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ABSTRACT
Motivation: One particular application of microarray data,
is to uncover the molecular variation among cancers. One
feature of microarray studies is the fact that the number
n of samples collected is relatively small compared to
the number p of genes per sample which are usually
in the thousands. In statistical terms this very large
number of predictors compared to a small number of
samples or observations makes the classification problem
difficult. An efficient way to solve this problem is by using
dimension reduction statistical techniques in conjunction
with nonparametric discriminant procedures.
Results: We view the classification problem as a regres-
sion problem with few observations and many predictor
variables. We use an adaptive dimension reduction
method for generalized semi-parametric regression mod-
els that allows us to solve the ‘curse of dimensionality
problem’ arising in the context of expression data. The
predictive performance of the resulting classification rule
is illustrated on two well know data sets in the microarray
literature: the leukemia data that is known to contain
classes that are easy ‘separable’ and the colon data set.
Availability: Software that implements the procedures
on which this paper focus are freely available at http:
//www-lmc.imag.fr/SMS/software/microarrays/.
Contact: Anestis.Antoniadis@imag.fr

INTRODUCTION
The microarray technology makes it now possible to
rapidly measure, through the process of hybridization, the
levels of virtually all the genes expressed in a biological
sample. The gene expression patterns in microarray data
have already provided some valuable insights in a variety
of problems, and it is expected that knowledge gleaned
from microarray data will contribute significantly to
advances in fundamental questions in biology as well as
in clinical medicine.

One particular application of microarray data, is
to uncover the molecular variation among cancers.

∗To whom correspondence should be addressed.

Classification of different cell types, predominantly
cancer types, using microarray gene expression data has
been considered by Golub et al. (1999) for classification
of acute leukemia, Alon et al. (1999) for cluster analysis
of tumor and normal colon tissues, and Alizadeh et al.
(2000), for diffuse large B-cell lymphoma (DLBCL), to
cite only a few. The methods used in most of the above
papers range from discriminant analysis over Bayesian
approaches to other analysis techniques from machine
learning such as boosting, bagging and support vector
machines. A comprehensive comparative study of several
discrimination methods and machine learning methods in
the context of cancer classification based on filtered sets
of genes can be found in Dudoit et al. (2002).

One feature of microarray studies is the fact that
the number n of samples collected is relatively small
compared to the number p of genes per sample which
are usually in the thousands. In statistical terms the
very large number of predictors or variables (genes)
compared to a small number of samples or observations
(microarrays) make most of classical ‘class prediction’
methods difficult to employ, unless a preliminary variable
selection step is performed. For example, the pooled
within-class sample covariance matrix required to form
Fisher’s linear discriminant function is singular if n <

p + 2. Even if all the genes can be used as, say, with a
Euclidean-based rule or a support vector machine, the use
of all the genes allows presence of the noise associated
with genes of little or no discriminatory power, and this
inhibits and degrades the performance of the classification
rule in its application to unclassified tumors. That is,
although the apparent error rate of the classification rule
(the proportion of the training tissues misallocated by the
rule) will decrease as it is formed from more and more
genes, its error rate in classifying tissues outside of the
training set eventually will increase.

In most of the previous studies mentioned, the authors
have used univariate methods for reducing the number of
genes to be considered before using appropriate classifi-
cation procedures. An alternative approach to handle the
‘small n, large p’ problem is the one used by West et
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al. (2001) based on a Bayesian probit binary regression
model for a data for which there is a binary clinical out-
come response variable and the predictors consist of the
gene expression levels. West et al. (2001) used techniques
based on the singular value decomposition (SVD) of the
p × n matrix whose columns are the gene expression pro-
files of the n different tumors. Nguyen and Rocke (2002)
and Gosh (2002) proposed using the method of partial
least squares (PLS) for dimension reduction, as a prelimi-
nary step to classification using linear logistic discrimina-
tion (LD), linear (LDA) or quadratic discriminant analysis
(QDA).

The purpose of the SVD used by West et al. (2001) is to
produce orthogonal tumor descriptors that reduce the high
dimensional data to only a few gene components (super
genes) which explain as much of the observed total gene
expression variation as possible. However, this is achieved
without regards to the response variation and may be inef-
ficient. One simple explanation is that this way of reducing
the regressor dimensionality is totally independent of the
output variable. Thus any two different data sets would al-
ways reduce to the same linear combinations, as long as
the input variables have the same distributions. This is so,
even if the relationship between the predictors and the re-
sponse is not the same for the two data sets. To address
the dimension reduction issue, one must not treat the pre-
dictors separately from the response. This is the spirit of
the methods developed by Nguyen and Rocke (2002) and
Gosh (2002), where the PLS components are chosen so
that the sample covariance between the response and a lin-
ear combination of the p predictors (genes) is maximum.
One may argue that the latter criterion for PLS is more
sensible since there is no a priori reason why constructed
components having large predictor variation (gene expres-
sion variation) should be strongly related to the response
variable. However, PLS is really designed to handle con-
tinuous responses and especially for models that do not re-
ally suffer from conditional heteroscedasticity as it is the
case for binary or multinomial data. The only attempt, to
our knowledge, to extend PLS procedures to categorical
response variables is a Proceedings paper by Gauchi and
Tenehaus (1994). Their approach consists in transform-
ing first the categorical variable into a continuous one via
multiple correspondence analysis and to use then standard
PLS for continuous response. The question is then in what
sense, can the PLS reduction from the original p predic-
tors to the first few components can be effective? Are there
any other linear combinations more useful than the PLS
components in providing useful information about group
separation?

In this article, we address these issues by formulating the
classification problems via the adaptive effective dimen-
sion reduction approach (MAVE) of Xia et al. (2002) for
general regression problems, extending Li’s (1991) sliced

inverse regression (SIR) methods. We use the MAVE
method as proposed in the second half of the paper by Xia
et al. (2002) and which is an extension of the least-squares
MAVE procedure to the class of generalized nonlinear
models which includes qualitative response models and
in particular binary, multinomial, ordered response, and
other discrete choice models. Then, to capture nonlinear
structures between the expected binary responses and
the canonical variates so obtained without the knowledge
about the functional relationship in advance, we use
parametric and nonparametric logistic discrimination
rules following the dimension reduction. Our procedure
can be viewed as a two-stage procedure. The first stage
(feature selection) is to find the canonical variates for
reducing the predictor dimension from p to some integer
much smaller than the number of observations; the second
stage is to split the canonical space into 2 regions for
class-membership prediction via appropriate parametric
or nonparametric discriminant rules. The combination
of such discriminant rules and the dimension reduction
achieved by our method yields good prediction results.

This paper is organized as follows. In the Methods
section we describe the dimension reduction methods of
SIR and MAVE for binary data, the classification methods
of parametric and nonparametric logistic discrimination
and a preliminary gene selection strategy based on a
unsupervised fold change followed by Wilcoxon like
score based gene selection procedure as defined in Park
et al. (2001). We then apply our algorithms to two
publicly available microarray data sets which have been
considered before by several authors. Misclassification
rates for our classifiers are estimated using leave-one-
out cross-validation on the training set.. The results from
applying our method and their competitive performance
comparison with other methods are given in the Results
section. We end with some discussion and concluding
remarks. An appendix is included presenting a brief
discussion of the computation algorithms involved and
their implementation.

METHODS
Discriminant analysis aims at the classification (super-
vised learning) of an object into one of K given classes
based on information from a set of p predictor variables
observed on n samples. When focusing on the classifi-
cation of tumors using gene expression data, traditional
methods such that LDA or QDA or LD do not work since
p + 2 > n. Thus, methods able to cope with the high
dimensionality of the data are needed. In this section,
after briefly recalling the theoretical foundations that
support traditional classification methods, we set up the
classification problem under the effective dimension re-
duction binary regression model. Through the connection
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between various approaches for dimension reduction in
generalized regression models our methodology leads to
several ways of generalizing LD for better exploration and
exploitation of nonlinear data patterns in microarray data.

Classifiers
In this subsection we briefly describe some supervised
classification methods that groups classifiers into two
main categories according to their underlying mathemati-
cal principles. A more complete overview of such methods
is given in Dudoit et al. (2002). To fix the notation, gene
expression data on p genes for n mRNA samples will
be summarized by an p × n matrix X = (xi j ), where
xi j denotes the expression level of gene (variable) i in
mRNA sample (observation) j . The expression levels
might be either absolute (e.g. oligonucleotide arrays that
were used to produce the leukemia dataset) or relative
with respect to the expression levels of a suitably defined
common reference sample (e.g. cDNA microarrays). In
supervised classification, each mRNA sample is thought
to originate from a specific class k ∈ {1, . . . , c}, where the
number of possible classes c is known and fixed. The data
for each observation consist of a gene expression profile
(pattern) x j = (x1 j , . . . , x pj )

T and a class label y j ,
i.e. under classical regression terminology, of predictor
vector valued variables x j and response y j . Hereafter,
we shall assume that the pairs (x j , y j ), j = 1, . . . , n
are independent and identically distributed realizations
of a random vector (X, Y ), although taking sometimes
advantage of context dependent information might be
beneficial. We let nk denote the number of observations
belonging to class k.

A classifier can be regarded as a function g : R
p →

{1, . . . , c} that predicts the unknown class label of new
tissue sample x by g(x). The a priori probability of class k
is Pk = P(Y = k) and the conditional probability density
of X for class k is denoted by fk . The pooled data with all
the classes combined has then the density function f =∑c

k=1 Pk fk . Sometimes the class-conditional densities fk
are supported by disjoint regions in the space R

p and it is
then possible to construct an optimal classifier with zero
classification error P(g(X) �= Y ). More often however
the individual classes overlap and the smallest achievable
misclassification error is positive. If the probabilities Pk
and the class-conditional densities fk were known, the
classifier that minimizes the misclassification risk is called
the Bayes classifier and is defined by

gBayes(x) = argmaxk∈{1,...,c} Pk fk(x). (1)

An alternative way is to consider the a posteriori proba-
bility P(Y = k|X) and use the rule

gBayes(X) = argmaxk∈{1,...,c}P(Y = k|X). (2)

Both these rules are equivalent.

In practice, the class-conditional densities or the condi-
tional probabilities P(Y = k|X) in the above classification
rules are built from past experience, i.e. are estimated
from observations which are known to belong to certain
classes. Such observations comprise the learning set
(LS). Predictors may then be applied to a test set (TS)
to predict for each observation x j in the test set its class
y j . In the event that the y j are known, the predicted
and true classes may be compared to estimate the error
rate of the predictor. To estimate the Bayes rule two
distinct approaches emerge. The use of rule (1) requires
explicit estimation of the class-conditional densities
fk . For rule (2), regression techniques may be used to
estimate the posterior probabilities P(Y = k|X) without
considering the class-conditional densities separately.
Both these approaches are feasible, under parametric or
nonparametric assumptions when p << n, but the case
p >> n is a formidable challenge. A promising way
to meet it is by using nonparametric classification tech-
niques in conjunction with optimal dimension reduction
techniques. In what follows, we will focus first on binary
problems with response Y ∈ {0, 1}.
Dimension reduction through regression
The final goal of a regression analysis is to understand
how the conditional distribution of a univariate response
Y given a vector X of p predictors depends on the value of
X. We have already seen in the previous subsection that if
the conditional distribution of Y |X was completely known
for each value of X then the classification problem would
be definitely solved. However, under our setting, the study
of Y |X is problematic since the number of available obser-
vations is small and the dimension of X is extremely large.
Such difficulties can be addressed by placing restrictions
on Y |X and by limiting the regression objective to specific
characteristics of Y |X. Such a task may be achieved by di-
mension reduction procedures without loss of information,
and without requiring a specific model for Y |X. These pro-
cedures have the potential to point to useful classifiers.

In binary regression, without prior knowledge about the
relationship between Y and X, the regression function

r(x) = E(Y |X = x) = P(Y = 1|X = x)

or the logit function

s(x) = log

(
P(Y = 1|X = x)

P(Y = 0|X = x)

)

are often modelled in a flexible nonparametric fashion.
When the dimension of X is high, recent efforts have been
expended in finding the relationship between Y and X
efficiently. The final goal is to approximate r(x) or s(x)

by a function having simplifying structure which makes
estimation and interpretation possible even for moderate
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sample sizes. There are essentially two approaches: the
first is largely concerned with function approximation and
the second with dimension reduction. Examples of the
former are the generalized additive model approach of
Hastle and Tibshirani (1986) and the projection pursuit
regression proposed by Friedman and Stuotzle (1981);
both assume that the function to be estimated is a sum
of univariate smooth functions. Examples of the latter are
the dimension reduction of Li (1991) and the regression
graphics of Cook (1994) and more lately the adaptive
approach based on semiparametric models of Xia et al.
(2002). One goal of this article is to implement the
procedures of Xia et al. (2002) to our classification set-up.

A regression-type model for dimension reduction can be
written as

Y = g(BT
0 X) + ε (3)

where g is an unknown smooth link function, B0 =
(β1, . . . , βD) is is a p × D orthogonal matrix (BT

0 B0 =
ID) with D < p and E(ε|X) = 0 almost surely. The last
condition allows ε to be dependent on X and covers, in
particular, the binary regression case. In the terminology
of Cook and Weisberg (1999) the above model implies that
the distribution of Y |X is the same as that of Y |BT

0 X and
therefore the p-dimensional predictor X can be replaced
by the D-dimensional predictor BT

0 X without loss of
regression information, and thus represents a potentially
useful reduction in the dimension of the predictor vector.
Of course, in our case this is a simplifying structural
assumption which serves us to identify a small number of
linear combinations of a subset of genes that can be used to
predict cancer tumor genotype. The space spanned by the
columns of the matrix B0, can be uniquely defined under
some mild conditions and is called the effective dimension
reduction (EDR) space. As in Xia et al. (2002) we shall
refer to the column vectors of B0 as EDR directions,
which are unique up to orthogonal transformations. The
estimation of the EDR space includes the estimation of the
directions, namely B0, and the corresponding dimension
of the EDR space.

A brief review of several specific semiparametric meth-
ods to estimate B0 are given in Xia et al. (2002). When
the predictors are elliptically distributed and a constant
variance among classes holds, the sliced inverse regres-
sion (SIR) method proposed by Li (1991) and the sliced
average variance estimation (SAVE) proposed by Cook
(1994) are perhaps, up to now, the most powerful meth-
ods for searching for EDR directions and dimension re-
duction. However, it can be shown (see Kent, 1991; Li,
2000, ch. 14 and Cook and Lee, 1999) that for binary data
the SIR method is equivalent to linear discriminant anal-
ysis, the only difference being the way the discrimination
directions are scaled, and that it is fair to think of SAVE
as the quadratic discriminant analysis subspace (QDA) in

the same way that SIR corresponds to the LDA subspace.
In this paper, we have used the new method proposed by

Xia et al. (2002) to estimate the EDR directions. It is called
the (conditional) minimum average variance estimation
(MAVE) method. It is easy to implement and needs no
strong assumptions on the probabilistic structure of X.
It is out of the scope of the present paper to describe
in details the computations underlying the derivation of
the MAVE method. These are given in full extend in the
above cited paper. Let us only mention that the MAVE
method may be seen as a combination of nonparametric
function estimation by local polynomials and direction
estimation, which is executed simultaneously with respect
to the directions and the nonparametric link function.
Moreover, under the restriction that, under model (3), X
has a density with compact support, the authors of the
above cited paper show, by extending the cross-validation
method of Cheng and Tong (1992), that the dimension of
the EDR space can be consistently estimated.

Classification: nonparametric logistic regression
and local density estimation
After dimension reduction by MAVE, the high dimension
of p is now reduced to a lower dimension of D super-
gene components. Once the D components are constructed
we consider prediction of the response classes. Since
the reduced (gene) dimension is now low (D << n),
conventional classification methods may be used.

Let z be an observed column vector of D super-genes
predictor values. In conventional linear logistic regression,
the conditional class probability, P(Y |Z = z) is modeled
using the logistic functional form

π(z) = exp(ξ0 + zT ξ)

1 + exp(ξ0 + zT ξ)
, (4)

where the constant ξ0 and the D-dimensional parameter
vector ξ are estimated by maximum likelihood using
Fisher scoring. The predicted response probabilities are
estimated by replacing ξ0 and ξ with their maximum
likelihood estimators ξ̂0 and ξ̂ and the classifier predicts
the value 1 for a new sample if its estimated conditional
probability is larger than 0.5. This classification procedure
is called logistic discrimination (LD). The advantage
of the linear-logistic discrimination lies not only in its
computational convenience, but more importantly in the
ease of interpretation of the model parameters, and our
ability to make inference about them. However, while
often a linear-logistic model fits the data reasonably well,
sometimes there might be some curvature in the logit that
is not captured by it. A simple nonparametric alternative
to the fully parametric model (4) which allows for such
curvature, but yet retains the ease of interpretation of
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parameters such as ξ is the model

π(z) = exp(η(zT ξ))

1 + exp(η(zT ξ))
, (5)

for some completely unknown smooth function η. Such
models fall under the class of generalized linear single-
index models and efficient methods that deal with fitting
and making inference about such models have been
developed by Carroil et al. (1997) (see also Hastle
and Tibshirani (1986) for additive generalized binomial
models).

As we have already noticed, other classification methods
are obtained using the density estimation approach. For
these one needs estimates for the prior probabilities Pk as
well as the conditional densities fk in the Bayes classifier.
The prior probabilities may either be known or they can
be estimated from the relative frequencies of the classes
among the training data. The difficult part is to estimate
the class-conditional densities. A classical approach is to
model the class-conditional densities as multivariate nor-
mal distributions and this leads to quadratic discriminant
analysis (QDA). In case of equal covariance matrices one
obtains linear discriminant analysis (LDA).

Modeling the class-conditional densities as multivariate
normals is an example of parametric density estimation,
where the densities are assumed to belong to a family of
functions described by a finite set of parameters. In non-
parametric density estimation no such fixed family of pos-
sible densities is assumed. Kernel or local polynomial non-
parametric estimates are then used but unless the dimen-
sion of the support of the densities is small these meth-
ods suffer from what is called the curse of dimensionality.
Such nonparametric methods are perfectly feasible, if one
replaces the full gene profiles by their projections onto the
EDR space. However, in the study that follows, learning
and training test sets are not sufficiently large to provide
adequate density estimation for density based nonparamet-
ric discrimination.

Preliminary Gene Selection
The intrinsic problem with classification from microarray
data is that sample size is much smaller than the number
p of genes. Theoretically MAVE capitalizes on the corre-
lations among the genes and with the class labels to iden-
tify a small number of linear combinations of a subset of
genes that can be used to predict cancer tumor genotype
via parametric or nonparametric logistic classification. As
such it is a method that can handle a large number of
genes. However, as many other multivariate methods it is
challenged by severe memory requirements, large compu-
tational time, singular empirical covariance matrices and
the danger of over-fitting. The traditional attempt to over-
come these problems consists in data compression meth-
ods. Therefore, we have used, as suggested by a referee

and as it is done in several other papers discussing class
prediction with gene expression data two preliminary steps
for compression: unsupervised fold change (as it is done
in particular in Dudoit et al. (2002) followed by the Park et
al. (2001) Wilcoxon score based gene selection procedure.

RESULTS
We demonstrate the usefulness of the proposed method-
ology described above to two well known data sets: the
leukemia data first analyzed in Golub et al. (1999) and
the colon data analyzed initially by Alon et al. (1999).
Both data sets consist of absolute measurements from
Affymetrix high-density oligonucleotide arrays: the first
contains n = 72 tissue samples on p = 7129 genes (47
cases of acute lymphoblastic leukemia (ALL) and 25
cases of acute myeloid leukemia (AML)) and the second
n = 62 tissue samples on p = 2000 human gene expres-
sions (40 tumors and 22 normal tissues). We have used
the MATLAB software environment for preprocessing
the data and to implement our proposed classification
methodology. The suite of MATLAB functions imple-
menting our procedure is freely available at the URL
http://www-lmc.imag.fr/SMS/Software/mi-croarrays/.

As it is common we assess the performance of the
classification rules for a selected subset of genes by their
errors on the test set and also by their leave-one-out cross-
validated errors. But, as pointed out by the referees, if
these errors are calculated within the gene preliminary
selection process, there is a selection bias in them when
they are used as an estimate of the prediction error.
Therefore, to fairly evaluate and compare the test error or
the leave-one-out cross-validated error of the classification
rules that follow, we perform gene selection in training the
rules at each stage of the cross-validation process using
only the training sample at hand, following a methodology
similar to the one that has been considered by Nguyen
and Rocke (2002). Of course, when leave-one-out cross-
validation is used there is no guarantee that the same
subset of genes will be obtained as during the original
training of the rule (on all the training observations).
Indeed, with the huge number of genes available, it
generally will yield a subset of genes that has at most only
a few genes in common with the subset selected during the
original training of the rule. The leave-one-out CV error is
nearly unbiased, but it can be highly variable.

We first describe the results on the leukemia data
set (available at the URL http://www.genome.wi.mit.edu/
MPR). We followed exactly the protocol in Dudoit et al.
(2002) to pre-process the data by thresholding, filtering,
a base 10 logarithmic transformation and standardization,
so that the final data is summarized by a 3571 × 72 matrix
X = (xi j ), where xi j denotes the base 10 logarithm of
the expression level for gene i in mRNA sample j . In
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this study, the data are already divided into a learning
set of 38 mRNA samples and a test set of 34 mRNA
samples. The observations in the two sets came from
different labs and were collected at different times. The
test set comprises a broader range of samples, including
samples from peripheral blood as well as bone marrow,
from childhood AML patients, and from laboratories that
used different sample preparation protocols.

When training the rule and for the pre-selection of
genes, we first reduced the set of available genes to
the top p∗ = 50, 100 and 200 genes as ranked
in terms of Wilcoxon score based Park et al. (2001)
procedure. Another variable selection criterion for gene
selection in two-class prediction is the one based on a
BSS/WSS criterion and used by Dudoit et al. (2002)
which we also tried, and which produces similar effects on
performance. To compare our results we have also applied
the two discriminant analysis procedures DLDA et DQDA
described in Dudoit et al. (2002), which implement a
simple Gaussian maximum likelihood discriminant rule,
for diagonal class covariance matrices, assumed to be
constant across classes for DLDA and varying across
classes for the DQDA rule. The reason for this comparison
is that such diagonal procedures are not subject to the
curse of dimensionality and moreover DLDA was pointed
by Dudoit et al. (2002) to have remarkably low error
rates in their study of a subset of the same dataset. In
order to mimic the prediction of a new observation from
a training sample, we used a cross-validation estimate of
the misclassification rate for every method, where each
observation of the training set is successively omitted
from the data, and then classified with gene selection and
classification based on the remaining observations. The
results are given in Table 1.

The estimated EDR dimension D was most of the time
equal to 1 (D = 2 for samples 6, 17 and 22, when
p∗ = 50). As one can see, our method, using a parametric
(LD) or nonparametric logistic discrimination (NPLD)
predicts well the ALL/AML classes for the 38 training
samples using leave-one-out bias gene selection corrected
cross-validation. One exception is the ALL sample 17,
which is missclassified when p∗ = 50. Given that the
estimated EDR dimension for most cross-validation runs
was D = 1, there was no gain in using nonparametric
logistic discrimination in this case. However this was not
true for the test set. For the same cross-validation runs the
DLDA procedure predicted all classes correctly, while the
DQDA procedure had one or two misclassifications in the
bias selection corrected cross-validated learning set.

Prediction on the test samples using parametric or non-
parametric logistic discrimination on the D = 1 train-
ing MAVE components resulted in one misclassification
for p∗ = 50 or 100, and 2 for p∗ = 200, while both
DLDA and DQDA procedures resulted in a 1 or 2 over 34

Table 1. Classification rates by the four methods for the leukemia data set
with 38 training samples (27 ALL, 11 AML) and 34 test samples (20 ALL,
14 AML). Given are the number of correct classification out of 38 and 34 for
the training and test samples respectively.

p∗ MAVE-LD DLDA DQDA MAVE-NPLD

Training Data (Leave-out-one CV)
50 37 38 37 37

100 38 38 37 38
200 38 38 36 38

Test Data (Out-of-sample)
50 33 33 33 33

100 33 33 33 33
200 32 33 32 32

Table 2. Error rates of the classification rules with the Park et al. (2001)
nonparametric scoring selection algorithm, averaged over 50 random splits
of the 72 leukemia tissue samples into training and test subsets of 38 and 34
samples, respectively.

p∗ MAVE-LD DLDA DQDA

50 0.0571 (0.048) 0.0406 (0.028) 0.0321 (0.029)
100 0.0335 (0.028) 0.0347 (0.028) 0.0312 (0.025)
200 0.0241 (0.025) 0.0288 (0.029) 0.0224 (0.023)

misclassified samples. These results can also be directly
compared to those obtained in the study of Golub et al.
(1999), where 29 observations were correctly classified by
their voting scheme and the results by Furey et al. (2000)
working with support vector machines, reporting results
ranging between 30 and 32 correct classifications in the
test samples.

To further investigate the bias and variability of the
prediction rules, we split 50 times the set of 72 tissues
into a training set of 38 tissues (25 ALL and 13 AML)
and a test set of 34 tissues (22 ALL and 12 AML) by
sampling without replacement from the 47 ALL and 25
AML samples separately. For each of the 50 splits, the
training set is used to carry out gene selection and an
unbiased error rate estimate is given by the test error, equal
to the proportion of tissues in the test set mis-allocated by
the rule. The average values of the error rate estimates and
their standard deviations (in parentheses) are reported in
Table 2. It can be seen from Table 2 that the prediction
error improves with the number of retained genes and
that the MAVE (combined with logistic discrimination)
based rates range between DLDA and DQDA. However,
note that DLDA appears to be worse than DQDA on the
average of the 50 splits.

To further illustrate the method we have also applied the
same procedures to the colon data set (see Table 3).
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Table 3. Classification rates by the three methods for the colon data set.
Given are the number of correct classification out of 62 with leave-out-one
cross-validation.

p∗ MAVE-LD DLDA DQDA

Data (Leave-out-one CV)
50 52 51 51

100 52 51 51
200 52 51 51

Table 4. Error rates of the classification rules with the Park et al. (2001)
nonparametric scoring gene selection algorithm, averaged over 50 random
splits of the 62 colon tissue samples into training and test subsets of 31
samples each.

p∗ MAVE-LD DLDA DQDA

50 0.1392 (0.056) 0.1432 (0.047) 0.1400 (0.053)
100 0.1315 (0.046) 0.1406 (0.043) 0.1355 (0.051)
200 0.1336 (0.045) 0.1561 (0.045) 0.1565 (0.048)

From the table above one can see that the classes in
the colon data set are less well separated and that all
methods perform equivalently. Note that the rates supplied
here seem to be much worse than those given in Table
8 of Nguyen and Rocke (2002), but we suspect that
their table displays the rates obtained when applying their
classification rule to the training sample without cross-
validation correction. Indeed, using the training sample as
a test sample without cross-validation we obtain at most 3
missclassified samples, whatever the value of p∗ is.

For these data and in order to investigate the bias
and variability of the prediction rules, we split it into a
training and a test set each of size 31 by sampling without
replacement from the 40 tumor and 22 normal tissues
separately such that each set contained 20 tumor and 11
normal tissues. Here again the training set was used to
carry out gene selection and form the error rate estimates
for three sizes of selected subset of genes. We calculated
these quantities for 50 such splits of the colon data into
training and test sets. The results are reported in Table 4.
It can be seen that MAVE combined with LD is less biased
that the two other methods but the mean squared error of
the three methods are equivalent.

CONCLUSIONS
We have proposed a statistical dimension reduction
approach for the classification of tumors based on mi-
croarray gene expression data. Our method is designed to
address the curse of dimensionality to overcome the
problem of a high dimensional gene expression space
so common in such type of problems. To apply the

methodology we viewed the classification problem as a
regression problem, with group membership being the
response variable, and used adapted parametric or non-
parametric regression methods to solve the problem. The
results on two real data sets show that such an approach is
successful. While we have not illustrated the methodology
for multiclass problems we believe that our approach
can be also help by reducing the multiclass problem to
multiple binary problems that are solved separately as it
is usually done in the machine learning literature. The
nonparametric logistic classifier after dimension reduction
is suitable for gene expression arrays of any size, but we
believe that, with the number of experiments growing
rapidly, for large sample arrays nonparametric density
based discrimination after dimension reduction can be
proven as powerful.
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APPENDIX
We briefly describe here the main steps of the MAVE
algorithm considered in Xia et al. (2002) which is devoted
to the estimation of the matrix B in E(Y |X) = g(BT X)

allowing g to be an unknown smooth function. The
estimated B is a solution to the problem

min
B

E{Y − E(Y |BT X)}2 = E(σ 2
B(BT X)),

subject to BT B = I . To minimize the above ex-
pression one has first to estimate the conditional
variance σ 2

B(BT X) = E[{Y − E(Y |BT X)}2|BT X]. Let
gB(v) = E(Y |BT X = v). Given a sample {Xi , Yi } a
local linear fit is applied to estimate gB(·) and the EDR
directions are estimated by solving the minimization

problem

min
B,a j ,b j

(
n∑

j=1

n∑
i=1

(Yi − [a j + bT
j BT (Xi − X j )])2wi j

)
,

(6)
where wi j = Kh{BT (Xi − X j )}/ ∑n

�=1 Kh{BT (X� −
X j )} are multidimensional kernel weights. We start with
the identity matrix as an initial estimator of B to be
used in the kernel weights. Then iteratively, we use the
multidimensional kernel weights to obtain an estimator B̂
by minimizing problem (6) and refine the kernel weights
with the updated value of B and iterate until convergence.
The choices of the bandwidth h and the EDR dimension d
are implemented through a cross-validation technique.

To be balanced at final stage
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