTRODUCTION

In recent years, extensive research has gone into study-

ing the dielectric properties of heterogeneous materials. The

reasons are not hard to find. On the one hand, it provides

fundamental problems which are not completely answered,

e.g. stochastic transport in disordered media, metal insulation

transition.1–3 On the other hand, industries such as aero-

space, electronics and others, have continuously provided the

impetus pushing the development of new materials in a wide

variety of applications. These include fields as diverse as

shielding enclosures, captive video disk units, electromag-

netic absorbing materials, to cite but a few.4 The trend to-

wards a wider variety of applications is almost certain to

continue.

In these materials, an accurate prediction of the macro-

scopic dielectric behavior must account for the detailed in-

ternal structure of the composite, the dielectric and shape

characteristics, the volume fractions and the spatial arrange-

ment of the different components. The analytical solution

requires us to compute the local fields inside the composite

and their distortions caused by the inhomogeneities using a

first principle approach, i.e. Maxwell’s equations. In the gen-

eral case of a spatially random structure, it appears as a for-

midable task to solve analytically this problem and these

difficulties have led numerous groups to study the partial

differential equations for the local fields using different com-

putational techniques.5–11 This originates from the fact that

the effective permittivity of composite materials is basically

an averaged property, where the average is taken over the

ensemble of the realisations of disorder. Somewhat surpris-

ingly, it should be emphasized in this context that numerical

simulations which start from completely different descrip-

tions of randomness may arrive at almost identical results. A

program of investigation is currently underway, whose ulti-

mate goal is to evaluate the effective permittivity of two-

phase composite materials in terms of the constituent prop-

erties and the internal structure of the mixture. The purpose

of this paper is to develop a computer-simulation model

based on the resolution of boundary integral equations with

careful attention paid to the numerical evaluation of the local

field. Although the method can be used to deal with arbitrary

geometric forms of the inclusions and arbitrary spatial ar-

rangements, calculations are confined, in this paper, to the

special but important case of periodic composites. It should

be regarded as a first step towards the ultimate goal outlined

above. Actually, the cross-fertilization between computa-

tional and analytical work in this area is quickly growing.

Extensive theoretical research has been focused in the study

of the effect of microstructure on the effective permittivity in

these materials.13–17

The remainder of the paper is organized as follows. In

Section II, we summarize the context of the problem. In Sec-

tion III, we describe the principle of our numerical analysis.

The boundary integral equation method, which is the corner-

stone of this paper, will be reviewed in this section. In Sec-

tion IV, we present results of different simulations with com-

parison with research reported by other authors. Our primary

purpose is to determine the volume fraction dependence of

the effective dielectric constant ~in the quasistatic limit! of a

composite material in which identical structures of constitu-

ent, say 1, are embedded in crystalline fashion in a matrix of

constituent 2. Our secondary purpose is to study the related

issue of the influence of the geometric shape of the constitu-

ents. We pay particular attention to the issue of how the

topological arrangement affects the effective permittivity.

Finally, conclusions of the paper will be presented in

Section V.

a!Also at: UPRESA CNRS 5005.
b!Electronic mail: christian.brosseau@univ-brest.fr

1688 J. Appl. Phys. 80 (3), 1 August 1996 0021-8979/96/80(3)/1688/9/$10.00 © 1996 American Institute of Physics



II. BACKGROUND

The problem of determining the effective dielectric con-

stant of heterogeneous two-phase materials has a long his-

tory. The origins of the modern concept of effective permit-

tivity can be found in the scientific literature of the late

nineteenth and early twentieth centuries. Particularly note-

worthy early and pioneering contributions were made by

Maxwell and Lord Rayleigh. For detailed historical reviews

and discussions of the general subject of effective permittiv-

ity with numerous references inside, the reader may wish to

consult Landauer3 and Tinga et al.14 In more recent times,

important developments are found in the work of Shivola

and Lindell.4 The medium under consideration will be char-

acterized in the static limit, i.e. the spatial variation of the

incident electric field is very large compared to the typical

size of the heterogeneities in the medium. Note that in this

paper, permittivity and dielectric constant are used synony-

mously.

Despite its effectiveness, the traditional boundary-value

approach does not provide accurate values of e at high-

volume fraction of the inclusions because it neglects the cor-

relations among the conductive inhomogeneities and does

not contain information about the structure of the material,

e.g. clustering effect. Moreover, this approach is restricted to

nontouching inclusions.

There have already been a number of numerical studies

which have found their way into electrostatics over the years.

These include the random-walk method introduced by

Schwartz and Banavar,7 and the multipole expansion of the

field around inclusions to evaluate the local fields distortions,

studied by Cukier et al.6 For completeness, we also mention

that Felderhof et al.11 have proposed alternatives that use

virial expansions and Torquato and Lado9 have also com-

puted the effective permittivity of composite materials by

applying bounding methods. Our calculations are very much

in the spirit of the recent investigations reviewed by Ghosh

and Azimi.23

III. PRINCIPLE OF THE NUMERICAL APPROACH

Let us turn to a brief presentation of the principle of our

numerical analysis for describing the behavior of the electric

field in composite materials. It is reasonable to start with the

first principles of electrostatics, namely Laplace’s equation,

i.e. DV50 where V is a potential distribution inside a spatial

domain V with a density of charge equal to zero everywhere.

The solution to this second order differential equation can be

computed by applying the method of boundary integral equa-

tion ~BIE!.18,19 Upon using Green’s theorem, we can write

the local potential V(MPV) in terms of V(P) and of the

normal derivative ]V/]n(P), with P being any point on the

boundary S ~with no overhangs! of V:

V~M !52

4p

A
E

S
S V~P !

]G

]n
2G

]V

]n
~P ! D ds , ~1!

where A stands for the solid angle under which the point M

sees the oriented surface S, n is the normal unit vector ori-

ented outward to S, ds is a surface element of S and G

denotes the Green function.

To begin with we refer to the schematic representation

of the configurations displayed in Fig. 1. We consider a two-

component periodic composite that can be divided into el-

ementary cells. The constituent of permittivity e1 occupying

the volume V1 is embedded in the region V2 of permittivity

e2 . Absence of charge density will be tacitly assumed

through our analysis. Given these assumptions, Eq. ~1! leads

to:

V52

4p

A
E

S1

S V
]G

]n
2G

]V

]n
U

1
D ds ~2!

for domain 1, and

V52

4p

A
E

S2

S V
]G

]n
2G

]V

]n
U

2
D ds ~3!

for domain 2. Moreover, we have

e1

]V

]n
U

1

5e2

]V

]n
U

2

~4!

by virtue of the conservation of the normal component of the

electric displacement at the interface. Consequently, we have

to solve the above two integral equations ~2! and ~3! to

evaluate numerically the electrostatic potential distribution.

For that purpose, the implementation of the BIE method con-

sists in dividing the boundaries into finite elements and for

each finite element, the calculation is carried out by interpo-

lation of V and ]V/]n with the corresponding nodal values:

FIG. 1. Boundary conditions related to the configurations investigated in the

numerical computation: ~a! isolated particle of permittivity e1 , ~b! fused

particle of permittivity e1 .
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V5(
j

l jV j

~5!
]V

]n
5(

j
l jS ]V

]n
D

j

,

where l j denote the interpolating functions. The generation

of these functions that are suited for our computational re-

quirements and the detailed methodology that we employ in

this work are similar to those reported at length

elsewhere.19,20 Following this way, integral equations are

transformed in a matrix equation which is numerically

solved using the boundary conditions on each side of the unit

cell as displayed in Figures 1a and 1b. Then, the permittivity

is obtained from the knowledge of the potential distribution

and its normal derivative. We distinguish between two types

of configurations for specifying the structure of the compos-

ite material.

In Fig. 1a, we have a single inclusion and thus, the me-

dium of permittivity e1 cannot intercept the sides of the par-

allelepipedic cell. In this case, the effective permittivity, in

the direction corresponding to the applied field, is calculated

using the following relation:

E
S

e2

]V

]n
U

2

ds5ez

V22V1

e
S , ~6!

where V22V1 denotes the slope of potential imposed in the

z-direction, e stands for the composite thickness in the same

direction and S denotes the surface of the unit cell perpen-

dicular to the applied field.

In Fig. 1b the inclusion is allowed to intercept the sides

of the parallelepipedic cell. In that case we must take into

account the electric displacement flux through the area S1

associated to the medium of permittivity e1 to calculate the

effective permittivity in the direction corresponding to the

applied field. Then Eq. ~6! is turned into

E
S2

e2

]V

]n
U

2

ds1E
S1

e1

]V

]n
U

1

ds5ez

V22V1

e
~S11S2!,

~7!

where S1 and S2 are the surfaces resulting from the intersec-

tion of the volumic regions of permittivity e1 and e2 respec-

tively with the upper side of the unit cell, perpendicular to

the applied field.

It should be noted that the BIE method gives an accurate

description of the electric potential by taking into account

edge and proximity effects even at low and high concentra-

tions of inhomogeneities. Therefore, this numerical tech-

nique does not suffer from the disadvantages of the tradi-

tional boundary-value approach.

IV. RESULTS AND DISCUSSION

We turn now to a discussion of numerical results con-

cerning the static effective permittivity of periodic composite

media as a function of the permittivities and the volume

fraction of the constituent materials. Comparison with other

numerical simulations and analytical equations for calculat-

ing the permittivity in heterogeneous media will be dis-

cussed.

The different geometries of the three-dimensional peri-

odic composites, consisting of two lossless materials with

dielectric constants e1 and e2 , that we consider in this study

are displayed in Fig. 2. The first subsection deals with effec-

tive permittivity of periodic arrays of dielectric spheres. The

second concerns regular systems of dispersed ellipsoid. The

third considers inclusions with cylinder shape ~rods and

discs!. Finally, we examine how the effective permittivity

can be affected by the type of the periodic arrangement.

A. Composite with spherical inclusions

Consider equal-sized spheres fixed in a simple cubic ar-

ray, a being the radius of the spheres. Figure 2a shows a unit

cell of the structure. For the purpose of simplicity, we as-

sume, in the following, that all the lengths (l ,a) are dimen-

sionless and that the side of the cell has the specific value

l52. It is worth noting that if a!1 the particles act like

isolated ones: they will experience only the external field and

not the fields induced by the other particles. We call this case

the isolated particle regime. Then, the permittivity of the

medium can be described by the Maxwell–Garnett equation:

e5e2

e112e212 f ~e12e2!

e112e22 f ~e12e2!
, ~8!

where f 5pa3/6 is the volume fraction of the scatterer phase

in the mixture ~see Fig. 2a!. It is a relatively simple exercise

to show that Eq. ~8! can be also written in the Clausius–

Mossoti form:

e2e2

e12e2

5 f
e12e2

e112e2

. ~9!

What occurs when increasing the concentration f ? The

distance of separation between two spheres decreases and

particles will experience the local fields induced by other

particles. The volume fraction f p5p/6>0.523 correspond-

ing to the limit of touching spheres (a51) is the maximum

packing threshold. Beyond that concentration, the geometry

can be described according to Shen et al.21 excluding six

segments of sphere from the unit cell. In this fused particle

regime, the volume fraction is analytically calculated for a

value of the radius a in the range 1<a<&:

f 5

pa3

6
2

p

4
~a21 !2~2a21 !. ~10!

By taking into account the symmetry of the unit cell in

the two regimes described above, the geometry is further

reduced to one-eighth of the microstructure for calculations

by the BIE method. Our results are compared with those

derived from Eq. ~8! and with numerical data obtained by

Mc Phedran5 et al. and Tao et al.8 for e153 and e251 ~Fig-

ure 3!. In that case, it appears that the values of e computed

by the BIE method agree satisfactorily with these previous

calculations. One might argue that the agreement of the nu-

merical data with Eq. ~8!, for f . f p , is somewhat fortuitous.

This is confirmed by Fig. 4 which shows the limits of the

Maxwell–Garnett theory for volume fractions f higher than

1690 J. Appl. Phys., Vol. 80, No. 3, 1 August 1996 Sareni et al.



0.4, when the ratio of the constituent permittivities is higher

~we take e1530 and e251!. It is further interesting to note

that our results are very close to those obtained by a Fourier

expansion technique over the entire range of volume fraction

f .8,21

B. Composite with ellipsoidal inclusions

We examine now a system of ellipsoidal inclusions ~Fig.

2b! which are regularly dispersed in a host medium. The unit

cell can be described using the one obtained for spherical

inclusions thanks to a tridimensional homothecy of ratio

(l ,w ,h), where l , w and h denote respectively the lengths of

the sides of the parallelepipedic cell displayed in Fig. 2b. As

can be seen in Fig. 2b, the medium is anisotropic and the

effective permittivity component e i in the direction i5x ,y ,z

can be written as

e i5e21

na i

12L i

na i

e2

, ~11!

where L i and a i are the depolarization factor and the polar-

izability in the direction characterized by the index i .

A standard result of electrostatics gives

FIG. 2. The configurations investigated in the boundary element model computation. The volume fraction of material e1 is f : ~a! sphere, ~b! ellipsoid, ~c!
cylinder, ~d! disc.
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Lx5

abc

2
E

0

1` du

~u1a2!A~u1a2!~u1b2!~u1c2!
, ~12!

where a , b and c denote the semiaxes of the ellipsoid. Note

that Ly and Lz can be evaluated by interchanging b and a ,

and c and a respectively.4

If the scatterers are sufficiently distant from each other,

their polarizability can be deduced from the solution of the

internal field of a dielectric ellipsoid in a quasistatic field

a i5y0~e12e2!
e2

e21~e12e2!L i

, i5x ,y ,z , ~13!

where y05
4
3pabc is the volume of the ellipsoid.4

By substituting Eq. ~13! into ~11!, the effective permit-

tivity of the medium can be expressed as

e i5e2S 11

~e12e2! f

e21~e12e2!~12 f !L i
D i5x ,y ,z , ~14!

where f 5ny05
4
3pabc/lwh is the volume fraction of the

constituent 1 ~See Fig. 2b!. To simplify further the analysis,

we first choose b5c5a/4 ~prolate spheroid! and we take the

dimensions of the elementary cell as: l58 and w5h52.

Figures 5 and 6 show a comparison of the numerical results

FIG. 3. Volume fraction dependence of the effective permittivity of the

three-dimensional periodic composite displayed in Fig. 2a. Inclusions ~per-

mittivity e153! are spherical and of volume fraction f in a matrix of per-

mittivity e251. The full circles are obtained by the BIE method. The solid

line is obtained from the results of Mc Phedran et al. ~see Ref. 5! (x) are

results of Tao et al. ~see Ref. 8!. The dashed curve corresponds to the

Maxwell Garnet equation ~Eq. ~8!!.

FIG. 4. Volume fraction dependence of the effective permittivity of the

three-dimensional periodic composite displayed in Fig. 2a. Inclusions ~per-

mittivity e1530! are spherical and of volume fraction f in a matrix of per-

mittivity e251. The full circles are obtained by the BIE method. The solid

curve corresponds to the Maxwell–Garnet equation ~Eq. ~8!!.

FIG. 5. Volume fraction dependence of the effective permittivity in the x

direction of the three-dimensional periodic composite displayed in Fig. 2b.

Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume

fraction f in a matrix of permittivity e251. The full circles are obtained by

the BIE method. The solid curve corresponds to Eq. ~14! with a depolariza-

tion factor Lx50.0754 ~Eq. ~12!!.

FIG. 6. Volume fraction dependence of the effective permittivity in the z

direction of the three-dimensional periodic composite displayed in Fig. 2c.

Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume

fraction f in a matrix of permittivity e251. The full circles are obtained by

the BIE method. The solid curve corresponds to Eq. ~14! with a depolariza-

tion factor L z50.4623 ~Eq. ~12!!.
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obtained by the BIE method for the effective permittivity of

the medium in the x and z directions respectively, ~e1530

and e251! and those obtained from Eq. ~14!. They clearly

show the limits of the analytical model for volume fractions

f higher than 0.2 particularly; the gap being important in the

x direction for which the interaction effect is stronger.

C. Composite with cylindrical and discoidal inclusions

We first consider the periodic composite displayed in

Fig. 2c. By taking into account the symmetries of the unit

cell, we need only to evaluate the permittivity in the x and z

direction since ey5ex . The dielectric constant in the perpen-

dicular direction to the cylinder axes is given by the Ray-

leigh’s formula

ex5e2

e11e21 f ~e12e2!

e21e22 f ~e12e2!
. ~15!

Using Eq. ~14! for prolate spheroid with

Lx5Ly5( 1
22d) and Lz52d where d!1 Van Beek13 derived

a general expression for the effective permittivity in the di-

rection which is parallel to the cylinder axes

ez5e21

1

3

~e12e2!~5ea1e1!

ea1e2

, ~16!

where ea denotes the apparent permittivity of the medium,

i.e. ‘‘seen’’ outside by an inclusion. Its value differs from the

permittivity of the host medium but must lie in the range

e2<ea<ez .

To make our simulation simpler, the geometry of the

unit cell was characterized by a single parameter a by taking:

H58a , D5a , l5w51, and h58 ~see Fig. 2c!. The corre-

sponding volume fraction of the constituent 1 is given by

f 5pa3/4. Figures 7 and 8 show data computed with the BIE

method. At this point, a number of comments are in order. It

is first interesting to observe that numerical data concerning

ex are well represented by Eq. ~15! for inclusions of low

permittivity ~e153!, while for high permittivity we have

noted a significant departure from Eq. ~15! at high concen-

tration levels. As concerns ez we observe that numerical data

for inclusions of low permittivity ~e153! are well described

by Eq. ~16!, taking an apparent permittivity identical to the

effective permittivity in the parallel direction to the cylinder

axis.

We turn next to the case of discoidal inclusions embed-

ded in the host medium. The structure of the periodic com-

posite has for unit cell the geometry of Fig. 2d.

In this case, it has been suggested that the components of

the effective permittivity can be evaluated from the Wiener’s

formulae considering a periodic array of thin lamellae;3,13,14

ez is obtained by connecting the constituents in series.

1

ez

5

f

e1

1

12 f

e2

~17!

while ex is deduced by connecting the constituents in parallel

ex5 f e11~12 f !e2 . ~18!

As in the first part of this subsection, the geometry of the

unit cell is characterized by a single parameter: H5a ,

D510a , l5w510, and h51. The corresponding volume

fraction of the constituent 1 is again given by f 5pa3/4. The

values of the effective permittivity obtained by the BIE

method for inclusions of permittivity ~e153! are displayed in

Figs. 9 and 10. We can deduce from these figures that neither

Eq. ~17! nor Eq. ~18! is able to correctly evaluate the permit-

tivity of these structures.

D. Lattices

Up to now, we have only considered a simple cubic ~sc!
arrangement of the inclusions in the host matrix. Here, we

discuss the influence of other types of cubic arrangements:

FIG. 7. Volume fraction dependence of the effective permittivity in the x

direction of the three-dimensional periodic composite displayed in Fig. 2c.

Inclusions ~permittivity e153! are cylindrical and of volume fraction f in a

matrix of permittivity e251. The full circles are obtained by the BIE

method. The solid curve is obtained from Eq. ~15!.

FIG. 8. Volume fraction dependence of the effective permittivity in the z

direction of the three-dimensional periodic composite displayed in Fig. 2c.

Inclusions ~permittivity e153! are cylindrical and of volume fraction f in a

matrix of permittivity e251. The full circles are obtained by the BIE

method. The dashed and the solid lines are obtained from Eq. ~16! with the

apparent permittivities ea5e2 and ea5e respectively.
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body centered ~bcc! and face centered ~fcc!. We shall also

consider crystalline lattices composed of perfectly conduct-

ing spheres ~s1→1`! of radius a , the permittivity of the

host medium being e251. The volume fraction of the par-

ticles can be written as

f 5n0

4

3

pa3

y0

, ~19!

where n0 is the number of particles per unit of internal struc-

ture and y0 denotes the volume of the internal structure. The

main characteristics of the different types of cubic lattices

investigated are summarized in Table I. By computing the

effective permittivity using the BIE method, we obtain iden-

tical results to those reported by Mc Phedran5 et al. and

Doyle12 with an accuracy of 1023.

Next we turn to the case of hexagonal lattices composed

of perfectly conducting spheres of radius a embedded in a

host medium of permittivity e251. The geometry of the unit

cell is displayed in Fig. 11. The number of particles per unit

of internal structure is n051, and the volume of the internal

structure is y05l2h)/2. This type of composite is aniso-

tropic (exÞez) and we observe from the Fig. 12 that the

permittivity strongly depends on the specific ratio h/l for

volume fractions f higher than 0.1.

E. Comparison with previous approaches

The above developments show that the BIE method can

be used at high volume fractions, even for large permittivity

contrast ratios between the background and the inclusions,

i.e. when the mean-field analytical approaches are irrelevant

to evaluate the effective permittivity of a composite material.

We also made the comparison of our results with previously

published analytical mixtures equations derived from heuris-

tic assumptions which may be adapted for some composites

FIG. 9. Volume fraction dependence of the effective permittivity in the x

direction of the three-dimensional periodic composite displayed in Fig. 2d.

Inclusions ~permittivity e153! are discoidal and of volume fraction f in a

matrix of permittivity e251. The full circles are obtained by the BIE

method. The solid line is obtained from Eq. ~19!.

FIG. 10. Volume fraction dependence of the effective permittivity in the z

direction of the three-dimensional periodic composite displayed in Fig. 2d.

Inclusions ~permittivity e153! are discoidal and of volume fraction f in a

matrix of permittivity e251. The full circles are obtained by the BIE

method. The solid curve is obtained from Eq. ~18!.

TABLE I. The main characteristics of the different types of cubic lattices.

The internal structure, the number of particles per unit of internal structure

n0 , the volume fraction f of the conducting spheres of radius a , the radius

ap and the concentration f p corresponding to the maximum packing thresh-

old are function of the type of cubic lattices i.e. simple cubic ~sc!, body-

centered cubic ~bcc! and face-centered cubic ~fcc!.

FIG. 11. Hexagonal lattice structure.
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but do not hold generally. We found that, for certain geom-

etries, ranges of volume fraction and values of the dielectric

constants of the two components, the differences between the

BIE results and these equations may be small ~e.g., Figs. 3

and 7!, or not small ~e.g., Figs. 4 and 6!. Our method of

calculation has three advantages. First, it is based on first

principles so it can serve as a test for other approximate

methods. Second, the BIE method can be easily realized in a

computer algorithm. We made our calculations on a

Hewlett–Packard 715/80 workstation. Third, it is not com-

putationally time consuming. The CPU time for calculating

the permittivity of a composite material with a certain con-

centration of inhomogeneities is about 20 minutes.

V. CONCLUSIONS

In summary, we have outlined an efficient and powerful

computer-aided solution procedure based on the boundary

integral equation method for the analysis of the static effec-

tive permittivity of two-constituent lossless media. Our nu-

merical technique can be easily extended to multiphase

structures of any shape.

Using such a framework, we have compared our results,

in the range of permittivities investigated, with those given

by mean-field approximations. Let us add that the numerical

simulations have shown the limits of standard analytical

models for high volume fractions of the dispersed phase,

particularly when the ratio of the constituent permittivities is

high. This is a most desirable development since in number

of technological applications, the permittivity e1 of inclu-

sions is much larger than that of the matrix, e.g. carbon-black

filled polymer composites. In this case interactions between

particularly proximate neighbors cannot be neglected. These

computations have also underlined the strong dependence of

the geometric shape of the components and their spatial ar-

rangement on the dielectric properties of the composite.

The calculated results have significant implications in

the modeling of natural composites such as snow or reservoir

rocks. While the results presented here seem to us encourag-

ing, they represent only a first step in understanding how to

describe the dielectric constant of these media. The code is

currently being extended to treat composites with random

distributions of inclusions. These capabilities will allow in-

vestigation of the technological problems that involve such

randomness. Although we have confined ourselves, in this

paper, to the static limit ~the spatial correlation length of the

material is smaller than the wavelength of the electric field!,
our ultimate goal is to investigate the range of absorption

spectrum to provide an even finer discrimination among the

geometries of heterogeneities. The study considered here can

be extended to the case of complex dielectric constant

~e(v)5e8(v)2ie9(v), where v is the angular frequency of

the electromagnetic wave! to use the angular frequency for

exploring the typical length scale j of inhomogeneities. A

complete description will be given in a forthcoming paper.

Experiments dealing with the electromagnetic response of

inhomogeneous materials have uncovered a varied phenom-

enology, whose interpretation presents challenging theoreti-

cal problems. It is also clear, that in order to deal with the

issue of magnetodielectics, it is necessary to attack the full

problem, i.e. m1Þ1, m2Þ1. In closing we also mention that

since the differential equations for electrostatics and magne-

tostatics are identical, i.e. Laplace’s equation for the poten-

tial, similar conclusions apply for the permeability of com-

posite materials.
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