
 EFFECTIVE DIGITAL FORENSIC ANALYSIS
OF THE NTFS DISK IMAGE

Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters

University of Ballarat, Australia
{m.alazab, s.venkatraman, p.watters} @ballarat.edu.au

ABSTRACT
Forensic analysis of the Windows NT File System (NTFS) could provide useful
information leading towards malware detection and presentation of digital
evidence for the court of law. Since NTFS records every event of the system,
forensic tools are required to process an enormous amount of information related
to user / kernel environment, buffer overflows, trace conditions, network stack, etc.
This has led to imperfect forensic tools that are practical for implementation and
hence become popular, but are not comprehensive and effective. Many existing
techniques have failed to identify malicious code in hidden data of the NTFS disk
image. This research discusses the analysis technique we have adopted to
successfully detect maliciousness in hidden data, by investigating the NTFS boot
sector. We have conducted experimental studies with some of the existing popular
forensics tools and have identified their limitations. Further, through our proposed
three-stage forensic analysis process, our experimental investigation attempts to
unearth the vulnerabilities of NTFS disk image and the weaknesses of the current
forensic techniques.

Keywords: NTFS, forensics, disk image, data hiding.

1 INTRODUCTION

Digital forensics is the science of identifying,
extracting, analyzing and presenting the digital
evidence that has been stored in the digital electronic
storage devices to be used in a court of law [1, 2, 3].
While forensic investigation attempts to provide full
descriptions of a digital crime scene, in computer
systems, the primary goals of digital forensic
analysis are fivefold: i) to identify all the unwanted
events that have taken place, ii) to ascertain their
effect on the system, iii) to acquire the necessary
evidence to support a lawsuit, iv) to prevent future
incidents by detecting the malicious techniques used
and v) to recognize the incitement reasons and
intendance of the attacker for future predictions [2,
4]. The general component in digital forensic process
are; acquisition, preservation, and analysis [5].

Digital electronic evidence could be described as
the information and data of investigative value that
are stored by an electric device, such evidence [6].
This research focuses on the abovementioned third
goal of acquiring the necessary evidence of
intrusions that take place on a computer system. In
particular, this paper investigates the digital forensic
techniques that could be used to analyze and acquire
evidences from the most commonly used file system
on computers, namely, Windows NT File System
(NTFS).

Today, NTFS file system is the basis of

predominant operating systems in use, such as
Windows 2000, Windows XP, Windows Server 2003,
Windows Server 2008, Windows Vista, Windows 7
and even in most free UNIX distributions [7, 8, 9].
Hence, malware writers try to target on NTFS as this
could result in affecting more computer users.
Another compelling reason for witnessing a strong
relationship between computer crime and the NTFS
file system is the lack of literature that unearth the
vulnerabilities of NTFS and the weaknesses of the
present digital forensic techniques [10]. This paper
attempts to fill this gap by studying the techniques
used in the analysis of the NTFS disk image. Our
objectives are i) to explore the NTFS disk image
structure and its vulnerabilities, ii) to investigate
different commonly used digital forensic techniques
such as signatures, data hiding, timestamp, etc. and
their weaknesses, and iii) finally to suggest
improvements in static analysis of NTFS disk image.

2 FORENSIC ANALYSIS PROCESS

In this section, we describe the forensic analysis
process we had adopted to achieve the above
mentioned objectives of this research work. We
conducted an empirical study using selected digital
forensic tools that are predominantly used in practice.
Several factors such as effectiveness, uniqueness and
robustness in analyzing NTFS disk image were
considered in selecting the tools / utilities required

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 551

 for this empirical study. Since each utility does
some specific functionality, a collection of such tools
were necessary to perform a comprehensive set of
functionalities. Hence, the following forensic
utilities / tools were adopted to conduct the
experimental investigation in this research work:

i) Disk imaging utilities such as dd [11] or
dcfldd V1.3.4-1 [12] for obtaining sector-
by-sector mirror image of the disk;

ii) Evidence collection using utilities such as
Hexedit [13], Frhed 1.4.0[14] and Strings
V2.41[15] to introspect the binary code of
the NTFS disk image;

iii) NTFS disk analysis using software tools
such as The Sleuth KIT (TSK) 3.01[16] and
Autopsy [17] and NTFSINFO v1.0 [18] to
explore and extract intruded data as well as
hidden data for performing forensic analysis.

For the experimental investigation of the
effectiveness of the above tools, we created test data
on a Pentium (R) Core (TM) 2 Due CPU, 2.19 GHz,
2.98 of RAM with Windows XP professional that
adopts the NTFS file system partition. In this pilot
empirical study, we focused on the boot sector of the
NTFS disk image. We adopted the following three
stages to perform digital forensic analysis in a
comprehensive manner:

Stage 1: Hard disk data acquisition,
Stage 2: Evidence searching and
Stage 3: Analysis of NTFS file system.

2.1 Stage 1 - Hard Disk Data Acquisition
As the first stage in forensic analysis, we used

the dcfldd developed by Nicholas Harbour and dd
utility from George Garner to acquire the NTFS disk
image from the digital electronic storage device.
This utility was selected for investigation since it
provides simple and flexible acquisition tools. The
main advantage of using these tools is that we could
extract the data in or between partitions to a separate
file for more analysis. In addition, this utility
provides built-in MD5 hashing features. Some of its
salient features allow the analyst to calculate, save,
and verify the MD5 hash values. In digital forensic
analysis, using hashing technique is important to
ensure data integrity and to identify which values of
data have been maliciously changed as well as to
explore known data objects [19].

2.2 Stage 2 - Evidence searching
The next stage involved searching for evidences

with respect to system tampering. An evidence of
intrusion could be gained by looking for some
known signatures, timestamps as well as even
searching for hidden data [20]. In this stage, we used
the Strings command by Mark Russinovich, Frhed
hexeditor tool by Rihan Kibria and WinHex
hexeditor tool by X-Ways Software Technology AG

to detect a keyword or phrase from the disk image.

2.3 Stage 3 - Analysis of NTFS File System
In the final stage of the experimental study, we

analyzed the data obtained from the NTFS disk
image that contributed towards meaningful
conclusions of the forensic investigation. We
adopted a collection of tools such as the Sleuth Kit
(TSK), Autopsy Forensic by Brian Carrier and
NTFSINFO v1.0 from Microsoft Sysinternals by
Mark Russinovich to perform different aspects of the
NTFS file system analysis.

3 FORENSIC INVESTIGATION STEPS

Many aspects must be taken into consideration
when conducting a computer forensic investigation.
There are different approaches adopted by an
investigator while examining a crime scene. From
the literature, we find five steps adopted, such as,
Policy and procedure development, Evidence
assessment, Evidence acquisition, Evidence
examination, and documenting and reporting [26]. In
our proposed approach for the digital forensic
investigation, we adopted the following nine steps as
shown in Figure 1:

Step 1: Policy and Procedure Development – In this
step, suitable tools that are needed in the digital
scene are determined as part of administrative
considerations. All aspects of policy and procedure
development are considered to determine the mission
statement, skills and knowledge, funding, personal
requirement, evidence handling and support from
management.

Step 2: Hard Disk Acquisition – This step involves
forensic duplication that could be achieved by
obtaining NTFS image of the original disk using DD
tool command. This step is for obtaining sector-by-
sector mirror image of the disk and the output of the
image file is created as Image.dd.

Step 3: Check the Data Integrity – This step ensures
the integrity of data acquired through reporting of a
hash function. We used MD5 tool to guarantee the
integrity of the original media and the resulting
image file.

Step 4: Extract MFT in the Boot Sector – In this step,
the MFT is extracted from the boot sector. We
analyzed the MFT using WinHex hexeditor tool and
checked number of sectors allocated to the NTFS file
system using NTFSINO.

Step 5: Extract $Boot file and Backup boot sector –
In this step, the $Boot file is extracted to investigate
hidden data. We analyzed the hidden data in the
$Boot metadata file system using WinHex, TSK and
Autopsy tools.

Step 6: Compare Boot sector and Backup – A

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 552

 comparison of the original and backup boot sectors is
performed in this step. We obtained another 2
Images from the original Image using DD tool. The
output generated resulted in two image files named,
backupbootsector.dd and bootsector.dd. We analyzed
the two image file named backupbootsector.dd and
bootsector.dd using WinHex hex-editor tool, TSK
and Autopsy tools.

Step 7: Check the Data Integrity – In this step the
integrity of data is verified again for test of
congruence. We adopted the hashing technique
using MD5 tool for the two created image files to
check the data integrity.

Step 8: Extract the ASCII and UNICODE –This step
involves extracting the
ASCII and UNICODE characters from the binary
files in the disk image. We used the Strings
command tool and keyword search for matching text
or hexadecimal values recorded on the disk. Through
keyword search, we could find even files that
contain specific words.

Step 9: Physical Presentation – In this final step, all
the findings from the forensic investigation are
documented. It involves presenting the digital
evidence through documentation and reporting
procedures.

Figure 1: Forensic investigation steps

4 BOOT SECTOR ANALYSIS OF NTFS

4.1 NTFS Disk Image
As mentioned in the previous section, the first

step to be adopted by a digital forensic investigator is
to acquire a duplicate copy of the NTFS disk image
before beginning the analysis. This is to ensure that
the data on the original devices have not been
changed during the analysis. Therefore, it is required
to isolate the original infected computer from the
disk image in order to extract the evidence that could
be found on the electronic storage devices. By
conducting investigations on the disk image, we
could unearth any hidden intrusions since the image
captures the invisible information as well [21]. The
advantages of analyzing disk images are that the
investigators can: a) preserve the digital crime-scene,
b) obtain the information in slack space, c) access
unallocated space, free space, and used space, d)
recover file fragments, hidden or deleted files and
directories, e) view the partition structure and f) get
date-stamp and ownership of files and folders [3, 22].

4.2 Master File Table
To investigate how intrusions result in data

hiding, data deletion and other obfuscations, it is
essential to understand the physical characteristics of
the Microsoft NTFS file system. Master File Table
(MFT) is the core of NTFS since it contains details
of every file and folder on the volume and allocates
two sectors for every MFT entry [23]. Hence, a good
knowledge of the MFT layout structure also
facilitates the disk recovery process. Each MFT entry
has a fixed size which is 1 KB (at byte offset 64 in
the boot sector one could identify the MFT record
size). We provide the MFT layout and represent the
plan of the NTFS file system using Figure 2. The
main purpose of NTFS is to facilitate reading and
writing of the file attributes and the MFT enables a
forensic analyst to examine in some detail the
structure and working of the NTFS volume.
Therefore, it’s important to understand how the
attributes are stored in the MFT entry.

The key feature to note is that MFT entry within
the MFT contains attributes that can have any format
and any size. Further, as shown in Figure 2, every
attribute contains an entry header which is allocated
in the first 42 bytes of a file record, and it contains an
attribute header and attribute content. The attribute
header is used to identify the size, name and the flag
value. The attribute content can reside in the MFT
followed by the attribute header if the size is less
than 700 bytes (known as a resident attribute),
otherwise it will store the attribute content in an
external cluster called cluster run (known as a non-
resident attribute). This is because; the MFT entry is
1KB in size and hence cannot fit anything that
occupies more than 700 bytes.

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 553

Figure 2: MFT layout structure

4.3 Boot Sector Analysis and Results
We performed boot sector analysis by

investigating metadata files that are used to describe
the file system. We followed the steps described in
previous section (Figure 1) by first creating a NTFS
disk image of the test computer using the dd utility
for investigating the boot sector. We used
NTFSINFO tool on the disk image as shown in Table
1 which shows the boot sector of the test device and
information about the on-disk structure. Such data
structure examination enables us to view the MFT
information, allocation size, volume size and
metadata files. We extracted useful information such
as the size of clusters, sector numbers in the file
system, starting cluster address of the MFT, the size
of each MFT entry and the serial number given for
the file system.

Table 1: NTFS Information Details.

Volume Size

Volume size : 483 MB
Total sectors : 991199
Total clusters : 123899
Free clusters : 106696
Free space : 416 MB (86% of drive)
Allocation Size

Bytes per sector : 512
Bytes per cluster : 4096
Bytes per MFT record : 1024
Clusters per MFT record: 0
MFT Information

MFT size : 0 MB (0% of drive)
MFT start cluster : 41300
MFT zone clusters : 41344 - 56800
MFT zone size : 60 MB (12% of drive)
MFT mirror start : 61949
Meta-Data files

From the information gained above, we followed

the steps in Figure 1 to analyze the boot sector image.
As shown in Figure 3, we performed an analysis of
the data structure of this boot sector and the results
of the investigation conducted using existing forensic
tools is summarized in Table 2. From these results,
we could conclude that the existing forensic tools do
not check possible infections that could take place in
certain hidden data of the boot sector. Hence, we
describe the hidden data analysis technique that we
had adopted in the next section.

5 HIDDEN DATA ANALYSIS AND RESULTS

The recent cyber crime trends are to use different
obfuscated techniques such as disguising file names,
hiding attributes and deleting files to intrude the
computer system. Since the Windows operating
system does not zero the slack space, it becomes a
vehicle to hide data, especially in $Boot file. Hence,
in this study, we have analyzed the hidden data in the
$Boot file structure. The $Boot entry is stored in a
metadata file at the first cluster in sector 0 of the file
system, called $Boot, from where the system boots.
It is the only metadata file that has a static location
so that it cannot be relocated. Microsoft allocates the
first 16 sectors of the file system to $Boot and only
half of these sectors contains non-zero values [3].

In order to investigate the NTFS file system, one
requires to possess substantial knowledge and
experience to analyze the data structure and the
hidden data [24]. The $Boot metadata file structure is
located in MFT entry 7 and contains the boot sector
of the file system. It contains information about the
size of the volume, clusters and the MFT. The $Boot
metadata file structure has four attributes, namely,
$STANDARD_INFORMATION, $FILE_NAME,
$SECURITY_DESCRIPTION and $DATA. The
$STANDARD_INFORMATION attribute contains
temporal information such as flags, owner, security
ID and the last accessed, written, and created times.
The $FILE_NAME attribute contains the file name
in UNICODE, the size and temporal information as
well. The $SECURITY_DESCRIPTION attribute
contains information about the access control and
security properties. Finally, the $DATA attribute
contains the file contents. These attributes values for
the test sample are shown in Table 2 as an
illustration. To achieve this, we used the following
TSK command tools:

Istat –f ntfs c:\image.dd 7

From our investigations of the resulting attribute
values, we find that, the $Boot data structure of the
NTFS file system could be used to hide data. By
analyzing the hidden data in the boot sector, one
could provide useful information for digital forensics.
The size of the data that could be hidden in the boot
sector is limited by the number of non-zero that

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 554

 Microsoft allocated in the first 16 sectors of the file
system. The data could be hidden in the $Boot
metadata files without raising suspicion and without
affecting the functionality of the system [25].

Table 2: Results of $Boot Analysis

MFT Entry Header Values:
Entry: 7 Sequence: 7
$LogFile Sequence Number: 0
Allocated File
Links: 1

$STANDARD_INFORMATION Attribute Values:
Flags: Hidden, System
Owner ID: 0
Created: Mon Feb 09 12:09:06 2009
File Modified: Mon Feb 09 12:09:06 2009
MFT Modified: Mon Feb 09 12:09:06 2009
Accessed: Mon Feb 09 12:09:06 2009

$FILE_NAME Attribute Values:
Flags: Hidden, System
Name: $Boot
Parent MFT Entry: 5 Sequence: 5
Allocated Size: 8192 Actual Size: 8192
Created: Mon Feb 09 12:09:06 2009
File Modified: Mon Feb 09 12:09:06 2009
MFT Modified: Mon Feb 09 12:09:06 2009
Accessed: Mon Feb 09 12:09:06 2009

Attributes:
Type: $STANDARD_INFORMATION (16-0)
Name: N/A Resident size: 48
Type: $FILE_NAME (48-2) Name: N/A Resident
size: 76
Type: $SECURITY_DESCRIPTOR (80-3)
Name: N/A Resident size: 116
Type: $DATA (128-1) Name: $Data Non-
Resident size: 8192
0 1

Analysis of the $Boot data structure of the NTFS
file system will identify any hidden data. The
analyzer should start by making a comparison
between the boot sector and the backup boot sector.
The image with the boot sector and backup boot
sector are supposed to be identical; otherwise there is
some data hidden in the $Boot data structure. One
method is to check the integrity of the backup boot
sector and the boot sector by calculating the MD5 for
both of them. A difference in checksum indicates
that there is some hidden data. We performed this
comparison by adopting the following commands on
the $Boot image file and the backup boot image:

dd if=image.dd bs=512 count=1 skip=61949
of=c:\backupbootsector.dd –md5sum –verifymd5 –

md5out=c:\hash1.md5

dd if=image.dd bs=512 count=1 of=c:\bootsector.dd
–md5sum –verifymd5 –md5out=c:\hash2.md5

We found that hidden data in the $Boot data
structure could not be detected directly by the
existing tools used in this study and manual
inspections were required alongside these forensic
tools. Hence, through the analysis conducted with
various existing utilities and tools, we arrived at the
following results:

i) Since NTFS stores all events that take place
on a computer system, there is a huge amount
of data analysis required while scanning the
entire NTFS disk image for forensic purposes.
In this empirical study, by merely focusing
on the hidden data of the $Boot file, we have
shown that a variety of tools and utilities had
to be adopted along with manual inspections.
Hence, it takes an enormous amount of time
to analyze the data derived with such tools.

ii) The existing forensic tools are not
comprehensive and effective in identifying
the recent computer threats. Not all computer
infections are detected by forensic tools,
especially intrusions that are in the form of
hidden data in the $Boot file go unchecked.

iii) It was mandatory to perform manual
investigations alongside the existing tools. By
adopting a manual introspection of the $Boot
file using the three-stage approach of i) hard
disk acquisition, ii) evidence searching and
iii) analysis of the NTFS file system, we
could successfully identify hidden data in the
$Boot file.

iv) Intelligent search techniques could be adopted
to extract the ASCII and UNICODE
characters from binary files in the disk image
on either the full file system image or just the
unallocated space, which could speed-up the
process of identifying hidden data.

v) One of the main reasons for having varying
tools is that Microsoft has different versions
of the NTFS file system to be catered for.
While Windows XP and Windows Server
2003 use the same NTFS version, Windows
Vista uses the NTFS 3.1 version [7]. The new
NTFS 3.1 has changed the on-disk structure.
For example, the location of the volume boot
record is at physical sector 2,048. Most of the
existing tools do not work with all the
different versions of NTFS file system, and
hence a comprehensive tool is warranted to
cope with these changes.

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 555

Figure 3: Analysis of the test boot Sector

Table 2: Results from the analysis of the test boot sector.

Byte
Range

Size Description Value Action / Result

 0 -- 2 3 Jump to boot code 9458411
If bootable, jump. If non-bootable,
used to store error message

 3 -- 10 8 OEM Name – System ID NTFS
11 -- 12 2 Bytes per sector: 512
13 -- 13 1 Sectors per cluster 8
14 -- 15 2 Reserved sectors 0 Unused – Possible Infection
16 -- 20 5 Unused 0 Unused – Possible Infection
21 -- 21 1 Media descriptor 0
22 -- 23 2 Unused 0 Unused – Possible Infection
24 -- 25 2 Sectors per track 63 No Check – Possible Infection
26 -- 27 2 Number of heads 255 No Check – Possible Infection
28 -- 31 4 Unused 32 No Check – Possible Infection
32 -- 35 4 Unused 0 Unused – Possible Infection
36 -- 39 4 Drive type check 80 00 00 00 For USB thumb drive

40 -- 47 8
Number of sectors in file
system (volume)

0.47264 GB

48 -- 55 8
Starting cluster address of
$MFT

4*8=32

56 -- 63 8
Starting cluster address of MFT
Mirror $DATA attribute

619,49

64 -- 64 1 Size of record - MFT entry 210=1024
65 -- 67 3 Unused 0 Unused – Possible Infection
68 -- 68 1 Size of index record 01h
69 -- 71 3 Unused 0 Unused – Possible Infection
72 -- 79 8 Serial number C87C8h
80 -- 83 4 Unused 0 Unused – Possible Infection
84 -- 509 426 Boot code ~
510 --511 2 Boot signature 0xAA55

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 556

 6 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

Recent methods adopted by computer intruders,
attackers and malwares are to target hidden and
deleted data so that they could evade from virus
scanners and become even difficult to be identified
using existing digital forensic tools. This paper has
attempted to explore the difficulties involved in
digital forensics, especially in conducting NTFS
disk image analysis and to propose an effective
digital forensic analysis.

In this empirical study, we have found that the
boot sector of the NTFS file system could be used
as a vehicle to hide data by computer attackers as
there is a potential weakness. We have emphasized
the knowledge and importance of file systems for
digital forensics, as several techniques to hide data
such as slack space and hidden attributes are being
recently adopted by attackers. This is an important
NTFS file system weakness to be addressed and
research in this domain area could lead to effective
solution for the open problem of detecting new
malicious codes that make use of such an
obfuscated mode of attack. We have shown that
the existing forensic software tools are not
competent enough to comprehensively detect all
hidden data in boot sectors.

As a first step to address this problem, we have
proposed a three-stage forensic analysis process
consisting of nine steps to facilitate the
experimental study. We have reported the results
gathered by following these proposed steps. By
adopting effective search techniques, we were
successful in identifying some unknown malicious
hidden data in the $Boot file that were undetected
by current forensic tools.

In this pilot study we had adopted a few
forensic techniques and effective manual
inspections of the NTFS file image. Our future
research directions would be to automate the
proposed process so as to facilitate forensic analysis
of the NTFS disk image in an efficient and
comprehensive manner. We plan to extract and
extrapolate malware signatures effectively as well
as intelligently for any existing and even new
malware that use hidden and obfuscated modes of
attack. We would automate the knowledge of how
to extract data from hidden data structures and how
to reclaim deleted data and we believe this would
extensively benefit the digital evidence collection
and recovery process.

7 REFERENCES

[1] M. Reith, C. Carr, & G. Gunsch: An
examination of digital forensic models,
International Journal of Digital Evidence, 1,
pp. 1-12 (2002).

[2] M. Alazab, S. Venkatraman & P. Watters:

Digital forensic techniques for static analysis
of NTFS images, Proceedings of ICIT2009,
Fourth International Conference on
Information Technology, IEEE Xplore (2009).

[3] B. Carrier: File system forensic analysis,
Addison-Wesley Professional, USA, (2008).

[4] S. Ardisson: Producing a Forensic Image of
Your Client’s Hard Drive? What You Need to
Know, Qubit, 1, pp. 1-2 (2007).

[5] M. Andrew: Defining a Process Model for
Forensic Analysis of Digital Devices and
Storage Media, Proceedings of SADFE2007,
Second International Workshop on Systematic
Approaches to Digital Forensic Engineering,
pp. 16-30 (2007).

[6] E Investigation: Electronic Crime Scene
Investigation: A Guide for First Responders,
US Department of Justice, NCJ, (2001).

[7] Svensson, A., “Computer Forensic Applied to
Windows NTFS Computers”, Stockholm's
University, Royal Institute of Technology,
(2005).

[8] NTFS, http://www.ntfs.com, 22/2/2009.
[9] D. Purcell & S. Lang: Forensic Artifacts of

Microsoft Windows Vista System, Lecture
Notes in Computer Science, Springer, 5075,
pp. 304-319 (2008).

[10] T. Newsham, C. Palmer, A; Stamos & J.
Burns: Breaking forensics software:
Weaknesses in critical evidence collection,
Proceedings of the 2007 Black Hat
Conference, (2007).

[11] DD tool, George Garner’s site, Retrieved
January, 2009 from
http://users.erols.com/gmgarner/forensics/.

[12] DCFL tool, Nicholas Harbour,
http://dcfldd.sourceforge.net/, accessed on
14/1/2009.

[13] WinHex tool, X-Ways Software Technology
AG, Retrieved January, 2009 from
http://www.x-ways.net/winhex/.

[14] FRHED tool, Raihan Kibria site,
http://frhed.sourceforge.net/, 14/1/2009.

[15] STRINGS, Mark Russinovich, Retrieved
January, 2009 from
http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx.

[16] TSK tools, Brian Carrier site,
http://www.sleuthkit.org/sleuthkit/, 14/1/2009.

[17] Autopsy tools, Brian Carrier site, Retrieved
January, 2009 from
http://www.sleuthkit.org/autopsy/.

[18] NTFSINFO tool, Mark Russinovich,
Retrieved January, 2009 from
http://technet.microsoft.com/en-
au/sysinternals/bb897424.aspx.

[19] V. Roussev, Y.Chen, T. Bourg & G. Richard:
Forensic file system hashing revisited, Digital
Investigation, Elsevier, 3, pp. 82-90 (2006).

[20] K. Chow, F. Law, M. Kwan & K. Lai: The

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 557

 Rules of Time on NTFS File System,
Proceedings of the Second International
Workshop on Systematic Approaches to
Digital Forensic Engineering, pp. 71-85(2007).

[21] K.; Jones, R. Bejtlich & C. Rose: Real digital
forensics: computer security and incident
response, Addison-Wesley Professional, USA,
(2008).

[22] H. Carvey: Windows Forensic Analysis DVD
Toolkit, Syngress Press, USA, (2007).

[23] L. Naiqi, W. Yujie & H. QinKe: Computer
Forensics Research and Implementation Based
on NTFS File System, CCCM'08, ISECS
International Colloquium on Computing,
Communication, Control, and Management,
(2008).

[24] J. Aquilina, E. Casey & C. Malin: Malware
Forensics Investigating and Analyzing
Malicious Code, Syngress Publishing,USA,
(2008).

[25] E. Huebner, D. Bem & C., Wee: Data hiding
in the NTFS file system”, Digital
Investigation, Elsevier, (2006), 3, 211-226.

[26] S. Hart, J. Ashcroft & D. Daniels:
Forensic examination of digital evidence: a
guide for law enforcement,
National Institute of Justice NIJ-US,
Washington DC, USA, Tech. Rep. NCJ,
(2004).

Special Issue on ICIT 2009 Conference - Applied Computing

UbiCC Journal – Volume 4 No. 3 558

